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A B S T R A C T

In this paper, we investigate the magnetic field, thermal loads and small scale effects on the dynamics vibration
of a nanobeam structure composed of a rectangular configuration perforated with periodic square holes network
and subjected to axial magnetic field based on Euler–Bernoulli beam model (EBM) and Timoshenko beam model
(TBM). The developed resonance frequencies expressions are derived by modifying the standard equations of
dynamics beam vibration. The small scale effect is adopted via the Eringen's nonlocal theory while the coupled
governing equations are obtained and solved using analytical solution method in order to determine the re-
sonance frequency of perforated nanobeam. It is found that the resonance frequency change, the magnetic field
intensity, the thermal loads and small scale effects are in dependence with geometrical parameters such as size
and number of holes. Therefore, these results are discussed for the investigation of the structure dynamic de-
formation and compared with literature results where new remarks are deduced and presented with detail for a
proper design of M/NEMS structures.

1. Introduction

In recent years, the contribution of interaction and coupling effects
between mechanical, electric and magnetic fields is a novel candidate
for the study of the dynamic vibration and buckling behavior of na-
nobeam based on the Eringen's nonlocal elasticity theory, which takes
into account the small scale effect and the Timoshenko beam theory
which relates the bending moment, rotary inertia and shear forces have
interested many researchers [1–5], whereas, Maxwell equations for
electrostatics and magnetostatics are used to model of the electric and
magnetic behavior. Analytical models of the beam are derived by
modifying the standard Timoshenko beam equations for static deflec-
tion, buckling and vibration behavior. Therefore, several experimental
and theoretical studies are carried out in order to investigate the dy-
namic behavior of nanostructures integrated in micro/nano-electro-
mechanical systems (M/NEMS) such as nanowires [6–9], nanoplates
[10] and carbon nanotubes [11–14].

Nevertheless, to investigate the magnetic field, small scale and
thermal loads effects in nanoscale structures in which the interatomic
bonds play a vital role on their deflection, several authors have

introduced different approaches and proposed to use additional para-
meters such as of surface stress [15], piezoelectric parameters [16],
thermal loads, electrical and magnetic force [17–24]. These contribu-
tions are providing the basis for new ways of analysis that the resonance
frequency change with nanobeam size, shape and additional effect
conditions.

Nowadays, perforation is a geometric procedure widely used in
advanced technologies to develop sensitive structures especially for
optomechanics and photonics [25,26]. Despite the crucial role of per-
foration in the current technologies, the perforated nanostructures be-
havior has not been analyzed as extensively as full nanostructures be-
havior but only for particular cases due to the problem complication.
Sharpe et al. [27] investigated the holes size effect on the mechanical
characteristics of polysilicon thin film, and they confirmed that the
Young's modulus value decrease of 12% and the strength of the holed
specimens drops by 50%. Rabinovich et al. [28] investigated the holes
size effect on Young's modulus and shear modulus by studying the
electromechanical behavior of a perforated beam structure. Their re-
sults showed that Young's modulus and shear modulus are directly af-
fected by holes size with a decrease of 24% and 30% respectively.
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Besides, the effect of holes in the resonance frequencies for perfo-
rated beams which may be considered as a significant parameter in
which Luschi and Pieri [29,30] have developed analytical expressions
for the equivalent bending stiffness and shear stiffness for perforated
beam structures with periodic square holes network, and they have
determined the resonance frequencies expression. According to the
literature, dynamic behavior of size-dependent perforated nanobeams
subjected to axial magnetic field is a novel topic that has not been re-
ported.

In this work, numerical results are given to demonstrate the influ-
ence of magnetic field, small scale and thermal loading effects on the
resonance frequency of a perforated nanobeam for varying numbers
and sizes of holes using an analytical model of this structure. The paper
is organized as follows: in section 2, theoretical formulation and geo-
metrical structure for perforated nanobeam subjected to Lorentz force
induced by the applied axial magnetic field is presented. In section 3,
new resonance frequency model based on nonlocal elasticity and Ti-
moshenko beam theories is developed. In section 4, the magnetic field,
small scale and thermal loading effects are investigated on the free
dynamics vibration with numerical calculations and detailed discus-
sions. Concluding remarks of work are given in section 5.

2. Problem formulation

2.1. Structure geometry description

The dynamics vibration of perforated nanobeam subjected to mag-
netic field and thermal loading in this study will be analyzed via the
Eringen's nonlocal theory and the Timoshenko beam theory with the
equivalent parameters for bending and shear stiffness developed by
Luschi and Pieri [29]. In so doing, we consider a nanobeam of length L,
width b and thickness h, with periodic square holes network of spatial
period sP and size of hole dh, we can also defined N as the number of
holes distributed along the section, and β= (dh/sP) as the hole size ratio
which can range from 0 (full beam) to 1. Fig. 1 presents the geometrical
structure under consideration.

2.2. Maxwell's relations

We consider the Lorentz force fLZ induced by a static, uniform,
longitudinal, external magnetic field to the nanobeam in the z direction.
According to the following equations, we can define, the static charge
density (ρb), current density vector (J), electric vector (E), magnetic
field intensity (H), magnetic field density (B) and displacement current

density (D) as described in Ref. [23]. However, Maxwell equations can
be divided in three groups as follow:

• Equations of electromagnetic coupling.

∇ × = +

∇ × = −

−
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• Equations of property of materials and environment.
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Where Br is remanent induction of the material (for the first magneti-
zation with no applied field H, the Br field is zero), ɛ and η are the
electric and magnetic permeability of the nanobeam, respectively, and
if we consider the nanobeam have a global isotropy, these two para-
meters are supposed scalar. Also, with neglecting the displacement of
current density D and its derivative with respect to time, the electro-
magnetic field can be expressed by:

= +
= +

E E e
H H h

,0

0 (4)

Where e= (x, y, z, t) and h= (x, y, z, t) are the small disturbances of
the primary applied electromagnetic field quantities, E0 and H0, re-
spectively, in which E0= 0, thus, E= e. So, under these assumptions,
Maxwell's equations can be written in the following form:
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t

, (5)
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= ∇ × ×h u H( )0 (7)

In which u is the displacement field vector u= (u, 0, w) of nano-
beam. Considering the axial magnetic field H=(Hx, 0, 0) as a vector
acting on the perforated nanobeam, we can write that:
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The Lorentz force induced by the applied axial magnetic field is
obtained as
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In this study, we consider the displacement of nanobeam w(x,t) and
the Lorentz force act only in the z direction, therefore, the resultant
Lorentz force in the transverse direction is written as [23]:

∫= = ∂
∂

f η f dA ηA H w
xLZ A Z eq x

2
2

2 (10)

Fig. 1. Geometry and coordinates of perforated nanobeam structure with per-
iodic square holes network. Part of the full-length of structure is cut away for
more clarification.
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3. Mathematical model

3.1. Governing motion equation

On the basis of the Euler–Bernoulli beam theory which takes into
account the effect bending stiffness and Timoshenko beam theory
which included the shear effect as well as the rotation effect, in addition
to the bending effect. The bending moment M and the shear force V can
be given by nonlocal expressions with the nonlocal coefficient proposed
by Eringen in Ref. [32]. Therefore, the nonlocal bending momentM and
the nonlocal shear force V as function of the flexural deflection w and
the rotation angle ψ of the area cross-section are given by Equations
(11) and (12).
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where EIeq is the equivalent bending stiffness, GAeq is the equivalent
shear stiffness, the coefficient k is the shear factor equal 5/6 for a
rectangular cross-section [22] and μ is the nonlocal parameter char-
acterizing the small-scale effect which is estimated by Yang and Lim
[41] as μ= μ*L with μ*ε[0,0.2].

The standard Timoshenko equations for the dynamic vibration of a
perforated nanobeam subjected to a magnetic field can be described by
two coupled differential equations given in terms of the flexural de-
flection w and the rotation angle ψ of the cross-section. Thus the cou-
pled equations have been written as [3,31–33]
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where ρAeq is the equivalent mass per unit length and ρIeq is the
equivalent rotational inertia per unit length. FR= Ft-FLZ is the result of
Lorentz force induced by the axial magnetic force given in Equation
(10) and the axial thermal force which is related to the temperature
change T and the thermal expansion parameter of the beam material θ
[25,45,46].
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By substituting Equations (11) and (12) into (13) and (14) gives the
nonlocal bending moment M and the nonlocal shear force V as:
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Now, by inserting Equations (16) and (17) into (11) and (12) re-
spectively, the nonlocal explicit version of the coupled dynamic equa-
tions for a Timoshenko perforated nanobeam with magnetic field, small
scale and thermal loads effects can be obtained as:
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By differentiating Equation (18) with respect to x and replacing the
term ∂ψ/∂x from Equation (19), the nonlocal differential equation via
Timoshenko beam theory obtained is:
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Besides that, Luschi and Pieri [29] found the analytical expressions
for the equivalent parameters ρAeq, ρIeq, EIeq and GAeq as functions of
the number of holes N and the filling ratio α= (1-β). The analytical
expressions of ρAeq, ρIeq, EIeq, GAeq ρeq and Aeq, have been calculated by
using equations (21)–(26) respectively.
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According to Equations (22) and (25) the term Aeq formulated as
follow:
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where E is the Young's modulus, ρ is the density of material, I and A are
respectively, the moment of inertia and the area of nanobeam's cross
section corresponding to a full beam.

3.2. Nonlocal resonance frequency

The solution of governing equations of simply-supported nanobeam
with the flexural deflection can be given by the following form
[25,41–44].

=w x t W λ x λ t( , ) sin( )cos( )n n (27)

where ω is the angular frequency, W is maximum flexural deflection
and =λ nπ L/n is the wave number of vibration.

Thus, the nonlocal resonance frequencies via Timoshenko beam
model (TBM) obtained with new formulation as:
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When the rotary inertia and shear distortion effects are ignored,
equation (20) is reduced to the governing equation of Euler-Bernoulli
beam model (EBM) under axial magnetic field with small scale effects
as follows [29,34,36,37,40]:
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According to the existence condition of nonzero solution wmax of
equation (27), the resonance frequency based on nonlocal EBM model is
obtained as follows:
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4. Results and discussions

This section devotes to investigate the magnetic field, small scale,
thermal loads effects on the resonance frequencies on the basis of the
above formulation of a simply-supported perforated nanobeam with
length L=100 nm, width b= L/10 and thickness h= b/2. The Young's
modulus of material is a key parameter used in NEMS, which is selected
as single crystal silicon such that E=169 GPa, density ρ=2330 kg/m3

[29]. The permeability of magnetic field is considered to be −π4 10 7,
thermal expansion coefficient θ=2.57.10−6K−1, B= 15.8MPa/K and
T0= 317 K, Thus, we have employed the equivalent parameters values
EIeq, GAeq, ρAeq and ρIeq which are calculated as a function of number of
holes N and filling ratio α=(1-β) via the analytical expressions given by
equations (21)–(24) respectively. Simulation have been made for a
perforation with one hole per section (N=1) with β change from 0 to
0.95 and for a range of N between 1 and 10 to investigate the effect of
the number of holes on the resonance frequency for various values of
magnetic field intensity H.

Fig. 2 describes the variation of frequency f1= (ω1/2π) as a func-
tion of β with magnetic field effects excluding and including thermal
loads and small scale effects. The influence of magnetic field on the
change in frequency is clearly visible compared with the frequency of
full beam (β= 0) over a range of β in both cases of EBM and TBM
models. Moreover, it is observed that the thermal loads and the small
scale effects reduce the value of resonance frequency as mentioned in
Refs. [35,38]. Also, the effects of magnetic field is more significant for
H=6.106 A/m, this is due to the importance of the bending moment
effect which is induced by axial magnetic force and varies proportion-
ally with the term (EIeq/ρAeq) and magnetic field intensity [39]. These
results confirm those presented in the work of Bourouina et al. [25],
Luschi and Pieri [29] for a clamped-clamped perforated microbeam.

As can be shown in Fig. 2(a), the frequency obtained from EBM
model increases by increasing the value of β with and without thermal

loads and small scale effects. However, the increasing of magnetic field
(H= 6.106A/m) which may allow that the fundamental frequency
decreases at a point equal to (β= 0.88) in Fig. 2(b), in both the curves
of EBM and TBM models can not be intersected. This is due to the
importance of the bending moment effect which is induced by axial
magnetic force and varies proportionally with the term (EIeq/ρAeq) [39].
The obtained results reveal that the thermal load and the longitudinal
magnetic field tend to reduce the nanobeam's flexural stiffness. It is
therefore shown that the frequencies would decrease with increasing
magnetic field intensity. Indeed, a calculation of fundamental fre-
quency for different magnetic field values is illustrated in Table 1, it is
observed that, the frequency calculated from TBM model decreases over
the whole range of β and this impact became more significant with the
increasing of magnetic field intensity. The divergence in value between
the frequencies obtained from EBM and TBM models increases with the
hole size ratio β as can be seen in Table 1.

As can be shown in Fig. 3, the fundamental frequency evolution as a
function of the number of holes N, excluding and including thermal
loads and small scale effects. The magnetic field intensity applied in
Fig. 3(a) are H=4.106 A/m and H=4.2.106 A/m in Fig. 3(b) for large
hole size ratio β=0.9 (α=0.1) [29]. The frequency calculated for both
of EBM and TBM models was found to decrease with increasing the
number of holes N, this is due to the decrease in the terms (EIeq/ρAeq)
and (EIeq.ρAeq/kAGeq) in both respectively. However, for the EBM
model, when the number of holes is more than two per section
(N > 2), the frequency becomes lower than the frequency matching to
a full beam (β= 0), this observation is more considerable for TBM
model, the frequency becomes close to zero. Therefore, we can deduce
that for larger numbers of holes, the bending moment effect becomes
lower than of the bending moment effect matching to a full beam. In-
deed, the influence of magnetic field intensity is clearly noticed when
H=4.2.106 A/m.

In order to show clearly, the influence of the magnetic field

Fig. 2. The fundamental frequency as a function of the hole size ration β for one holes per section (N= 1), (a): magnetic field intensity H= 6.105A/m and (b):
H= 6.106A/m.

Table 1
Calculation of fundamental frequency for different values of magnetic field
intensity, one hole per section (N= 1) and varying value of the hole size ratio
β.

H (A/m) 2.106 4.106 6.106

Model β EBM TBM EBM f (GHz) TBM EBM TBM

0 1.8578 1.8137 1.8137 1.7685 1.7378 1.6906
0.2 1.8761 1.8079 1.8306 1.7606 1.7522 1.6790
0.4 1.9414 1.8215 1.8911 1.7678 1.8042 1.6745
0.6 2.0664 1.8188 2.0043 1.7479 1.8963 1.6229
0.8 2.2606 1.6345 2.1589 1.4907 1.9778 1.2137
0.9 2.3761 1.2569 2.1896 0.8534 1.8371 0.8313
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intensity, small scale parameter and thermal loads effects on dynamic
behavior of perforated nanobeam, results with and without these effects
are included. It is very convenient to introduce the ratios of the fre-
quencies with magnetic field, which is a new term in this work,

temperature variation and nonlocal parameter to those without mag-
netic field, temperature variation and nonlocal parameter are respec-
tively given by:

Fig. 3. The fundamental frequency as a function of number of holes N (β= 0.9) for magnetic field intensity. (a): H= 4.106A/m and (b):H= 4.2.106A/m.

Fig. 4. Magnetic field effect on the fundamental frequency ratio γH (a): as a function of the hole size ratio β; (N=1 and μ*=0 and T=0); (b): as a function of
number of holes N; (β= 0.9, μ*=0 and T=0).

Fig. 5. Thermal loads effect on the fundamental frequency ratio γT as a function of the hole size ratio β; (N=1 and μ*=0) for magnetic field intensity (a):
H=4.106 A/m; (b): H=6.106 A/m.
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Where (ωn)LH is the frequency of the local model including the mag-
netic field effect, (ωn)LT is the frequency of the local model including
the thermal loads effect and (ωn)N0 is the frequency of the nonlocal
model when T=0. In order to analyze these effects separately and
precisely, a calculation of fundamental frequency ratio is depicted in
Figs. 4–6 with detailed discussion.

The dimensionless frequency ratio γH is plotted as a function of the
hole size ratio β in Fig. 4(a) and as function of number of holes in
Fig. 4(b) in both models for various magnetic field values H. It is found
that, the ratio γH is lower than unity over the whole of β with a decrease
by increasing the magnetic field intensity H. This means that the values
of frequency which considers the magnetic field effect are lower than
those who ignore it. This confirms that the magnetic field effect de-
crease the resonance frequency of nanobeam as mentioned in Refs.
[35,38]. The divergence between the values calculated from EBM and
TBM models become reduced with the hole size ratio β and becomes
significant at larger values of number of holes (N) due to the im-
portance of shear and rotary effects and the influence of magnetic field
intensity.

Now, the dimensionless frequency ratio γT is plotted as a function of
the hole size ratio β in both models for various Temperature change
values T with magnetic field intensity H=4.106 A/m in Fig. 5(a) and
H=6.106 A/m in Fig. 5(b). It is found that, with increasing the tem-
perature change T, the ratio γT decreases and is lower than unity over
the whole range of β. The divergence between the curves for EBM and
TBM models become reduced with the hole size ratio β. This means that
the values of magnetic field intensity reduce this effect and the values of
frequency which considers the thermal loads effect are lower than those
who ignore it. As consequence, the thermal loads effect reduces the
resonance frequency of nanobeam as cited in Refs. [35,38].

Fig. 6 illustrates the variation of the fundamental frequency ratio γN
as a function of β for different values of the nonlocal parameter μ with
magnetic field intensity H=1.5.106 A/m in Fig. 6(a) and
H=2.9.106 A/m in Fig. 6(b). It is clear that the dimensionless ratio γN
is lower than unity over the whole range of β while increasing of
nonlocal parameter μ reduces it in the same degree as the fundamental
frequencies change. This is due to the bending moment, shear and ro-
tary effects and the influence of magnetic field intensity is more sig-
nificant for H=2.9.106 A/m in Fig. 6(b). In addition, the divergence
between the curves of EBM and TBM models tend to be constant for a
larger hole size ratio B as indicated in Ref. [35]. Therefore, the small
scale effect makes the structure softer and contributes to reduce the
resonance frequency that shows the advantage of nonlocal theory to

study the dynamic vibration of nanobeam with respect to local theory.

5. Conclusion

In this study, the dynamic vibration of a nanobeam structure com-
posed of a rectangular configuration perforated with periodic square
holes network has been analyzed in the framework of Euler–Bernoulli
and Timoshenko beam theories including the magnetic field and
thermal loads forces. The analytical formulations has been developed to
calculate resonance frequency by modifying the dynamics equations
and has been used to investigate the magnetic field, small scale and
thermal field effects in the presence of a periodic square holes network
for both EBM and TBM models. It is found that the resonance fre-
quencies characteristics of this structure are influenced by various
parameters such as hole size ratio β with one hole (N= 1) per section,
and number of holes for large hole size ratio β, whereas resonance
frequencies are lower than those corresponding for a full nanobeam.
Also, numerical results demonstrate that the magnetic field, small scale
and thermal load effects make the structure softer and contribute to
reduce the resonance frequencies of the nanobeam. As consequence, the
resonance frequency under magnetic field and thermal loads effects can
be modified geometrically by perforation procedure with high sensi-
tivity for a proper design with respect to the conventional structure, in
which the resonance frequency change can be controlled by using
various parameters.
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