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Abstract— The paper deals with robotic assembly of 5 parts
by their U-grooves to achieve stables 3D MEMS, without any
use of soldering effect. The parts and their grooves measure
400 µm × 400 µm × 100 µm ± 1.5 µm and 100 µm × 100
µm × 100 µm ± 1.5 µm leading to an assembly clearance
ranging from -3 and +3 µm. Two visual servo approaches are
used simultaneously: 2D visual servo for gripping and release
of parts and 3D visual servo for displacement of parts. The
results of experiments are presented and analyzed.

Keywords: 3D microassembly, 3D MEMS, 2D visual
servoing, 3D visual servoing

I. INTRODUCTION

Since many years CMOS and specially MEMS technolo-
gies enable manufacturing of 2D structures and devices that
have to be assembled into 3D microsystems such as are 3D
photonic chips ([1], [2], [3], [4]), [5], [6]), 3D electronic
chips using Through Silicon Vias ([7], [8], [9], [10]), 3D
fluidic chips ([11], [12]), ball bearing, laser diodes. They
increase the number of functions per unit volume and provide
new functionalities paving the way for original solutions to
known problems as well as for new applications.
Robotic assembly is the main solution to these manipulations
in the 3D space, the other being self-assembly. It involves
multiple degree-of- freedom robotic and gripping systems
in conjunction with multifocal imaging systems leading to
the natural use of visual servoing approaches. These are
precise and robust, and then fit particularly the requirements
of microscale manipulations. Many work have investigated
3D assembly from this point-of-view:

• insertion of peg into hole ([13], [14], [15], [16], [17],
[18], [19], [20], [21]),

• assembly of 3D devices ([22], [23], [24], [25], [26]),
[27], [28],

• ball arrangement ([29]).
In these papers, the modeling of the sequence of motions
is rarely performed. But it facilitates understanding of as-
sembly process and control of involved robots. Petri nets are
generally used for this modelling ([30], [31], [32]).
The paper investigates modelling by Petri nets and control
by dual visual servoing of the assembly of an advanced
3D device. The application is described (section II) and
the corresponding motion modelling in (section III). Motion
control based on both 2D visual servo (section IV) and 3D
visual servo (section V) is presented and the results obtained
are presented and discussed (section VI).

II. APPLICATION

The application studied is the assembly of five parts by
their U-grooves to get stable 3D structures, without any use
of soldering effect (figure 1). The parts and their grooves
measure 400 µm × 400 µm × 100 µm ± 1.5 µm and 100
µm × 100 µm × 100 µm ± 1.5 µm leading to an assembly
clearance ranging from -3 and +3 µm. It is a test device that
highlights most of the problems of 3D assembly, notably the
need of precision in the control of robot dedicated to the
application.
The setup used is positioned inside a controlled environment

Fig. 1. Target 3D device at macroscale

on a vibration-free table (figure 2, table II). It comprises
a 5 degree-of-freedom robotic systems distributed into two
robots: a xyα robot and a zϕ robot. The former robot
(positioning table) is equipped with a compliant support and
enables positioning of parts in horizontal plane while the
latter robot (manipulator) supports the gripper and enables
vertical positioning and spatial orientation of parts. A 2-
finger gripper with 4 degree-of-freedom (2 per finger) as
described in ([33]) is used as handling system. Two optical
microscopes positioned vertically (Leica MZ 16 A) and
laterally at 45 (140 mm Navitar tube) enable visual feedback
of the workfield. According to the references [34], [35], [36]
and [37] both may be described by the linear perspective
model whose parameters may be determined using a 2D
calibration rig.

III. MOTION MODELLING BY PETRI NETS

Modelling will meet the following policies:
• a task will be associated with a transition (possibly

timed, represented by a rectangle),
• a state will be associated with a place (possibly with

tokens, represented by a circle).
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Fig. 2. Assembly setup

device specifications
robot linear/angular resolution: 0.05µm /

26µrad
gripper horizontal/vertical stroke: 320µm /

200µm
vertical
microscope

magnification/depth-of-field:
0-11× / 3 mm - 0.035 mm

lateral
microscope

magnification/depth-of-field: 0-7×
/ 1 mm - 0.1 mm

TABLE I
SPECIFICATIONS OF THE SETUP

The application considered is nothing but the generalization
of the assembly of two parts, A and B for example. The
problem consists in the positioning of A followed by the
positioning of B into the vertical groove of A. Since initially
all parts are positioned on the table, only the motions of
B involve the gripper. Then, the assembly process may be
described by the Petri net of figure 3.

Positioning of A is a single task of displacement: dis-

Fig. 3. Petri net modelling assembly process of parts A and B.

placement of A from its initial position to its final position
by means of xyα table. In comparison, positioning of B
is more complicated, it includes several tasks: gripping of

B, displacement of B to the insertion site (pre-insertion
displacement of B), displacement of B to final site (insertion
displacement of B), release of B. The corresponding model
is represented figure 4.

Control of these tasks are strongly dependant on imag-

Fig. 4. Petri net modelling positioning of B.

ing system available and visual servoing used, the better
these elements the better the performing. The following
configurations are used for their relevances with respect to
the problem: (vertical microscope, 2D visual servoing) for
gripping and release tasks and (lateral microscope, 3D visual
servoing) for displacement tasks. An interesting point of the
setup is that the vertical microscope is fully controllable by
computer (focus, magnification and acquisition) leading to
the opportunity to overcome the limitation of the depth-of-
field by performing a dynamic autofocus of the microscope.
It also enable the performing of coarse to fine 2D visual
servo by introducing the magnification γ in the control law
(multiscale visual servo).

IV. GRIPPING USING MULTISCALE 2D VISUAL SERVO

Gripping of B includes the following tasks: zooming in,
autofocusing, B detection, opening of the gripper fingers, part
aligning and centering with respect to the gripper fingers,
descent of the gripper down to the gripping plane, closing of
the gripper to grip the part, zooming out, ascent of the gripper
with the part (figure 5). Four systems are controlled in this
task: gripper (opening, closing), zϕ robot (descent, ascent),
microscope (zooming in, zooming out, autofocusing), xyα
robot (aligning and centering).
Let Pi, i = 1, 2, 3, 4 be the four points delimiting the bond-

ing box of a part. The tracking of these points are performed
by the robust approach described in [38] and [39] which gives
every time t and magnification γ the poses of the points
in the image frame (ui, vi)

> that may be normalized using
calibration parameters to si = (xi, yi)

>:

xi =
ui − cu
f(γ)

, yi =
vi − cv
f(γ)

(1)

ha
l-0

07
99

07
0,

 v
er

si
on

 1
 - 

11
 M

ar
 2

01
3



3

Fig. 5. Sequence of basic tasks corresponding to gripping

with (cu, cv)
>) and f(γ) the coordinates of the principal

point and the focal length respectively.
Let s be the concatenation of the poses of the four points:s =
(s1, s2, s3, s4)

>. Aligning and centering are performed by
regulating to zero the error between the current “pose“ s
and the desired ”pose” s∗ learned using a joystick (the part
is under the gripper) that leads to the following control law
(based on exponential decrease) of the xyα robot:vx

vy
ωα

 = −λL+(Z∗, γ)(s− s∗) (2)

with L+(Z∗, γ) the pseudo inverse of the
interaction matrix L(Z∗, γ) defined by L(Z∗, γ) =
(L1(Z∗, γ), L2(Z∗, γ), L3(Z∗, γ), L4(Z∗, γ))> where Li)
is the interaction matrix of the point i as defined in [40]:

Li(Z∗, γ) =

(
−1
Z∗0

xi(γ)
Z∗ xi(γ)yi(γ)− (1 + x2

i (γ))yi(γ)

0−1
Z∗

yi(γ)
Z∗ (1 + y2i (γ))− xi(γ)yi(γ)− xi(γ)

)
(3)

To improve the convergence rate and avoid overshot the gain
changes with respect to the error as:

λ = λmin + (λmax − λmin)e
−ρ‖s−s∗‖ (4)

with λmin, λmax and ρ equal to 0.1, 1 and 40 respectively.
The value of Z∗ is estimated by using a depth-from-focus
approach. At the beginning of the experiment the vertical
microscope scans the scene along z-axis step by step. At
every step an image is acquired and the focus is estimated
using a variance focus estimator as described in ??. The
representation of focuses with respect to z gives 2 peaks,
the lowest corresponds to the gripper (position Zg) while the
highest corresponds to the part frame (table, position Zp):

Z∗ = |Zp − Zg| (5)

(figure 6). Outside visual servo, the value of Z∗ is used to

Fig. 6. Depth estimation from focus analysis

control the zϕ robot for descent and ascent of the gripper:

z = Z∗ (6)

The dynamic autofocus of the microscope is performed by
synchronizing its motion with that of the zϕ robot.
Let e1 and e2 be the distance in pixel between the left finger
and right finger of the gripper and the part respectively. Every
finger is then closed using the following law:

ud1 =
ei
N

(7)

with N the number of iterations.
The tasks of release part A and B are performed using control
approaches similar to above ones.

V. DISPLACEMENT USING 3D VISUAL SERVO

The tasks to controlled are: displacement of A, pre-
insertion displacement of B and insertion displacement of
B.
Let RF and Rc be the frame attached to the workfield and the
camera (i.e. the videomicroscope), respectively. The tracking
of A and B using the approach described in [41] gives every
time their 3D poses in Rc that may be expressed in RF using
the homogeneous transformation matrix between both:

sA =

(
F tA

FRAθu

)
(8)

sB =

(
F tB

FRBθu

)
(9)

F ti and Riθu correspond to position and orientation of part
i in the frame RF .
Let sA∗, sB∗ and sB∗∗ be final pose of A, insertion pose of
B and final pose of B. Suppose they are defined as:

sA∗ =

(
F tA∗
0

)
(10)

sB∗ =

(
F tB∗
0

)
(11)
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sB ∗ ∗ =

(
F tB∗∗

0

)
(12)

They are obtained by learning or directly from the CAD
model.
Each task is performed by regulating to zero the error
between current pose and desired pose.
Displacement of A involves the control the xyα table as:vx

vy
ωα


F

= −λ

F tx −F tx∗
F ty −F ty∗
FRAθuα

 (13)

Pre-insertion displacement of B involves the control of the
xyα table as: vx

vy
ωα


F

= −λ

F tx −F tx∗
F ty −F ty∗
FRBθuα

 (14)

Insertion displacement of B involves the control of the zφ
manipulator as:(

vz
ωφ

)
F

= −λ

(
F tz −F tz∗∗
FRBθuϕ

)
(15)

The gain λ is defined as described in equation 4.

VI. RESULTS AND DISCUSSIONS

Figures 7 and 8 show some snapshots taken during the
gripping. Evolution of gripping error is represented figures 9

Fig. 7. Some shots of the workfield during the gripping: aligning, centering,
zooming-in basic tasks

and 10 for the xyα robot: the final values are 2 µm and
7×10−3 radian for position and orientation respectively. Fig-
ure 11 shows some snapshots taken during the displacements.
Evolution of displacement error is represented figures 12 and
13 for xyα robot and zϕ robot respectively: the final values
are 4 µm and 0.4×10−3 radian respectively. Precision of
2D visual servo is better than that of 3D visual servo, in
accordance with theory: 2 µm against 4 µm.
Figure 14 shows some SEM (scanning electron microscope)
images of the final assembly. The obtained mechanical play
is about 3µm showing the relevance of tracking to deliver
high quality pose measurement and control to compute
precise laws, compatible with microassembly requirements.
The assembly is performed many times: the success and

Fig. 8. Some shots of the workfield during part gripping: final result

Fig. 9. Evolution of gripping error: position

failure ratios are 72 % and 28% respectively, the cycle time
is about 40 s. These performances show the relevance of
visual servo approaches to 3D microassembly and allow to
consider their application to industrial cases. The sources of
failure are:

• 17% for occlusions: occlusions of part by gripper cause
the failure of part tracking,

• 22% for control error: controls are not precise enough
to avoid the failure of tasks,

• 24% for capillary force: hydrometry of the scene is high
enough to prevent release of part,

Fig. 10. Evolution of gripping error: orientation
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Fig. 11. Some shots of workfield during part displacements

Fig. 12. Evolution of displacement error: xyα robot

Fig. 13. Evolution of displacement error: zϕ robot

Fig. 14. Some images of the assembled structure from a scanning electron
microscope

• 37% for electrostatic force: presence of electric charges
on both parts and fingers cause the formers to move so
uncontrolled.

Improvement of the success rate requires reduction of elec-
trostatic and capillary forces, that may be obtained by effi-
cient control of environment and functionalization of gripper
fingers. Figure 15 shows some images of the final assembly
of 5 parts and some steps: a right and stable structure is
obtained without any use of soldering effect.

Fig. 15. Assembly of five parts on three levels.
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