
Scheduling independent stochastic tasks
under deadline and budget constraints

Louis-Claude Canon∗†, Aurélie Kong Win Chang∗, Yves Robert∗‡, Frédéric Vivien∗
∗Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, LIP UMR5668, F-69342, LYON Cedex 07, France

†FEMTO-ST, Université de Bourgogne Franche-Comté, France
‡University of Tennessee, Knoxville, TN, USA

{louis-claude.canon
∣∣aurelie.kong-win-chang

∣∣yves.robert
∣∣frederic.vivien}@ens-lyon.fr

Abstract—This paper discusses scheduling strategies for the
problem of maximizing the expected number of tasks that can be
executed on a cloud platform within a given budget and under
a deadline constraint. The execution times of tasks follow IID
probability laws. The main questions are how many processors
to enroll and whether and when to interrupt tasks that have
been executing for some time. We provide complexity results
and an asymptotically optimal strategy for the problem instance
with discrete probability distributions and without deadline. We
extend the latter strategy for the general case with continuous
distributions and a deadline and we design an efficient heuristic
which is shown to outperform standard approaches when running
simulations for a variety of useful distribution laws.

Index Terms—independent tasks, stochastic cost, scheduling,
budget, deadline, cloud platform

I. INTRODUCTION

This paper deals with the following problem: given an
infinite bag of stochastic tasks, and an infinite set of available
Virtual Machines (VMs, or processors1), how to successfully
execute as many tasks as possible in expectation, under both a
budget and a deadline constraint? The execution times of the
tasks are IID (independent and identically distributed) random
variables that follow a common probability distribution. The
amount of budget spent during the execution of a given task is
proportional to the length of its execution. At each instant, the
scheduler can decide whether to continue the execution (until
success) or to interrupt the task and start a new one. Intuitively,
the dilemma is the following: (i) continuing execution means
spending more budget, and taking the risk of waiting very
long until completion, but it capitalizes on the budget already
spent for the task; (ii) interrupting the task wastes the budget
already spent for the task, but enables starting afresh with
a new, hopefully shorter task. Of course there is a big risk
here, since the new task could turn out to have an even longer
execution than the interrupted one.

In addition to deciding which tasks to interrupt and when,
the scheduler must also decide how many processors to enroll
(this is the resource provisioning problem). There is again a
trade-off here. On the one hand, enrolling many processors
is mandatory when the deadline is small and the budget is
large, and it allows us to make better scheduling decisions,

1Throughout the text, we use both terms VM and processor indifferently.

because we can dynamically observe many events taking place
in parallel2. On the other hand, enrolling too many processors
increases the risk of having many unfinished tasks when
budget runs out and/or when deadline strikes.

This difficult scheduling problem naturally arises with many
applications in the context of cloud computing and data mining
(see Section II for a detailed discussion). Informally, the goal
is to extract as much information as possible from some big
data set, by launching analysis tasks whose execution time
strongly depends upon the nature of the data sample being
processed. Not all data sample must be processed, but the
larger the number of data samples successfully processed, the
more accurate the analysis.

The main contribution of this work are the following:
•We provide a comprehensive set of theoretical results for the
problem instance with discrete distributions and no deadline.
These results show the difficulty of the general scheduling
problem under study, and lay the foundations for its analysis;
•We design an asymptotically optimal scheduling strategy for
the above problem instance (discrete distribution, no deadline);
• We design an efficient heuristic, OPTRATIO, for the general
problem. This heuristic extends the asymptotically optimal
scheduling strategy for discrete distributions to continuous
ones, and accounts for the deadline constraint by enrolling
the adequate number of processors. The heuristic computes
a threshold at which tasks should be interrupted, which we
compute for a variety of standard probability distributions
(exponential, uniform, beta, gamma, inverse-gamma, Weibull,
half-normal, and lognormal);
• We report a set of simulation results for three widely used
probability distributions (exponential, uniform, and lognormal)
that demonstrate both the superiority of the OPTRATIO heuris-
tic over other approaches, and its good performance with short
deadlines.

II. RELATED WORK

Due to lack of space, we only quote a few references here,
and refer to [6] for a detailed survey of related work.

2See the examples of Section IV-A for an illustration.



Cloud computing: See the surveys [3], [22], [23]. Resource
provisioning and scheduling are key steps to the efficient ex-
ecution of workflows on cloud platforms. The multi-objective
scheduling problem that consists in meeting deadlines and ei-
ther respecting a budget or minimizing the cost (or energy) has
been extensively studied for deterministic workflows [2], [16],
[25], but has received much less attention in a stochastic con-
text. Indeed, most of the studies assume a clairvoyant setting:
the resource provisioning and task scheduling mechanisms
know in advance, and accurately, the execution time of all
tasks. A handful of additional studies also consider that tasks
may fail [15], [21]. Among these articles, Poola et al. [21]
differ as they assume that tasks have uncertain execution times.
However, they assume they know these execution times with a
rather good accuracy (the standard deviation of the uncertainty
is 10% of the expected execution time). They are thus dealing
with uncertainties rather than a true non-clairvoyant setting.
The work in [5] targets stochastic tasks but is limited to taking
static decisions (no task interruption). Some works are limited
to a particular type of application like MapReduce [12], [24].

Bags of tasks: A bag of tasks is an application comprising a
set of independent tasks sharing some common characteristics:
either all tasks have the same execution time or they are
instances coming from a same distribution. Several works
devoted to bag-of-tasks processing explicitly target cloud
computing [10], [20]. Some of them consider the classical
clairvoyant model [10]. A group of authors including Oprescu
and Kielmann have published several studies focusing on
budget-constrained makespan minimization in a non clair-
voyant settings [18]–[20]. They do not assume they know
the distribution of execution times but try to learn it on the
fly [18], [19]. This work differs from ours as these authors
do not consider deadlines. For instance, in [20], the objective
is to try to complete all tasks, possibly using replication on
faster machines, and, in case the proposed solution fails to
achieve this goal, to complete as many tasks as possible.
The implied assumption is that all tasks can be completed
within the budget. We implicitly assume the opposite: there
are too many tasks to complete all of them by the deadline,
and therefore we attempt to complete as many as possible; we
avoid replication, which would be a waste of resources.

Task model: Our task model assumes that some tasks
may not be executed. This model is very closely related
to imprecise computations [1], particularly in the context
of real-time computations. In imprecise computations, it is
not necessary for all tasks to be completely processed to
obtain a meaningful result. Most often, tasks in imprecise
computations are divided into a mandatory and an optional
part: our work then perfectly corresponds to the optimization
of the processing of the optional parts [9], [11], [14], [17] .
Our task model also corresponds to the overload case of [4]
where jobs can be skipped or aborted. Another, related model,
is that of anytime tasks [13] where a task can be interrupted
at any time, with the assumption that the longer the running,
the higher the quality of its output. Such a model requires a
function relating the time spent to a notion of reward.

Altogether, the present study appears to be unique because it
is non-clairvoyant and assumes an overall deadline in addition
to a budget constraint.

III. PROBLEM DEFINITION

This section details the framework and scheduling objective.
a) Tasks: We aim at scheduling a set of independent

tasks whose execution times are IID (independent and iden-
tically distributed) random variables. The common probabil-
ity distribution of the execution time is denoted as D. We
consider both discrete and continuous distributions in this
work. Discrete distributions are used to better understand the
problem. Continuous distributions are those typically used in
the literature, namely exponential, uniform, and lognormal.

b) Platform: The execution platform is composed of
identical VMs, or processors. Without loss of generality, we
assume unit speed and unit cost for each VM, and we scale
the task execution times when we aim at changing granularity.
Execution time and budget are expressed in seconds. There is
an unlimited number of VMs that can be launched by the user.

c) Constraints and optimization objective: The user has a
limited budget b and an execution deadline d. The optimization
problem is to maximize the expected number of tasks that can
be completed until: (i) the deadline is reached; and (ii) the
totality of the budget is spent. More precisely:
• The scheduler decides how many VMs to launch and

which VMs to stop at each second;
• Each VM executes a task as soon as it is started;
• Each VM is interrupted as soon as the deadline or the

budget is exceeded, whichever comes first;
• Each task can be deleted by the scheduler at any second

before completion;
• The execution of each task is non-preemptive, except

in Section IV-B that summarizes complexity results. In
a non-preemptive execution, interrupted tasks cannot be
relaunched, and the time/budget spent computing until
interruption is completely lost. On the contrary, in a pre-
emptive execution, a task can be interrupted temporarily
(e.g., for the execution of another task, or until some
event on another VM) and resumed later on.

IV. DISCRETE DISTRIBUTIONS

This section provides theoretical results when execu-
tion times follow a discrete probability distribution D =
{(pi, wi)}1≤i≤k. There are k possible execution times w1 <
w2 < · · · < wk (expressed in seconds) and a task has an
execution time wi with probability pi, where

∑k
i=1 pi = 1.

The wi are also called thresholds, because they represent
instants at which we should take decisions: if the current
task did not complete successfully, then either we continue
its execution (if the remaining budget allows for it), or we
interrupt the task and start a new one. Of course the discrete
distribution of the thresholds is somewhat artificial: in practice,
we have continuous distributions for the execution times of
the tasks. With continuous distributions, at any instant, we do
not know for sure that the task will continue executing until



some fixed delay. On the contrary with discrete distributions,
we know that the execution will continue (at least) until the
next threshold. However, any continuous distribution can be
approximated by a discrete distribution, and the more threshold
values, the more accurate the approximation. In Section V,
we use the results obtained for discrete distributions to design
efficient strategies for continuous distributions.

In this section, we further assume that there is no schedul-
ing deadline d, or equivalently, that the deadline is equal
to the budget: d = b. We re-introduce deadlines when
dealing with continuous distributions in Section V. To help
the reader apprehend the difficulty of the problem, we start
with an example in Section IV-A. We discuss problem com-
plexity without deadline in Section IV-B, providing pseudo-
polynomial optimal algorithms and comparing three scenarios:
sequential, sequential with preemption, and parallel. Then in
Section IV-C, we focus on cases where the budget is large
and design an asymptotically optimal strategy. This strategy
determines the optimal threshold at which to interrupt all yet
unsuccessful tasks. This result is key to the design of an
efficient heuristic for continuous distributions in Section V-A.

A. Example

We consider the following example with k = 3 thresholds:
D = {(0.4, 2), (0.15, 3), (0.45, 7)}. In other words, with a
probability of 40% the execution time of a task is 2 seconds,
with a probability of 15% it is 3 seconds, and with a prob-
ability of 45% it is 7 seconds. We assume that we have a
total budget b = 6 (and recall that there is no deadline, or
equivalently d = 6). Because b = 6 < w3 = 7, no task
will ever be executed up to its third threshold. We first define
and evaluate the optimal policy with a single processor. Then,
we exhibit a policy for two processors that achieves a better
performance.

a) With a single processor: Let E(b) denote the optimal
expected number of completed tasks when the total budget is
equal to b. To define the optimal policy for a budget of 6, we
first compute E(b) for the lower values of b that will appear
recursively in the expression of E(6):
• E(1) = 0, because w1 = 2.
• E(2) = p1 × 1 + (p2 + p3) × 0 = 0.4: when the budget is
equal to 2, the only thing we can do is run the task for two
units of time and check whether it completed, which happens
with probability p1. Otherwise, no task is completed.
• E(3) = (p1+p2)×1+p3×0 = 0.55. Once again, we execute
the task for two units of time. If it has not succeeded, it would
be pointless to kill it because the remaining budget is 1 and
E(1) = 0 (and if it has succeeded, we cannot take advantage
of the remaining budget). Hence, if the task has not completed
after two units of time, we continue its computation for the
remaining unit of time and check whether it has succeeded.
• E(4) = max{p1+E(2), p1(1+E(2))+p2(1+E(1))+p3(0+
E(1))} = 2p1 = 0.8. Here, two policies can be envisioned.
Either, we decide to kill the first task if it has not completed
by time 2 or, if it has not completed, we let it continue up
to time 3 where we kill it if it has not completed (we do not

have the budget to let it run up to w3). In the second case,
we distinguish two sub-cases depending on the actual task
duration. The reasoning will be the same for E(6).
• E(6) = max{p1 + E(4), p1(1 + E(4)) + p2(1 + E(3))} =
3p1 = 1.2. Once again, two policies can be envisionned.
Either, we decide to kill the first task if it has not completed
by time 2 or, if it has not completed, we let it pursue up to
time 3 where we kill it if it has not completed (we do not
have the budget to let it run up to w3).
Therefore, the optimal expectation with a single processor is
to complete 1.2 tasks.

b) With two processors: We consider the following pol-
icy: (i) we start two tasks in parallel; (ii) if none of them
completes by time 2, we let them run up to time 3; (iii)
otherwise, we kill at time 2 any not-yet completed task and
start a new task instead. The following case analysis displays
the expected number of completed tasks for each case of
execution time of the two tasks initially started:

w1 w2 w3

w1 2 + p1 1 + p1 1 + p1
w2 1 + p1 2 1
w3 1 + p1 1 0

For instance, the square at the intersection of the column w1

and the row w2 corresponds to the case where the task on
the first processor completes in two units of time, where the
task on the second processor would have needed 3 units of
time. Because of our policy, this second task is killed and at
time 2 and we have completed a single task. There remain 2
units of time and we start a third task, which will complete in
this budget with probability p1. Therefore, the total expected
number of completed task in this configuration is 1 + p1, and
this configuration happens with probability p1p2.

The total expected number of completed tasks is:

E′ = p21(2+p1)+2p1(p2+p3)(1+p1)+2p22+2p2p3 = 1.236.

Therefore, this two-processor policy is more efficient than
the optimal single processor policy! Even in the absence of
deadline parallelism may help to achieve better performance.

This example helps comprehend the difficulty of the
scheduling problem under study.

B. Complexity results

Due to lack of space, we only state results, and refer to the
extended version [6] for proofs and algorithms. This section
is the only one in the paper where we allow preemption. We
compare the performance of sequential scheduling, without or
with preemption, to that of parallel scheduling, for the problem
instance without deadline. More precisely, in [6]:
• We provide three pseudo-polynomial dynamic program-
ming algorithms to compute the optimal expected number
of tasks that can be completed for a given budget b: (i)
Without preemption on a single processor, the complexity
is O(kb); (ii) With preemption on a single processor, it
is O

(∏k−1
s=1

(
1 + b

ws

))
; and (iii) Without preemption on

parallel processors it is O((b+ k)b3wb
k).



• We show that any algorithm designed to be executed on p
processors with or without preemption can be simulated on a
single processor with preemption with the same performance.
Consider an algorithm A designed to be executed on p
processors with or without preemption. We show how to build
from A an algorithm B that executes on a single processor
with preemption and such that, whatever the problem instance,
B completes on a single processor at least as many tasks as
A with p processors. This shows that the knowledge gained
by attempting several executions in parallel cannot be used
to successfully execute more tasks than in sequence (with
preemption, and no deadline).
• We show that, without preemption, scheduling with parallel
processors is never worse than scheduling with a single
processor, and can achieve strictly better performance on some
instances.
• We show that scheduling with preemption and with a single
processor is never worse than scheduling without preemption
and with parallel processors, and can achieve strictly better
performance on some instances.

C. Asymptotic behavior

In this section, we derive an asymptotically optimal strategy
when letting the budget tend to infinity (see [6] for all
proofs). Because the scheduling strategy described below is
applied independently on each processor, we can assume that
p = 1 throughout this section without loss of generality.
As stated earlier, recall that we assume that there is no
deadline. Note that a fixed deadline would make no sense
when b → +∞ and p = 1. We first describe the strategy
in Section IV-C1 and show its asymptotic optimality in Sec-
tion IV-C2. Throughout this section, we are given a discrete
distribution D = {(pi, wi)}1≤i≤k.

1) Optimal fixed-threshold strategy: For 1 ≤ i ≤ k,
the i-th fixed-threshold strategy, or FTSi , interrupts every
unsuccessful task at threshold wi, i.e., when the task has been
executing for wi seconds without completing. There are k such
strategies, one per threshold. Informally, our criterion to select
the best one is to maximize the ratio

R =
expected number of tasks completed

budget
·

Indeed, this ratio measures the success rate per time unit, or
equivalently, per budget unit (since we have unit execution
speed). Formally, we would like to compute

Ri(b) =
Ni(b)

b
(1)

where Ni(b) is the expected number of tasks that are success-
fully completed when using strategy FTSi that interrupts all
unsuccessful tasks after wi seconds, and proceeds until the
budget b has been spent. It turns out that we can compute the
limit Ri of Ri(b) when the budget b tends to infinity:

Proposition 1.

lim
b→∞

Ri(b) = Ri
def
=

∑i
j=1 pj∑i

j=1 pjwj + (1−
∑i

j=1 pj)wi

The optimal fixed-threshold strategy FTSopt is defined as the
strategy FTSi whose ratio Ri is maximal. If several strategies
FTSi achieve the maximal ratio Ropt, we pick the one with
smallest wi (to improve success rate when the budget is limited
and truncation must occur). Formally:

Definition 1. FTSopt is the strategy FTSi0 where i0 =
min1≤i≤k{i

∣∣Ri = min1≤j≤kRj}.

To conclude this section, we work out a little exam-
ple. Consider a distribution D = {(pi, wi)}1≤i≤3 with 3
thresholds. We have R1 = p1

w1
, R2 = p1+p2

p1w1+(1−p1)w2
, and

R3 = p1+p2+p3

p1w1+p2w2+(1−p1−p2)w3
= 1

p1w1+p2w2+p3w3
·. We pick

the largest of these three values to derive FTSopt.
2) Asymptotic optimality of FTSopt: A scheduling strategy

makes the following decisions for each task: when a new
threshold is reached, and if the task is not successful at
this point, decide whether either to continue execution until
the next threshold, or to interrupt the task. In the most
general case, these decisions may depend upon the remaining
available budget. However, when the budget is large, it makes
sense to restrict to strategies where such decisions are taken
independently of the remaining budget, independently to past
history, and either deterministically or non-deterministically
but according to some fixed probabilities. We formally define
such strategies as follows:

Definition 2. A mixed-threshold strategy
MTS (q1, q2, . . . , qk−1), where 0 ≤ qj ≤ 1 for 1 ≤ j ≤ k − 1
are fixed probabilities, makes the following decision when the
execution of a task reaches threshold wi, for 1 ≤ i ≤ k − 1,
without success: it decides randomly to continue execution
until the next threshold with probability qi, and to interrupt
the task otherwise, hence with probability 1− qi.

Of course, the fixed-threshold strategy FTSi coincides with
MTS (1, . . . , 1, 0, . . . , 0) where the last 1 is in position i− 1:
qj = 1 for j < i et qj = 0 for j ≥ i. In this section, we prove
our main result for discrete distributions:

Theorem 1. FTSopt is asymptotically optimal among all
mixed-threshold strategies.

V. CONTINUOUS DISTRIBUTIONS

In this section, we build upon the previous results and deal
with continuous distributions. We do assume we have a fixed
budget and a deadline. Thus, in contrast to Section IV, the
distribution D is now continuous and has expected value µD

and variance σ2
D. Let F (x) be its cumulative distribution func-

tion and f(x) its probability density function. The objective
remains to execute as many tasks as possible given a budget b,
a deadline d and a potentially unlimited number of processors.

We start by designing several heuristics in Section V-A
and then we assess their efficiency through experiments in
Section V-B. The code and scripts used for the simulations
and the data analysis are publicly available online [7].



Beta(2, 2) Gamma(2, 0.5) Weibull(2, 1/Γ(1.5)) Inv-Gamma(3, 2)

Beta(0.5, 0.5) Gamma(0.5, 2) Weibull(0.5, 1/Γ(3)) Inv-Gamma(1.5, 0.5)

U(0, 1) Exp(1) |N(0, 1)| Lognormal(0, 1)

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0

0.01 0.10 1.00 0.1 10.0 0.1 10.0 0.1 10.0
0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

0.00
0.25
0.50
0.75
1.00

0.8
0.9
1.0
1.1
1.2

5

10

15

0.00
0.25
0.50
0.75
1.00

0.50

0.75

1.00

1.25

1.50

2

4

6

8

0.00
0.25
0.50
0.75
1.00

1.00
1.25
1.50
1.75
2.00

2
3
4
5
6

0.0
0.5
1.0
1.5
2.0

Cutting threshold

E
ffi

ci
en

cy
(R

)

Figure 1. Efficiency (ratio R of number of tasks successfully executed per budget unit) for different probability distributions. Some distributions have an
optimal finite cutting threshold depicted with a vertical red line.

A. Heuristics

We present below different heuristics, among which an
extension of the asymptotically optimal greedy strategy of
Section IV-C to the continuous case. In all cases, we enroll
d bde machines. The rationale for this choice is that this is the
maximum number of machines that can work in parallel and
continuously, up to the deadline. We have three main classes
of heuristics:
• MEANVARIANCE(x) is the family of heuristics that kill

a task as soon as its execution time reaches µD + xσD,
where x is some positive or negative constant.

• QUANTILE(x) is the family of heuristics that kill a task
when its execution time reaches the x-quantile of the
distribution D with 0 ≤ x ≤ 1.

• OPTRATIO is the heuristic inspired by the asymptot-
ically optimal strategy for discrete distributions. OP-
TRATIO interrupts all (unsuccessful) tasks at time l =
arg maxlR(l) where

R(l) =
F (l)∫ l

0
xf(x)dx+ l(1− F (l))

.

The idea behind OPTRATIO is that it maximizes the
ratio of the probability of success (namely F (l)) to the
expected amount of budget spent for a single task when
the task is interrupted at time l (i.e.,

∫ l

0
xf(x)dx for

the cases when the task terminates sooner than l and∫∞
l
lf(x)dx = l(1−F (l)) otherwise). This is a continu-

ous extension of the approach proposed in Section IV-C,
and we expect OPTRATIO to perform well for large
budgets.

We now analyze OPTRATIO with some classical probability
distributions defined on nonnegative values (task execution
times need to be nonnegative). For the exponential distribution,
which is memoryless, R(l) = λ where λ is the rate of the

Table I
PROBABILITY DISTRIBUTIONS WITH THEIR PROBABILITY DISTRIBUTION
FUNCTION (PDF) AND DENSITY GRAPH. SUPPORTS ARE [0,∞) FOR ALL

DISTRIBUTIONS EXCEPT FOR UNIFORM, WHERE IT IS [a, b] AND BETA,
WHERE IT IS [0, 1]. NOTE THAT B(α, β) =

Γ(α)Γ(β)
Γ(α+β)

.

Name PDF Density

Uniform 1
b−a

Exponential λe−λx

Half-normal
√

2
θ
√
π
e
− x2

2θ2

Lognormal 1
xβ
√

2π
e
− (log(x)−α)2

2β2

Beta xα−1(1−x)β−1

B(α,β)

Gamma 1
Γ(k)θk

xk−1e−
x
θ

Weibull k
θk
xk−1e−( x

θ
)k

Inverse-gamma θk

Γ(k)
x−k−1e−

θ
x

distribution. In this case, any l can be chosen and the tasks may
be interrupted at any moment with OPTRATIO without modi-
fying the performance. For the uniform distribution (between
a and b), R(l) = 2 l−a

−l2+2bl−a2 , which takes its maximum
value for l = b (R(b) = 2

a+b ). In this case, tasks should
never be interrupted to maximize performance. We established
these results for exponential and uniform distributions through
simple algebraic manipulations.

In addition to the exponential and uniform distributions,



Table I presents other standard distributions. For these distri-
butions, we provide some code [7] to numerically compute the
optimal time l at which tasks should be interrupted. Note that
there exist many relations between probability distributions.
For instance, the beta distribution with both shape parameters
equal to one is the same as the uniform distribution, whereas
it has a U-shape with both equal to 0.5, and a bell-shape with
both equal to 2. Also, the exponential distribution is a special
case of the gamma and Weibull distributions when their shape
parameter is one.

Figure 1 shows how R(l) varies as a function of the cutting
threshold l, for the probability distributions shown in Table I.
Recall that OPTRATIO will select the threshold l for which
R(l) is maximum. For instance, this threshold is l = 1
for the uniform distribution, meaning that we should never
interrupt any task. The threshold can be any value of l for the
exponential distribution, and this is due to the memoryless
property: we can interrupt a task at any moment, without
any expected consequence. The threshold is l = ∞ for the
half-normal distribution, meaning again that we should never
interrupt any task, just as for uniform distributions. Note that
the expected value of all distributions is not the same overall,
because we use standard parameters in Figure 1, hence ratio
values are not comparable across distributions.

We remark that the lognormal distribution, which presents
a fast increase followed by a slow decrease with an heavy
tail, exhibits an optimal cutting threshold during the execution
of a task: on Figure 1, we see that the optimal threshold
is l ≈ 1.73 (we computed this value numerically) for the
distribution Lognormal(0, 1). We make a similar observa-
tion for the inverse-gamma distributions, where the optimal
threshold is l ≈ 0.7 for Inv-Gamma(1.5, 0.5) and l ≈ 2.32
for Inv-Gamma(3, 2). These lognormal and inverse-gamma
distributions share the following properties: the density is
close to zero for small costs and has a steep increase. On the
contrary, the bell-shape beta distribution Beta(2, 2) has a small
density for small costs but does not have a steep increase, and
tasks should never be interrupted (in other words, the optimal
cutting threshold is l = 1 for Beta(2, 2)).

Finally, we observe that three distributions are the most effi-
cient when the cutting threshold tends to zero (Beta(0.5, 0.5),
Gamma(0.5, 2) and Weibull(0.5, 1/Γ(3))). We point out that
it is unlikely that such distributions would model actual
execution times in practice.

B. Experiments

The following experiments make use of three standard
distributions: exponential, uniform, and lognormal. The first
two distributions are very simple and easy to use, while the
latter has been advocated to model file sizes [8], and we
assume that task costs could naturally obey this distribution
too. Moreover, the lognormal distribution is positive, it has a
tail that extends to infinity and the logarithm of the data values
are normally distributed. Also, this distribution leads to a non-
trivial cutting threshold, contrarily to exponential (interrupt
anywhere) or uniform (never interrupt), thereby allowing for

a complete assessment of our approach. In all experiments,
we submit tasks steadily until the budget and/or the deadline
is exhausted.

Figure 2 shows the number of successfully executed tasks
for each heuristic with three distributions (lognormal, uniform,
exponential) of same expected value µ = 1, with a budget and
deadline b = d = 100. Note that to ensure a given expected
value and standard deviation for the lognormal distribution, we
set its parameters as follows: α = log(µ)− log(σ2/µ2 + 1)/2
and β =

√
log(σ2/µ2 + 1). Note also that using a standard

deviation σ = 3 for the lognormal distribution corresponds
to a high level of heterogeneity. To see this intuitively, take
a discrete distribution with 11 equally probable costs, 10 of
value 0.1 and 1 of value 10: its expected value is µ = 1
while its standard deviation is σ ≈ 2.85. Finally, we note
that Figure 2 confirms that tasks with exponentially distributed
costs can be interrupted at any time and that tasks with
uniformly distributed costs should never be interrupted.

Next, we focus on the lognormal distribution. First, in Fig-
ure 3, we assess the impact of three important parameters: the
standard deviation, the budget and the deadline, respectively.
The expected value is always µ = 1. By default, the standard
deviation is σ = 3, and the budget and deadline are set to 100
(b = d = 100), which means that a single machine is enrolled.
When we vary the standard deviation (first row in Figure 3),
we keep b = d = 100. When we vary the budget (second
row in Figure 3), we maintain the equality b = d. When we
vary the deadline (third row in Figure 3), we keep b = 100,
hence more VMs are enrolled (10 VMs when d = 10 and 100
VMs when d = 1). Each heuristic is run 100,000 times for
each scenario. The error bars represent an interval from the
mean of two standard deviations of the number of successes.
For a normal distribution, this means that more than 95% of
the values are in this interval. Note that the subfigures with
σ = 3, b = 100 and d = 100 in Figure 3 are all the same as
the subfigure with the lognormal distribution in Figure 2.

On Figure 3, we see that the higher the standard deviation,
the larger the gain of every approach. With a low standard
deviation, all approaches perform similarly. Increasing the
budget tends to decrease the variability when running several
times the same approach (the error bars are narrower with large
budgets, which makes the approaches more predictable). This
is a consequence of the law of large numbers. However, the
expected efficiency (around 2.5 tasks per unit of time) remains
similar even for a low budget of 30. Finally, decreasing
significantly the deadline prevents some strategies from letting
tasks run a long time. Long running tasks are then forced to
be interrupted early, which is similar to the behavior of the
more efficient approaches.

In all tested situations, the OPTRATIO algorithm with the
optimal threshold achieved the best results.

Finally, Figure 4 depicts the efficiency of OPTRATIO with
small deadlines. Even though our approach extends a strategy
that is asymptotically optimal when both the budget and the
deadline are large, it does perform well with small deadlines,
as long as d is not lower than the cutting threshold. In the



Lognormal Uniform Exponential

0 100 200 0 30 60 90 0 25 50 75 100 125

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

Successful tasks

H
eu

ri
st

ic
s Methods

QUANTILE (Q)

MEANVARIANCE (MV)

OPTRATIO (OR)

Figure 2. Number of successfully executed tasks for each heuristic with three distributions (lognormal, uniform, exponential) of same expected value µ = 1,
with a budget and deadline b = d = 100 (which means that a single machine is enrolled). Each heuristic is run 100,000 times for each scenario. The error
bars are computed with the mean plus/minus two standard deviations of the number of successes. The lognormal distribution has parameters α ≈ −1.15 and
β ≈ 1.52 to have an expected value µ = 1 and a standard deviation σ = 3, and the optimal cutting threshold for OPTRATIO is l ≈ 0.1). The exponential
distribution has shape λ = 1 and the cutting threshold is arbitrarily set to l = 2. The uniform distribution has parameters a = 0 and b = 2, and the cutting
threshold is l = 2.

settings of Figure 4, where the average execution time of a
task is equal to 1, this means that as soon as the deadline is
equal to 0.1, OPTRATIO achieves its asymptotic performance!
(The reader can compare the performance of OPTRATIO for
deadlines of 100 and 0.1 on Figures 2 and 4.) Finally note
that on Figure 4, b = 100 and that, therefore, OPTRATIO
uses 1,000 processors for a deadline d = 0.1. This confirms
that neither the budget, nor the deadline need to be large for
OPTRATIO to reach its best efficiency, and that this heuristic
is extremely robust.

VI. CONCLUSION

This paper deals with scheduling strategies to successfully
execute the maximum number of a bag of stochastic tasks
on VMs (Virtual Machines) with a finite budget and under a
deadline constraint. We first focused on the problem instance
with discrete probability distributions and no deadline. We
proposed three optimal dynamic programming algorithms for
different scenarios, depending upon whether tasks may be
preempted or not, and whether multiple VMs may be enrolled
or only a single one. We also introduced an asymptotically
optimal method that computes a cutting threshold that is
independent of the remaining budget. Then, we extended
this approach to the continuous case and with deadline. We
designed OPTRATIO, an efficient heuristic which we validated
through simulations with classical distributions such as expo-
nential, uniform, and lognormal. Tests with several values of
the deadline, leading to enroll different numbers of VMs, also
confirm the relevance and robustness of our proposition.

Future work will be dedicated to considering heterogeneous
tasks (still with stochastic costs), as well as heterogeneous
VMs. Typically, cloud providers provide a few different cat-
egories of VM with different computer power and nominal
cost, and it would be interesting (albeit challenging) to extend
our study to such a framework. Another interesting direction
would be to take into account start-up costs when launching
a VM, thereby reducing the amount of parallelism, because
fewer VMs will likely be deployed.

REFERENCES

[1] M. Amirijoo, J. Hansson, and S. H. Son. Specification and management
of qos in real-time databases supporting imprecise computations. IEEE
Trans. Computers, 55(3):304–319, 2006.

[2] V. Arabnejad, K. Bubendorfer, and B. Ng. Budget distribution strategies
for scientific workflow scheduling in commercial clouds. In 12th IEEE
International Conference on e-Science, pages 137–146, Oct 2016.

[3] M. U. Bokhari, Q. Makki, and Y. K. Tamandani. A survey on
cloud computing. In D. M. V. Aggarwal, V. Bhatnagar, editor, Big
Data Analytics, volume 654 of Advances in Intelligent Systems and
Computing. Springer, 2018.

[4] G. Buttazzo. Handling overload conditions in real-time systems. In
S. M. Babamir, editor, Real-Time Systems, Architecture, Scheduling, and
Application, chapter 7. InTech, Rijeka, 2012.

[5] Y. Caniou, E. Caron, A. K. W. Chang, and Y. Robert. Budget-
aware scheduling algorithms for scientific workflows with stochastic task
weights on heterogeneous iaas cloud platforms. In 27th International
Heterogeneity in Computing Workshop HCW 2013. IEEE Computer
Society Press, 2018.

[6] L.-C. Canon, A. K. W. Chang, Y. Robert, and F. Vivien. Scheduling
independent stochastic tasks under deadline and budget constraints.
Research Report 9178, INRIA, June 2018.

[7] L.-C. Canon, A. Kong Win Chang, F. Vivien, and Y. Robert. Code
for scheduling independent stochastic tasks under deadline and budget
constraints, June 2018. https://doi.org/10.6084/m9.figshare.6463223.v2.

[8] D. Feitelson. Workload modeling for computer systems performance
evaluation. Version 1.0.3, pages 1–607, 2014.

[9] W. Feng and J. W. S. Liu. An extended imprecise computation model
for time-constrained speech processing and generation. In [1993]
Proceedings of the IEEE Workshop on Real-Time Applications, pages
76–80, May 1993.

[10] A. Grekioti and N. V. Shakhlevich. Scheduling bag-of-tasks applications
to optimize computation time and cost. In PPAM 2013., volume 8385
of Lecture Notes in Computer Science. Springer, 2014.

[11] H. Hassan, J. Simó, and A. Crespo. Flexible real-time mobile robotic
architecture based on behavioural models. Engineering Applications of
Artificial Intelligence, 14(5):685 – 702, 2001.

[12] E. Hwang and K. H. Kim. Minimizing cost of virtual machines for
deadline-constrained mapreduce applications in the cloud. In Proceed-
ings of the 2012 ACM/IEEE 13th International Conference on Grid
Computing, GRID ’12, pages 130–138, Washington, DC, USA, 2012.
IEEE Computer Society.

[13] F. Jumel and F. Simonot-Lion. Management of anytime tasks in real
time applications. In XIV Workshop on Supervising and Diagnostics
of Machining Systems, Karpacz/Pologne, 2003. Colloque avec actes et
comité de lecture. internationale.

[14] H. Kobayashi and N. Yamasaki. Rt-frontier: a real-time operating
system for practical imprecise computation. In Proceedings. RTAS
2004. 10th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2004., pages 255–264, May 2004.



d = 1 d = 10 d = 100

b = 30 b = 100 b = 300

σ = 1 σ = 2 σ = 3

0 100 200 0 100 200 0 100 200

0 25 50 75 0 100 200 0 200 400 600 800

0 25 50 75 100 125 0 50 100 150 0 100 200
OR

MV(0.3)
MV(0)

MV(-0.3)
Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

OR
MV(0.3)

MV(0)
MV(-0.3)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)

Successful tasks

H
eu

ri
st

ic
s Methods

QUANTILE (Q)

MEANVARIANCE (MV)

OPTRATIO (OR)

Figure 3. Number of successfully executed tasks for each heuristic, with lognormal costs and expected value µ = 1. Unless otherwise specified, the standard
deviation is σ = 3, and the budget and deadline are b = d = 100. Each heuristic is run 100,000 times for each scenario. The error bars are computed with
the mean plus/minus two standard deviations of the number of successes. The lognormal distribution has parameters α ≈ −1.15 and β ≈ 1.52 by default
(to have µ = 1 and σ = 3) (the cutting threshold for OPTRATIO is l ≈ 0.1). They are α ≈ −0.35 and β ≈ 0.83 when σ = 1 (l ≈ 2.1) and α ≈ −0.8 and
β ≈ 1.27 when σ = 2 (l ≈ 0.34).

0

100

200

0.01 0.10 1.00
Deadline

Su
cc

es
sf

ul
ta

sk
s

Figure 4. Number of successfully executed tasks for OPTRATIO with a
budget b = 100 and optimal cutting threshold l ≈ 0.1. OPTRATIO is run
100,000 times for each deadline. The error bars are computed with the mean
plus/minus two standard deviations of the number of successes. The lognormal
distribution has parameters α ≈ −1.15 and β ≈ 1.52 to have an expected
value µ = 1 and a standard deviation σ = 3.

[15] K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, and Y. Yang. A compromised-
time-cost scheduling algorithm in swindew-c for instance-intensive cost-
constrained workflows on a cloud computing platform. Int. J. High
Performance Computing Applications, 24(4):445–456, 2010.

[16] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms

for cost- and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds. Future Gen. Comp. Syst., 48:1–18, 2015.

[17] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel
execution framework for recognition and mining applications. In 2009
IEEE IPDPS, pages 1–12, May 2009.

[18] A. M. Oprescu and T. Kielmann. Bag-of-tasks scheduling under budget
constraints. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pages 351–359, Nov. 2010.

[19] A.-M. Oprescu, T. Kielmann, and H. Leahu. Budget estimation and
control for bag-of-tasks scheduling in clouds. Parallel Processing
Letters, 21(02):219–243, 2011.

[20] A. M. Oprescu, T. Kielmann, and H. Leahu. Stochastic tail-phase
optimization for bag-of-tasks execution in clouds. In Fifth Int. Conf.s
on Utility and Cloud Computing, pages 204–208. IEEE, Nov. 2012.

[21] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao.
Robust scheduling of scientific workflows with deadline and budget
constraints in clouds. In AINA 2014, pages 858–865, May 2014.

[22] S. Singh and I. Chana. Cloud resource provisioning: survey, status
and future research directions. Knowledge and Information Systems,
49(3):1005–1069, Dec. 2016.

[23] S. Singh and I. Chana. A survey on resource scheduling in cloud
computing: Issues and challenges. J. Grid Comp., 14(2):217–264, 2016.

[24] F. Tian and K. Chen. Towards optimal resource provisioning for running
mapreduce programs in public clouds. In 2011 IEEE 4th International
Conference on Cloud Computing, pages 155–162. IEEE, July 2011.

[25] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li. End-to-end delay
minimization for scientific workflows in clouds under budget constraint.
IEEE Transactions on Cloud Computing, 3(2):169–181, April 2015.


