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In this paper, an analytical approach allowing the prediction of the iron core losses in flux-modulated permanent-magnet synchronous 

machines (FM-PMSMs). According to the Maxwell-Fourier method (viz., the multi-layer model) and Cauchy’s product theorem, the 

magnetic field distribution is determined in different parts of machine by considering the iron permeability on the basis of the solving both 

Poisson's and Laplace's equations. Next to the direct current (DC) bias flux density and the minor hysteresis loops, which are taken into 

account, the Bertotti’s model and the flux variation locus (FVL) are employed to calculate the iron core losses under load and no-load 

conditions in post-processing from the magnetic field analytical calculation. Finally, in order to validate the proposed analytical method, the 

results are verified by the comparison with finite-element method (FEM). The comparisons show good results of the proposed model. 

 
Index Terms— Convolution theorem, flux-modulated permanent-magnet synchronous machines, iron core losses, DC bias, hysteresis 

loop, flux variation locus, Maxwell-Fourier method, numerical. 

 

I. INTRODUCTION 

HE flux-modulated permanent-magnet (PM) synchronous 

machine (FM-PMSM) is one of the many type of magnetic 

geared machines, is typically used for wind power systems, 

because it could provide high-torque applications at low-speed and 

also characterized by a direct-drive electrical machine without 

employing the mechanical gearbox [1]-[3]. 

However, the existence of the flux-modulation layer in the 

FM-PMSM, augments not only the fundamental wave but also 

many high-frequency harmonics field and meanwhile a large 

harmonic iron losses [4]. Therefore, in order to compute the 

iron losses, the detailed knowledge of the magnetic field 

distribution in the iron part of this machine is very important. 

The finite-element method (FEM) is a powerful tool used for 

calculate both the spatial and temporal variations of the magnetic 

flux density and consequently can be analyze the iron losses of 

electrical machines [5]-[6]. Generally, the iron loss calculation is 

based on the loss decomposition approach (i.e., hysteresis/eddy-

current/excess losses) [7] which can be implemented in the post-

processing step of the FEM. Huang et al. (2012) [8] calculated 

the core iron losses of PMSM with flux variation locus (FVL) 

and FEM. The result give a good agreement with the 

experimental ones without the use of any correction factor. The 

influence of direct current (DC) bias flux density has been taken 

into consideration by Simão et al. (2009) [9] to calculate the iron 

core losses under DC magnetic bias, where the classical 

Steinmetz equation has been improved. Zhang et al. (2017) [10] 

focused to use the Fourier analysis to predict the iron losses in 

switched reluctance machine. Usually, the iron losses are 

computed by FEM from the magnetic field associated to each 

element in the mesh. However, Chen et al. (2017) [11] divided 

the core of the motor in different parts representative points are 

used to fast iron loss calculation and different modified factors 

are applied to take into account the losses due to minor loops. The 

temperature impact in the iron losses under different flux 

densities, frequencies, and DC bias flux density are investigated 

by Xue et al. (2017) [12], where the improved iron loss model 

obtained by FEM have been validated by tests on a steel 

lamination as well as an electrical machine. 

Nevertheless, the FEM can provide high precision of iron 

losses it consumes large computation time. In other hand, the 

motor designers like better a more fast method. The analytical 

models deliver the solution to this problem, because they are 

distinguished by the quick time saving. Many publications have 

dealt with the iron loss calculations by different analytical 

models. Sheikh-Ghalavand et al. (2010) [13] and Tariq et al. 

(2017) [14] developed a magnetic equivalent circuit (MEC) to 

calculate these losses in linear and interior PMSMs, respectively. 

Messal et al. (2017) [15] proposed an original approach of iron 

loss prediction exploiting the dynamic hysteresis model and the 

magnetic flux density waveforms resulting from generalized 

nonlinear adaptive MEC using a mesh-based formulation. Tian 

et al. (2017) [16] used the complex relative air-gap permeance in 

surface-mounted PMSMs to estimate the iron losses by using the 

modified Steinmetz equation. Liang et al. (2018) [17] used an 

analytical approach based on the subdomain technique for the 

prediction of no-load stator iron losses in spoke-type PMSMs. 

The iron parts are considered to be infinitely permeable, so that 

the saturation effect is neglected. Nevertheless, the influence of 

bridge saturation has been considered by using a nonlinear simple 

MEC. The average magnetic densities of the tooth and yoke for 

the iron loss evaluation have been obtained on the basis of the 

continuity of magnetic flux in the air-gap. Desvaux et al. (2017) 

[18] used a hybrid method between the subdomain technique and 

the discretized linear MEC in the pole piece (i.e., modulation 

layer) for the optimization of coaxial magnetic gear. This enabled 

them to calculate the magnetic flux density distribution and the 
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iron losses in ferromagnetic parts (i.e., internal/external yoke and 

pole pieces). 

Recently, new semi-analytical contributions are developed to 

take into account the solution of the magnetic field distribution 

in the iron part. Spranger et al. (2016) [19] developed a first 

work based on the Maxwell-Fourier method (viz., the multi-

layer model) using the convolution theorem (i.e., Cauchy’s 

product theorem) to determine the solution of the magnetic field 

distribution in iron parts. The adjacent regions (e.g., rotor 

or/and stator slots/teeth) are assumed to be one homogeneous 

region with a relative permeability developed as a Fourier series 

expansion. This method are used in different machines, viz.: 

switched reluctance machine [20], synchronous reluctance 

machine [21], and PMSMs [22]-[23]. Meanwhile, Dubas et al. 

(2017) [24]-[25] developed a first exact subdomain technique 

in polar and Cartesian coordinates considering finite soft-

magnetic material permeability, which has been applied to an 

air- or air-cored coil supplied by a constant current. The 

subdomains connection is performed directly in both directions. 

The general solutions of Maxwell’s equations are deduced by 

applying the principle of superposition. Recently, this novel 

scientific contribution has been implemented for radial-flux 

electrical machines [26]. For the same reason, another 

technique based on subdomain technique and Taylor 

polynomial has been applied in spoke-type PMSMs [27]. 

The infinitely permeable assumption in the iron parts used in the 

various models that are based on the Maxwell-Fourier method 

does not give the solution of the magnetic field in these parts of 

iron, which make the iron core loss calculation be indirect from the 

continuity of magnetic flux in the air-gap and in the slots. Because 

of that, the rate of error in the calculation is significant [16]-[17]. 

In other hand, the directly calculation of iron core losses have been 

done successfully in [22]-[23] by divided the stator into different 

segments. However, the stator division procedure in different 

segments have been done only in the tangential direction and the 

iron core losses are calculated with negligent both of the iron losses 

in the rotor part, the DC bias flux density and the minor hysteresis 

loops, which make the calculation of the iron core losses relatively 

inaccurate. Moreover, the losses have been obtained at no-load 

condition and only for one rotor speed. Therefore, the accuracy 

of analytical model for the calculation of this losses type have 

not well explained for this different condition. 

In this paper, a new analytical model of FM-PMSM is 

developed for the iron core loss computation with different rotor 

speed and in both conditions (i.e., no-load and on-load of 

armature reaction field), the DC bias flux density and the minor 

hysteresis loops have been taken into account. The developed 

analytical model is based on the Maxwell-Fourier method (viz. 

the multi-layer model) and Cauchy’s product theorem. The 

magnetic field distribution in all regions of FM-PMSM are 

predicted. The iron core losses are calculated by divided the core 

of the machine in different parts (i.e., in radial and tangential 

direction) and by used FVL method and Bertotti’s model. Finally, 

all the results from the proposed analytical model are validated 

by the FEM [28]. 

II. MOTOR CONFIGURATION 

The topology of the studied FM-PMSM with two air-gap is 

given in [3] and is shown in Fig. 1. It includes: i) an inner stator 

with 𝑄𝑠 =12 slots and three-phases (𝑞 =3) non-overlapping 

winding with all teeth wound (viz., the double-layer 

concentrated winding distribution), which give 𝑝𝑠 = 𝑄𝑠 𝑞⁄ = 4 

stator pole-pair number, and ii) an outer rotor PMs surface-

mounted by radially magnetized patterns with 𝑝 =17 rotor pole-

pair number. 

For the modulation layer, there are 𝑄𝑛 = 𝑝 + 𝑝𝑠 = 21 pole 

pieces placed between the stator and the rotor. The gear ratio 

𝐺𝑟 = −𝑝 𝑝𝑠⁄ = −4.25. The relation between the stator rotary 

field frequency 𝑓𝑒 and the machine mechanical rotation 

frequency 𝐹 is  𝐹 = 𝑓𝑒/𝐺𝑟 with  𝑓𝑒 = 𝑓𝑒𝑙/𝑝𝑠 where 𝑓𝑒𝑙 is the 

electrical frequency. In order to get 50 Hz currents in the stator 

armature, then the stator rotary field frequency will be  𝑓𝑒 =
12.5 𝐻𝑧 (i.e., 750 rpm). Therefore, the outer-rotor frequency it 

must be to 2.94 Hz (i.e., 176 rpm) in the opposite direction. 

However, in the configuration presented in Fig. 1, the stator 

winding is placed in the clockwise direction and the rotor is 

rotated in the anti-clockwise direction. Thus, we are take the 

value absolute of the gear ratio |𝐺𝑟| during the calculations 

procedures (i.e., the indication of the rotation direction are 

taken physically not mathematically). 

 

 

Fig. 1.  Configuration of the studied FM-PMSM. 

 

 
              (a)                                                    (b) 

Fig. 2.  Studied FM-PMSM (a) Simplified model and (b) Different areas and 

feature points for magnetic flux density and iron loss calculation. 
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III. PROBLEM FORMULATION ASSUMPTIONS 

The model is subedit in two-dimensional polar coordinate 

system and has been partitioned into 8 regions as shown on 

Fig. 2(a). Region I and VIII represented the stator and rotor 

yoke respectively, Region II represented the stator slots and 

teeth, Region III represented the stator isthmus-opening and 

tooth-tips, Region IV and VI are represented the inner and outer 

air-gap respectively, Region V represented the modulation 

layer, and Region VII represented the PMs. During each region, 

the magnetic field is assumed periodic. The model is formulated 

in magnetic vector potential with the following assumptions: 

 The magnetic materials are considered as isotropic 

with constant magnetic permeability corresponding to linear 

zone of the B(H) curve; 

 All electrical conductivities of materials are 

supposed as nulls (i.e., the eddy-current reaction field in the 

materials are neglected); 

 The stator slots/teeth have radial sides; 

 The end-effects are neglected. 

The angular position of the 𝑖𝑛
th modulation layer elements 

(i.e., Region V) and 𝑖𝑠
th stator elements (i.e., Region II and 

Region III) are defined respectively by 

 𝛼𝑖𝑠
𝑠 =

2𝜋

𝑄𝑠
(𝑖𝑠 − 1) (1) 

 𝛼𝑖𝑛
𝑛 =

2𝜋

𝑄𝑛
(𝑖𝑛 − 1) (2) 

IV. ANALYTICAL MODEL 

Magnetic field calculation in all regions is calculated from by 

solving the following Laplace’s and Poisson’s matrix equations 

𝜕2𝐀𝑧
𝑘|𝑟

𝜕𝑟2
+ 
1

𝑟

𝜕𝐀𝑧
𝑘|𝑟
𝜕𝑟

− (
𝐕𝑘

𝑟
)

2

𝐀𝑧
𝑘|𝑟                                    

(3) 

 

     = {

0,                     𝑘 = 𝐼, 𝐼𝐼𝐼, 𝐼𝑉, 𝑉, 𝑉𝐼 and 𝑉𝐼𝐼𝐼

− 𝛍𝑐
𝑘𝐉z
𝑘,            𝑘 =  𝐼𝐼                                        

−𝑗
𝜇0
𝑟
𝐍 𝐌𝑟

𝑘,    𝑘 = 𝑉𝐼𝐼                                      
 

where 

𝐍 = diag[−𝑁⋯𝑁]  (4) 

 𝐕𝑘 = {
𝐍,              𝑘 = 𝐼, 𝐼𝑉, 𝑉𝐼, 𝑉𝐼𝐼 and 𝑉𝐼𝐼𝐼

( 𝛍𝑐
𝑘𝐍 𝛍𝑐,𝑖𝑛𝑣

𝑘 𝐍)
1
2,    𝑘 =  𝐼𝐼, 𝐼𝐼𝐼 and 𝑉

  
(5) 

𝐌𝑟 = diag ([�̂�𝑟−𝑁
 ⋯ �̂�𝑟𝑁

 ]
𝑇
) . 𝑒−𝑗𝐍𝛿          (6) 

�̂�𝑟𝑛
= {

2𝑝𝐵𝑟𝑒𝑚
𝑛𝜋𝜇0

sin (
𝑛𝜋

2𝑝
) ,             𝑛 ≠ 0

0,                                           𝑛 = 0

      

(7) 

𝐉𝑧 = [ 𝐽𝑧,−𝑁 ⋯  𝐽𝑧,𝑁]
𝑇
         (8) 

𝐽𝑧,𝑛 =

{
 
 

 
 
∑

1

2𝜋𝑗𝑛
[𝐽𝑖,1 𝑒

−𝑗𝑛
𝜃𝑠
2 (𝑒𝑗𝑛

𝜃𝑠
2 − 1)

𝑄𝑠

𝑖=1

                

    +𝐽𝑖,2 𝑒
𝑗𝑛
𝜃𝑠
2 (1 − 𝑒−𝑗𝑛

𝜃𝑠
2 )] 𝑒𝑗𝑛𝛼𝑖𝑠

𝑠

   𝑛 ≠ 0

  0                                                           𝑛 = 0

 

(9) 

where 𝑗 = √−1; 𝑛 = 1,2…𝑁 is spatial harmonic orders; 𝐽𝑖,1 & 

𝐽𝑖,2 are the stator current densities of slots for two tangential 

parts for three-phases current are given in Appendix. 

Using the separation of variables method in 𝑟 and 𝜃, the 

general solution of (3) for each regions are formulated as 

𝐀𝑧
𝐼 |𝑟 = (

𝑟

𝑅2
)
𝛌𝐼

𝐚𝐼 + (
𝑅1
𝑟
)
𝛌𝐼

𝐛𝐼  (10) 

𝐀𝑧
𝐼𝐼|𝑟 = 𝐖

𝐼𝐼 (
𝑟

𝑅3
)
𝛌𝐼𝐼

𝐚𝐼𝐼 +𝐖𝐼𝐼 (
𝑅2
𝑟
)
𝛌𝐼𝐼

𝐛𝐼𝐼         

(11) +[𝐕𝐼𝐼
2
− 4𝐈]

−1
 𝛍𝑐
𝐼𝐼 𝐉𝑧  

𝐀𝑧
𝐼𝐼𝐼|𝑟 = 𝐖

𝐼𝐼𝐼 (
𝑟

𝑅4
)
𝛌𝐼𝐼𝐼

𝐚𝐼𝐼𝐼 +𝐖𝐼𝐼𝐼 (
𝑅3
𝑟
)
𝛌𝐼𝐼𝐼

 𝐛𝐼𝐼𝐼 (12) 

𝐀𝑧
𝐼𝑉|𝑟 = (

𝑟

𝑅5
)
𝛌𝐼𝑉

𝐚𝐼𝑉 + (
𝑅4
𝑟
)
𝛌𝐼𝑉

𝐛𝐼𝑉  (13) 

𝐀𝑧
𝑉|𝑟 = (

𝑟

𝑅6
)
𝛌𝑉

𝐚𝑉 + (
𝑅5
𝑟
)
𝛌𝑉

𝐛𝑉  (14) 

𝐀𝑧
𝑉𝐼|𝑟 = (

𝑟

𝑅7
)
𝛌𝑉𝐼

𝐚𝑉𝐼 + (
𝑅6
𝑟
)
𝛌𝑉𝐼

𝐛𝑉𝐼  (15) 

𝐀𝑧
𝑉𝐼𝐼|𝑟 = (

𝑟

𝑅8
)
𝛌𝑉𝐼𝐼

𝐚𝑉𝐼𝐼 + (
𝑅7
𝑟
)
𝛌𝑉𝐼𝐼

𝐛𝑉𝐼𝐼   

(16)  +𝑗𝜇0[𝐕
𝑉𝐼𝐼2 − 𝐈]

−1
𝐍 𝐌𝑟 

𝐀𝑧
𝑉𝐼𝐼𝐼|𝑟 = (

𝑟

𝑅9
)
𝛌𝑉𝐼𝐼𝐼

𝐚𝑉𝐼𝐼𝐼 + (
𝑅8
𝑟
)
𝛌𝑉𝐼𝐼𝐼

𝐛𝑉𝐼𝐼𝐼  (17) 

where 𝐚𝑘 & 𝐛𝑘 are the column vectors of the constants 

unknown coefficients, 𝐖𝑘 is the diagonal eigenvector matrix of 

𝐕𝑘,  𝛌𝑘 is the diagonal eigenvalue matrix of  𝐕𝑘 if 𝑘 =

 𝐼𝐼, 𝐼𝐼𝐼 and 𝑉 or  𝛌𝑘 = |𝐍|  if 𝑘 = 𝐼, 𝐼𝑉, 𝑉𝐼, 𝑉𝐼𝐼 and 𝑉𝐼𝐼𝐼, and 𝐈 
is a diagonal identity matrix with same size as 𝐍. 

The application of the Dirichlet boundary conditions to the 

inner boundary of Region I (𝐀𝑧
𝐼 |𝑟=𝑅1  = 0)  and the outer 

boundary of Region VIII (𝐀𝑧
𝑉𝐼𝐼𝐼|𝑟=𝑅9  = 0), (10) and (17) are 

reduced to 

 𝐀𝑧
𝐼 |𝑟 = [(

𝑟

𝑅2
)
𝛌𝐼

− (
𝑅1
𝑅2
)
𝛌𝐼

(
𝑅1
𝑟
)
𝛌𝐼

] 𝐚𝐼    (18) 

 𝐀𝑧
𝑉𝐼𝐼𝐼|𝑟 = [(

𝑅7
𝑟
)
𝛌𝑉𝐼𝐼𝐼

− (
𝑅7
𝑅8
)
𝛌𝑉𝐼𝐼𝐼

(
𝑟

𝑅8
)
𝛌𝑉𝐼𝐼𝐼

] 𝐛𝑉𝐼𝐼𝐼 (19) 

The boundary conditions between two adjacent media to be 

satisfied by (18), (19) and (11)-(16) are 

𝐀𝑧
𝑘−1 − 𝐀𝑧

𝑘|𝑟=𝑅𝑘  = 0  (20) 

 𝛍𝑐,𝑖𝑛𝑣
𝑘−1  (𝜕𝐀𝑧

𝑘−1/𝜕𝑟) −  𝛍𝑐,𝑖𝑛𝑣
𝑘  (𝜕𝐀𝑧

𝑘/𝜕𝑟)|
𝑟=𝑅𝑘

= 0 (21) 

where 𝑘 represent the all regions, and 𝛍𝑐,𝑖𝑛𝑣 is the convolution 

matrices of the inverse magnetic permeability in the Region 

𝐼𝐼, 𝐼𝐼𝐼 and 𝑉 given by [19] and [22] 

 𝛍𝑐,𝑖𝑛𝑣 = [
�̂�0
𝑖𝑛𝑣  ⋯     �̂�−2𝑁

𝑖𝑛𝑣

⋮ ⋱ ⋮
�̂�2𝑁
𝑖𝑛𝑣 ⋯ �̂�0

𝑖𝑛𝑣
] (22) 
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�̂�𝑛
𝑖𝑛𝑣,𝑘 =

{
 
 
 
 

 
 
 
 

∑
1

2𝜋𝑗𝑛
[
1

𝜇𝑖𝑟𝑜𝑛
𝑒−𝑗𝑛

𝜃𝑠𝑙
𝑘

2 (1 − 𝑒−𝑗𝑛𝜃𝑡𝑒
𝑘
)

𝑄

𝑖=1

  

            +2𝑗
1

𝜇0
sin (

𝑛𝜃𝑠𝑙
𝑘

2
)] 𝑒𝑗𝑛𝛼𝑖 ,        𝑛 ≠ 0

   ∑
1

2𝜋
(
1

𝜇𝑖𝑟𝑜𝑛
𝜃𝑡𝑒
𝑘 +

1

𝜇0
𝜃𝑠𝑙
𝑘),      

𝑄

𝑖=1

      𝑛 = 0

 (23) 

where {𝜃𝑡𝑒 , 𝜃𝑠𝑙 , 𝑄, 𝑖, 𝛼𝑖}  are replaced in the second region by 

{𝜃𝑡𝑠, 𝜃𝑠, 𝑄𝑠, 𝑖𝑠, 𝛼𝑖𝑠
𝑠 }, in the third region by {𝜃𝑡𝑝, 𝜃𝑠𝑠, 𝑄𝑠, 𝑖𝑠, 𝛼𝑖𝑠

𝑠 } 

and in the fifth region by {𝜃𝑝, 𝜃𝑝𝑠, 𝑄𝑛, 𝑖𝑛, 𝛼𝑖𝑛
𝑛 }, the naming of 

this opening angle are given in Table I. In the other regions 

𝛍𝑐,𝑖𝑛𝑣 = [𝜇𝑖𝑟𝑜𝑛𝐈]
−1  for  𝑘 = 𝐼 and 𝑉𝐼𝐼𝐼, and  𝛍𝑐,𝑖𝑛𝑣 = [𝜇0𝐈]

−1 

for  𝑘 = 𝐼𝑉, 𝑉𝐼 and 𝑉𝐼𝐼. 

The system of fourteen [8𝑟𝑒𝑔𝑖𝑜𝑛𝑠x2] boundary conditions 

matrix equations (20) and (21) could be used to determine the 

unknown coefficients of magnetic vector potentials in the all 

regions according to [20]. Then, the radial and tangential 

magnetic flux density 𝐵𝑟 and 𝐵θ in the all regions can be 

deduced from the magnetic vector potentials matrix by 

 𝐁𝒓|𝑟 = −𝑗
1

𝑟
 𝐍 𝐀𝑧|𝑟  (24) 

 𝐁𝜃|𝑟 = −
𝜕𝐀𝑧|𝑟
𝜕𝑟

    (25) 

The radial and tangential magnetic flux density { 𝐵𝑟;  𝐵𝜃}  are 

calculated with one point by 

 𝐵𝑟(𝑟, 𝜃) = ℜ𝑒 ([𝐁𝒓|𝑟]
𝑇 . [𝑒−𝑗�̅�𝜃]

𝑇
) (26)  

 𝐵𝜃(𝑟, 𝜃) = ℜ𝑒 ([𝐁𝜃|𝑟]
𝑇 . [𝑒−𝑗�̅�𝜃]

𝑇
) (27)  

where 

 �̅� = [−𝑁⋯𝑁] (28) 

and with 𝑁𝑠 points in the tangential direction by 

 𝐵𝑟(𝑟, 𝜃𝑁𝑠 ) = ℜ𝑒([𝐁𝒓|𝑟]
𝑇 . 𝑒−𝑗𝐍𝜃) (29) 

 𝐵𝜃(𝑟, 𝜃𝑁𝑠 ) = ℜ𝑒([𝐁𝜃|𝑟]
𝑇 . 𝑒−𝑗𝐍𝜃) (30) 

where 

 𝐍𝜃 = repmat[−𝛉, 2𝑁 + 1]  (31) 

 𝛉 = [𝜃1, 𝜃2⋯𝜃𝑁𝑠]    (32) 

repmat[−𝛉, 2𝑁 + 1]   

 =

[
 
 
 
−𝜃1 −𝜃2
−𝜃1 −𝜃2

⋯ −𝜃𝑁𝑠
⋯ −𝜃𝑁𝑠

⋮ ⋮
−𝜃1 −𝜃2

⋮ ⋮
⋯ −𝜃𝑁𝑠]

 
 
 

  

}
 

 1
2
⋮

2𝑁 + 1

 (33) 

 

{
 
 

 
 𝜃1 = 0 (𝑟𝑎𝑑)        
𝜃2 = 𝜃1 + ∆𝜃        

𝜃𝑁𝑠 = 2𝜋 (𝑟𝑎𝑑)       

 ∆𝜃 = 𝜃𝑁𝑠/(𝑁𝑠 − 1)

  (34) 

 

V. VALIDATION OF MAGNETIC FIELD DISTRIBUTION BY THE 

FEM 

To verify the validity of the proposed model, the spatial 

variations of magnetic flux densities (i.e., radial and tangential 

components of magnetic field distribution) in the inner and 

outer air-gap as well as the temporal variations of magnetic flux 

densities at three different points (green color in Fig. 2(b)) 

calculated with the analytical model are compared with those 

obtained from the FEM. The main parameters of the FM-

PMSM can be found in Table I. 

A. Comparison of Spatial Magnetic Field Distribution 

Magnetic flux density waveforms in the inner and outer air-

gap are shown in Fig. 3 and Fig. 4, which are the function of 

the tangential position 𝜃, for no-load and on-load condition, 

respectively (i.e., with only PM and with both PM and armature 

reaction field) through  𝐼𝑎 =  𝐼 sin (0), 𝐼𝑏 =  𝐼  sin (−2𝜋/3) 

and 𝐼𝑐 =  𝐼  sin (2𝜋/3) where 𝐼  =  16 𝐴. 

The computation time required for the magnetic field 

calculation in linear analytical model and FEM (linear and 

nonlinear) of FM-PMSM in one rotor position are shown in 

Table II. In linear analytical model, the resulting system of 

equations has 1,608 and 2,408 unknown coefficients for N = 

100 and N = 150 respectively. The linear and nonlinear FEM 

for 6,380 boundary and 119,108 elements of first order. 

TABLE I 

MAIN PARAMETERS OF FM-PMSM. 

Symbols Parameters Values (Units) 

𝐵𝑟𝑒𝑚 PMs remanence flux density 1.2 (T) 

𝜇𝑟𝑚 PMs relative permeability 1 

𝑄𝑠  Number of stator slots 12 

𝑝  Number of pole-pairs   17 

𝑄𝑛  Number of modulation layer 21 

𝑁𝑐  Conductor number of slot coil 72 

𝑤𝑟  Rotor speed 18.47 (rad/s) 

𝑅1 Shaft Radius 45 (mm) 

𝑅2  Inner radius of the slot 70 (mm) 

𝑅3  Inner radius of the slot-openings 90 (mm) 

𝑅4  Radius of the stator surface 93 (mm) 

𝑅5  Inner radius of the modulation layer 94 (mm) 

𝑅6  Outer radius of the modulation layer 104 (mm) 

𝑅7  Inner radius of the PMs 105 (mm) 

𝑅8  Rotor bore radius 111 (mm) 

𝑅9  Radius of the external rotor surface 125 (mm) 

𝐿𝑢  Stack length 100 (mm) 

𝜃𝑠   Stator slot angle 1.25(𝜋/𝑄𝑠) (rad) 

𝜃𝑡𝑠   Stator teeth opening angle (2π/𝑄𝑠) − 𝜃𝑠  (rad) 

𝜃𝑠𝑠   Stator slot opening angle (1/3)𝜃𝑠  (rad) 

𝜃𝑡𝑝   Stator teeth tips opening angle (2π/𝑄𝑠) − 𝜃𝑠𝑠  (rad) 

𝜃𝑝𝑠   Modulation layer slot opening angle 𝜋/𝑄𝑛  (rad) 

𝜃𝑝   Modulation layer opening angle (2π/𝑄𝑛) − 𝜃𝑝𝑠  (rad) 

 

TABLE II 

COMPUTATION TIMES. 

 Linear Analytical Model  FEM  

 N=100 N=150 Linear Nonlinear 

Time [sec] 2.71 7.54 16 57 
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Fig. 3.  Radial and tangential magnetic flux density of FM-PMSM at no-load 

condition in the middle of the (a) inner air-gap, and (b) outer air-gap. 

 

 

 

 
Fig. 4.  Radial and tangential magnetic flux density of FM-PMSM at on-load 

condition in the middle of the (a) inner air-gap, and (b) outer air-gap. 

 

 

For 𝑁𝑠 = 500 points and using 𝑁 = 100 spatial harmonics, 

the resulting system of equations has [(2𝑁 + 1). 8𝑟𝑒𝑔𝑖𝑜𝑛𝑠] 

unknown coefficients. Fig. 5 shows another presentation of the 

magnetic field distribution in all machines regions where the 

magnitude of B is plotted. It is observed that the analytical 

model has excellent similar accuracy to the FEM. Instead of the 

iron core relative permeability value that are used in the other 

results (𝜇𝑟,𝑖𝑟𝑜𝑛 = 4,000), Fig. 6 shows the capability of the 

model to give good results of two different values of the iron 

core relative permeability (100 and 4,000). The saturation effect 

appears clearly in the results of the radial and tangential 

component of the magnetic flux density in the inner air-gap [see 

Fig. 6(a) and 6(b)]. However, in Fig. 6(c) and 6(d) the 

saturation effects are less in the outer air-gap region, due to 

proximity of this region to the PM region. The comparison 

between the linear analytical model and the nonlinear FEM is 

illustrated in Fig. 7, where the radial magnetic flux density in 

the inner and outer air-gap has been presented under load 

condition. The resultants show a strong convergence between 

the two models. This is because the type of studied machine 

which is working at the linear part of B(H) curve. 

 

 

 
-a- 

 
 -b- 

Fig. 5.  Magnetic flux density level of FM-PMSM for on-load condition 

𝐼 = 16 A: (a) Analytical, and (b) FEM. 

 

B. Comparison of Temporal Magnetic Field Variations at 

Three Different Points in Stator, Modulation layer and Rotor 

In the both conditions (i.e., no-load and on-load of armature 

reaction field), the radial and tangential magnetic flux density 

waveform in the stator of the proposed method [see Fig. 8 and 

Fig. 9] have similar shape with that of FEM, can also be 

observed in the loci shown in Fig. 10 and Fig. 11. 
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For the modulation layer, in the Fig. 8(b) and Fig. 9(b) the 

comparison shows analytical and FEM waveforms of the radial 

and tangential magnetic flux density matches very well except 

little phase shift in the tangential component can be well 

observed in the Fig. 10(b) and Fig. 11(b), because the Gibbs’ 

phenomenon contributes to the error. The same problem have 

bas been observed before by Liang et al. [17]. However, the 

influence of the tangential magnetic flux density on the iron 

losses is much smaller than the radial component. 

 

 

 

 

 

 
Fig. 6.  Magnetic flux density of FM-PMSM with two different permeability 

values at on-load condition in the middle of the inner air-gap (a) radial and (b) 

tangential component and in the middle of the outer air-gap (c) radial and (d) 

tangential component. 

 

 

 
Fig. 7.  Radial magnetic flux density of FM-PMSM with linear analytical model 

and nonlinear FEM at on-load condition in the middle of the (a) inner air-gap, 

and (b) outer air-gap. 

 

 

 
Fig. 8.  No-load evolution in the radial and tangential components of magnetic 

flux density for a point on the: (a) stator, (b) modulation layer, and (c) rotor. 

 

Fig. 10(c) and Fig. 11(c) show the waveforms and loci 

comparison of the results in the rotor, respectively, the 

analytical and FEM waveforms of the both radial and tangential 

magnetic flux density are identical withe different frequency to 

the other results in the fixed element (i.e., stator and modulation 

layer). We can see the exist of the dc bias flux density in radial 

component. This is because the presence of PM in the rotor part. 

Nevertheless, the magnetic flux density values are small 

compared to the other values in the other part of the machine. 
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Fig. 9.  On-load evolution in the radial and tangential components of magnetic 

flux density for a point on the: (a) stator, (b) modulation layer, and (c) rotor. 

 

 
Fig. 10.  Loci of magnetic flux density at no-load condition for a point on the: 

(a) stator, (b) modulation layer, and (c) rotor. 

 

 
Fig. 11.  Loci of magnetic flux density at on-load condition for a point on the: 

(a) stator, (b) modulation layer, and (c) rotor. 

VI. IRON LOSS COMPUTATION 

For a no-sinusoidal excitation, the calculation of iron core 

losses 𝑃𝑖𝑟𝑜𝑛 in the FM-PMSM is defined by the Bertotti’s model 

expressed in three contributions [7], taking into account the 

influence of minor hysteresis loops [30] and the DC bias flux 

density [9]. The iron core losses is expressed by: 

 𝑃𝑖𝑟𝑜𝑛 = 𝑃ℎ𝑦𝑠 + 𝑃𝑒𝑑𝑑 + 𝑃𝑒𝑥  (35) 

 = 𝑘ℎ𝑦𝑠. 𝑓(𝐵𝑚)
𝛼 . 𝐶𝑓. 𝜀(𝐵𝑑𝑐)   

 +
𝜎𝑑𝑙𝑓

12
∫ (

𝑑𝐵(𝑡)

𝑑𝑡
)

2

𝑑𝑡
𝑇

0

 
 

 +𝑘𝑒𝑥𝑓∫ |
𝑑𝐵(𝑡)

𝑑𝑡
|

1.5

𝑑𝑡  
𝑇

0

 
(36) 

where 𝑃ℎ𝑦𝑠, 𝑃𝑒𝑑𝑑, and 𝑃𝑒𝑥 are respectively the hysteresis, eddy-

current and excess losses; 𝐵 is the iron core magnetic density; 𝐵𝑚 

is the peak value of the magnetic flux density in the iron core; 𝑇 =
1/𝑓 is the iron core magnetic flux density period with 𝑓 the 

frequency; 𝑘ℎ𝑦𝑠, 𝑘𝑒𝑥  and   𝛼 = 2 are respectively the coefficient 

of hysteresis losses, excess losses and the Steinmetz constant; 𝜎 is 

the electrical conductivity; and 𝑑𝑙 is the lamination thickness. The 

correction factor 𝐶𝑓 used to take the total loss depend on the 

magnitude of every local minor loops is given by 

 𝐶𝑓 = 1 +
𝑘

𝐵𝑚
 ∑∆𝐵𝑖

𝑛𝑖

𝑖=1

 (37) 

where 𝑘 a coefficient in the range 0.6 to 0.7, 𝑛𝑖  is the number 

of minor loops and ∆𝐵𝑖  is the magnitude of ith minor loop are 

calculated by working on all the local maximum and minimum 

points in the flux density waveforms [see Fig. 18]. 

The correction factor 𝜀(𝐵𝑑𝑐) used to take the influence of dc 

bias flux density [see Fig. 18(b)] is defined as 

 𝜀(𝐵𝑑𝑐) = 1 + 𝑘𝑑𝑐 𝐵𝑑𝑐
𝛼𝑑𝑐  (38) 

where 𝐵𝑑𝑐 is the DC bias flux density, 𝑘𝑑𝑐 and 𝛼𝑑𝑐 are the DC bias 

coefficients and can be obtained by fitting the measured results. 

A. Flux Variation Locus Method 

Because the iron core loss is affected not only by the 

alternating flux, but also the rotational flux in the FM-PMSM. 

It is useful to use the FVL method where the rotational flux 

effect can also be taken into account [8]. Fig. 12 show the 

elliptical locus in the rotating machine, where 𝐵∥ and 𝐵⊥ are 

respectively the major and minor of magnetic flux density 

which can be determined from { 𝐵𝑟;  𝐵𝜃}  by using (39) and the 

algorithm shown in Fig. 13. The angle 𝜙 are varied from 0° to 

180° with a step 0.5°, then {𝐵∥;  𝐵⊥; 𝛾} corresponding to 

{𝐵𝑟,𝜙;  𝐵𝜃,𝜙; 𝜙} when 𝐵𝑟,𝛾 equal the minimum value from the 

all maximum values (�̂�𝜃,𝜙) of 𝐵𝑟,𝜙. 

 [
𝐵𝑟,𝜙(𝑡)

𝐵𝜃,𝜙(𝑡)
] = 𝐌𝑟𝑜𝑡(𝜙) [

𝐵𝑟(𝑡) − 𝐵𝑟,𝑎𝑣𝑒𝑟(𝑡)

𝐵𝜃(𝑡) − 𝐵𝜃,𝑎𝑣𝑒𝑟(𝑡)
] (39) 

 𝐌𝑟𝑜𝑡(𝜙) = [
cos𝜙 sin𝜙
− sin𝜙 cos𝜙

]           (40) 

 

 
Fig. 12.  Elliptical locus for the iron loss evaluation. 
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Fig. 13.  Diagram to calculate  𝐵∥ and  𝐵⊥. 

 

 

 
Fig. 14.  No-load evolution in the major and minor components of magnetic 

flux density for a point on the: (a) stator, (b) modulation layer, and (c) rotor. 

 

 

 
Fig. 15.  On-load evolution in the major and minor components of magnetic 

flux density for a point on the: (a) stator, (b) modulation layer, and (c) rotor. 

 

 
Fig. 16.  Loci of magnetic flux density at on-load condition for a point on the: 

(a) stator, (b) modulation layer, and (c) rotor. 

 

 
Fig. 17.  Loci of magnetic flux density at no-load condition for a point on the: 

(a) stator, (b) modulation layer, and (c) rotor. 

 

 

Fig. 18.  Hysteresis loop with minor loops (a) without DC bias flux density and 

(b) with DC bias flux density. 

 

In (39), the ripples values of  { 𝐵𝑟;  𝐵𝜃} are used by subtracted 

their average values to calculate the iron losses. This case 

appears in the rotor parte where the average values of  { 𝐵𝑟} are 

not null [see Fig. 8(c), Fig. 9(c), Fig. 10(c) and Fig. 11(c)]. 

The application of FVL method is carried out by the algorithm 

presented in Fig. 13 to the temporal magnetic field variations at 

three different points in the FM-PMSM presented in Fig. 8 ~ 11 

are shown in Fig. 14 ~ 17. The algorithm give a good results in 

booth models (i.e., analytical and FEM) and the little phase shift 

in the tangential component which appeared in Fig. 10(b) and 

Fig. 11(b) has disappeared [see Fig. 16(b) and Fig. 17(b)]. 
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TABLE III 

IRON LOSS COEFFICIENTS M270-35A 

Symbols Parameters Values (Units) 

𝑘ℎ𝑦𝑠 
Hysteresis losses 

coefficient 
130.24 (W.s.T-α.m-3) 

𝑘𝑒𝑥 Excess loss coefficient 3.57 E-1 (W.s1.5.T-1.5.m-3) 

𝛼 Steinmetz constant 2 

𝜎  Conductivity 1.92 E6 (S.m-1) 

𝑑𝑙 Lamination thickness 0.35 (mm) 

𝜌 Lamination mass density 7.65 E3 (kg.m-3) 

 

The iron core losses are calculated by taken into account the 

rotational flux effect in the FM-PMSM, in different areas 𝑆𝑛𝑝 

[see Fig. 2(b)] where 𝑛𝑝 = 1, 2 …𝑁𝑝 from the magnetic flux 

density in different points 𝑎𝑛𝑝 where (35) ~ (36) are extended to 

𝑃ℎ𝑦𝑠 = 𝑘ℎ𝑦𝑠𝑉𝑛𝑝𝑓[𝐵𝑟,𝑚
𝛼 . 𝐶𝑓.𝑟 . 𝜀(𝐵𝑟.𝑑𝑐)    

 +𝐵𝜃,𝑚
𝛼 . 𝐶𝑓.𝜃 . 𝜀(𝐵𝜃.𝑑𝑐)] (41) 

𝑃𝑒𝑑𝑑 =
𝜎𝑑𝑙
12

𝑉𝑛𝑝𝑓∫ [(
𝑑𝐵∥(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝐵⊥(𝑡)

𝑑𝑡
)

2

] 𝑑𝑡    
𝑇

0

 (42) 

𝑃𝑒𝑥 = 𝑘𝑒𝑥𝑉𝑛𝑝𝑓∫ [(
𝑑𝐵∥(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝐵⊥(𝑡)

𝑑𝑡
)

2

]

3/4

𝑑𝑡 
𝑇

0

 (43) 

where 𝑉𝑛𝑝 = 𝑆𝑛𝑝𝐿𝑢 are the different volume for different iron 

parts loss calculation, and 𝐵∥,𝑚 & 𝐵⊥,𝑚 are respectively the peak 

values of the major and minor magnetic density in the iron core. 

VII. VALIDATION OF IRON LOSSES BY THE FEM 

Using the coefficients are given in Table III, the iron losses 

are calculated under no-load and on-load condition with three-

phases sinusoidal currents where 𝑤 = 2𝜋𝑓𝑒, 𝐼 varied from 0 to 

16 𝐴. The rotor speed are varied from the half to seven times of 

(176 rpm). The Bertotti’s model are also used by FEM. Fig. 19 

and Fig. 20 show the variation of hysteresis, eddy current and 

excess loss with speed in the no-load and on-load condition, 

respectively. It is observed that the analytical results are agrees 

well with the FEM despite a little difference where the analytical 

results are a little bigger than the FEM one in the high speed. 

 

 
Fig. 19.  No-load analytically and FEM predicted iron losses: (a) Hysteresis, 

(b) Eddy-current, and (c) Excess loss. 

 

 
Fig. 20.  On-load analytically and FEM predicted iron losses: (a) Hysteresis, 

(b) Eddy-current, and (c) Excess loss. 

 

 
Fig. 21.  Iron loss evolution in the various ferromagnetic parts (modulation 

layer, rotor and stator) at (a) no-load and (b) on-load condition. 

 

In Fig. 21(a) and (b), the iron loss evolutions in the 

modulation layer, rotor and stator according to rotor speed in 

both conditions (i.e., no-load and on-load of armature reaction 

field) are illustrated, respectively. As expected, in the no-load 

condition the iron losses are higher in the modulation layer than 

in the stator and very small in the rotor. However, in the on-load 

condition one can observe that the iron losses in the stator are 

increased and in the other (i.e., rotor and modulation layer), the 

iron losses are not much affected. The comparison between the 

proposed analytical model and FEM show a good agreement in 

the no-load condition [see Fig. 21]. 

The iron core losses in the FM-PMSM are shown in 

Fig. 22(a) according to supply stator current windings with 

three rotor speed (viz., 176, 617 and 1,235 rpm), and in 

Fig. 22(b) according to the rotor speed with three different 

supply current (viz., 0, 8, and 16 A). A good agreement can be 

see between the linear analytically obtained and the linear FEA 

results. In the nonlinear FEM can see a little error in the iron 

core losses compared to the two linear models results with 6.4 

% and 5.2 % at 1,235 rpm and 16 A for linear analytical model 

and linear FEM respectively [see Fig. 21]. However, the error 

is very small especially if we take into consideration, the small 

calculation time taken by the linear models compared to the 

calculation time taken by the nonlinear FEM [see Table II]. 
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Fig. 22.  Iron core loss evolution (a) function of the supply current and (b) 

function of the rotor speed. 

 

 
Fig. 23.  Iron core loss evolution function of (a) the supply current at 176 rpm 

rotor speed and (b) function of the rotor speed at on-load condition with two 

different permeability values.  

 

The iron core losses for two different values of the iron core 

relative permeability (viz., 100 and 4,000) are shown in Fig. 23. 

It can be observed that when the iron permeability is low then 

the iron core losses are low. However, in this case, the power 

provided by the machine are also low, compared to the case 

where the iron permeability is high. 

VIII. CONCLUSION 

In the presented paper, an analytical approach is proposed for 

calculation of iron core losses in FM-PMSMs under load and 

no-load conditions. This method is based on the analytical 

calculation of the iron magnetic field distribution taking into 

account of the permeability in the iron parts. It is based on the 

Maxwell-Fourier method (viz. the multi-layer model) and 

Cauchy’s product theorem. The FM-PMSM is divided into 

eight regions and standard boundary conditions are used to 

solve the Poisson's and Laplace's equations. The magnetic field 

distribution in all regions of machine are predicted. 

According to Bertotti’s model, and taking into account the 

minor hysteresis loops and the DC bias flux density, the FVL 

method are used in the post-processing procedure to product the 

iron losses in the different parts of machine. The results showed 

that the analytical method give satisfactory results with FEM, 

which confirms the validity of the proposed model. It can be 

noted that the iron core losses are affected by the increase in the 

supply current and/or rotor speed as the results showed. 

The next step will be extended to calculate the other losses, 

energy balance sheet and electromagnetic performances of this 

machine to be used in optimization procedures, in order to start 

making the proceeding to fabrication and manufacture of FM-

PMSM for wind power applications. 

APPENDIX 

The stator current densities of slots for two tangential parts 

for three-phases current are defined as 

 𝐽𝑖,1 =
𝑁𝑐
𝑆
𝐂(1)
𝑇 [𝑖𝑎   𝑖𝑏   𝑖𝑐] (A.1) 

 𝐽𝑖,2 =
𝑁𝑐
𝑆
𝐂(2)
𝑇 [𝑖𝑎  𝑖𝑏  𝑖𝑐] (A.2) 

where { 𝑖𝑎;  𝑖𝑏;  𝑖𝑐} are the armature currents of three-phases, 𝑁𝑐 
is conductor number of slot coil, 𝑆 = 𝜃𝑠(𝑅3

2 − 𝑅2
2) 4⁄   is the 

surface of the stator slot coil in kth region, and 𝐂(1)
𝑇  & 𝐂(2)

𝑇  are the 

transpose of the connection matrix linking the three-phases and 

the stator slots that represent the distribution of stator windings in 

the slots. The connection matrices 𝐂(1) & 𝐂(2) are given by 

 𝐂(1) = [𝐂𝐂 + |𝐂𝐂|]/2   
 (A.3) 

 𝐂(2) = [𝐂𝐂 − |𝐂𝐂|]/2   
 (A.4) 

 𝐂𝐂 = [𝐂 𝐂 𝐂 𝐂]           (A.5) 

   𝐂 = [
1 0 −1
0 −1 1
−1 1 0

] (A.6) 

These connection matrices can be generated automatically by 

using ANFRACTUS TOOL developed in [29]. 
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