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Abstract
This paper presents a machine learning application of the force/torque sensor in a human-robot 
collaborative manufacturing scenario. The purpose is to simplify the programming for physical 
interactions between the human operators and industrial robots in a hybrid manufacturing cell which 
combines several robotic applications, such as parts manipulation, assembly, sealing and painting, 
etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in 
a robotic application for discriminating five different contact states w.r.t. the force/torque data. A 
systematic approach to train machine-learning based classifiers is presented, thus opens a door for 
enabling LightGBM with robotic data process. The total task time is reduced largely because force 
transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot 
demonstrate the feasibility of the proposed method.
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Introduction

Sensor technologies have been employed for robotic 
applications across a large variety of fields in industrial 
scenarios. Among them, force/torque sensors play an 

important role because industrial robots are usually position-
controlled, employed for performing tasks quickly, accurately, 
and repeatedly because they do trajectory following very well 
[1, 2]. But this control strategy is not suitable for tasks that 
require interaction with the environment or the human. In the 
former case, force sensors are applied to reduce uncertainties 
in position [3] whereas in the latter case, physical human-
robot interaction (pHRI) can be achieved by introducing an 
additional force sensor [4].

In modern industry, robots are increasingly expected to 
perform in hybrid manufacturing cells, where humans and 
robots can collaborate to some extent to accomplish tasks that 
human need to participate. In order for enhanced flexibility 
and high productivity, robot controllers need to be equipped 
with various sensors. In the case of human-robot collabora-
tive manufacturing, force sensors are essential to expand the 
robot capabilities.

Machine learning applications of force/torque sensors 
have previously been used in industrial scenarios. [5] used 
a Support Vector Machine (SVM) and a single-axis force 
sensor to distinguish successful and failed assemblies. SVM 
was also introduced in [6, 7] to detect tool breakage in milling 
processes. Different approaches were presented to monitor 
assembly tasks in order for error detection using Hidden 
Markov Model [8] and hierarchical taxonomy [9]. Stolt et al. 
[10] applied several classifiers based on machine learning algo-
rithms, such as Least-squares and Boosting to detect force/
torque transients in robotic assembly tasks.

This article proposes a new application of force/torque 
sensors in combination with machine learning techniques 
for industrial robots.

The purpose is to automatically classify different inter-
action forces applied on the robot in a human-robot collab-
orative manufacturing environment. Figure 1 illustrates the 
overall procedure. Sensor data is firstly collected and then 
input to an on-line multiclass classifier together with training 
samples. The output is a force class that is allocated to trigger 
a corresponding robot action. The advantage is that the robot 
programming is largely simplified by the physical interaction. 
The robots can be controlled in an intuitive way. This paper 
only considers contacts between the human and the robot.

Scenario Design

Robot System and Sensor
This paper selects a collaborative robot task in a force-
controlled sealant application. The robot holds a sealant gun 
while the human can drive the end-effector to the desired 
position that is to be sealed. Figure 2(a) illustrates the setup 
of the sealant application.

The robot used in this task is the ABB industrial manip-
ulator with six joints. The robot is controlled via the IRC5 
controller. A force control system is integrated into this 
controller, which allows for the modification of the reference 
for the low-level joint control loop. An ABB 6-DOF force/
torque sensor is mounted at the wrist between the last joint 
and the pneumatic gripper (as shown in Figure 2(b)). The 
capacity of this sensor is also shown in Figure 3.

 FIGURE 1  The overall procedure of the proposed force 
classification scheme in robotic applications. 

 FIGURE 2  (a) The setup of sealant application in a robotic 
cell and the coordinate frame used in the task. (b) The end-
effector details: the sealant gun, the pneumatic gripper, and 
the force/torque sensor.
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 FIGURE 3  The force/torque sensor used in the cell and its 
specification [11].
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Design of Force Classes 
and Robot Actions
The sequences of the sealant task are as follows:

S1: human attaches the sealant gun to the robot
S2: human drives the end-effector to start position
S3: robot does the force controlled sealant task
S4: human detaches the sealant gun

This paper then chooses five contact force classes with 
respect to the designed sequences in the collaborative task. 
Table 1 indicates the proposed contact force types and the 
corresponding robot actions. In S1, after human attaching the 
sealant gun to the robot, a clockwise torque along Z direction 
will command the robot close the gripper to lock the tool. 
Similarly, gripper will be opened with a counter-clockwise 
Mz. Continuous force in any direction will initiate the admit-
tance control mode, which enables the human drive the robot 
to desired position manually. A short (about 1 s) press on 
the positive Z direction (Fz) is used to start the robot sealant 
program. Any unexpected random contacts will be considered 
as interferences or collisions in all of the sequences.

Procedure
This section describes the systematic procedure to get a multi-
class classifier for different force events. First of all, data need 
to be collected and processed. Then the classifier has to be 
trained using these data. For simplicity, only the continuous 
force/torque class described in this section. The procedure of 
other force classes is the same.

Data Acquisition 
and Pretreatment
The force/torque sensor contains six channels. In regard to 
continuous force F_confm or unexpected contact F_unept, it 
might be applied on any direction. In order for an appropriate 
training sample, ten recordings were made on each direction. 
The total number of the recordings was thus 60. For other 
classes that only have force applied on one axis, the number 

of recording is 5. Figure 4 illustrates a data example of 
F_confm, F_clomz , and F_unept, respectively.

The force classes might seem to be easily recognized in 
these data, but the classifier must have the ability to do it with 
only a subset of the data. For the real-time requirement, the 
smaller subset is preferable in the classification process. The 
data were pre-scaled such that all force/torque components 
got approximately the same magnitude. This should also 
make the problem of training the classifiers better numeri-
cally conditioned.

Data for Training
There are an interesting force event and a lot of back-
ground data in each recording. It is not desirable to use 
all of the recorded data for training. A choice is to select 
a sample before the force event and a sample after that, 
then put after one another with the force event in between. 

TABLE 1 Force class and the corresponding robot action 
in all sequence. 

Sequence Force class Description Robot action
S1 _clomzF Clockwise Mz Close gripper

S2 _confmF Continuous F/M Admittance 
control

S3 _fzF Short press in z 
direction

Execute sealant 
task

S4 _cclmzF Counter clockwise Mz Open gripper

All _uneptF Unexpected contacts Do nothing

 FIGURE 4  An example of the recorded data from forces 
applied on the robot end-effector. The force/torque directions 
refer to the feature coordinates defined in Figure 2(a). The 
black curves are the original data while the red curves are 
the de-noised data. The first six figures: a continuous force; 
the middle six figures: clockwise torque; the last six figures: a 
random contact.
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Considering the cases in the sealant task, this paper chose 
100 + 100 + 100 data as a training sample for each channel. 
That is, 100 data before the force, 100 data after the force 
was applied (detected by predefined threshold), then the 
subsequent 100 data were selected.

Cost Function
A cost function is used in order to optimize the classifica-
tion performance. In the scenario considered in this paper, 
misclassifying a force event is worse than missing a force 
event in the data set, because the robot will act in a totally 
different way. This may cause danger in human-robot collab-
oration. So a misclassification is a false negative whereas a 
missing classification is a false positive. As computation time 
is another significant factor for real-time applications, this 
paper proposed the cost function as follows:

 C cost n cost n cost tFP FP FN FN CT= * + * + *  Eq. (1)

costFP, costFN and costCT are the costs of false positives, 
false negatives, and computation time, respectively. nFP and 
nFN are the numbers of false positives and false negatives while 
t is the time (in ms) used during the classification.

Classifier Training
LightGBM LightGBM is a gradient boosting framework 
based on decision algorithms, used for many machine learning 
task, such as ranking and classification, etc. LightGBM uses 
the histogram based algorithms, which bucketing continuous 
feature values into discrete bins, to speed up training procedure 
and reduce memory usage [12]. It produces much more complex 
trees by following leaf wise split approach rather than a level-wise 
approach which is the main factor in achieving higher accuracy. 
It is capable of performing equally good with large datasets with 
a significant reduction in training time. LightGBM grows a tree 
by leaf-wise. It will choose the leaf with max delta loss to grow. 
When growing the same number of leaf, leaf-wise can reduce 
more loss than a level-wise algorithm, as shown in Figure 5. The 
details of the leaf-wise algorithm can be found in [13].

Two more choices of classifiers were used for comparison, 
namely Support Vector Machine (SVM) and Least-squares 
(LS). These classifiers were used because they were both quite 
computationally cheap and that they had no extra parameters 
to tune.

Training a Subset of Data The recorded data contained 
six channels of force/torque information. One choice for the 
training set is to use a combination of these channels. The 
number of channels used is denoted as nch. It has a positive 
correlation with the classification result whereas a negative 
correlation with the computational complexity (e.g. compu-
tation time). The best choice of nch can be obtained by mini-
mizing the cost function (1).

An alternative way is to simplify the problem by 
merging the force channels and the torque channels recep-
tively. That is, each recording is divided into two subsets: 
subF and subM, where

 sub Fx Fy FzF = + +  Eq. (2)

 sub Mx My MzM = + +  Eq. (3)

Both of the two approaches were evaluated in the 
 experiment section.

Implementation
The training procedure described in this section was imple-
mented in C++ on an Intel® Core (TM) i7 CPU 2.80 GHz 
machine. Software running on the robot was written by the 
ABB RAPID programming language. It is composed of two 
independent tasks: a publisher and a subscriber. The publisher 
continuously monitors the robot’s force/torque data. The 
subscriber receives commands from the PC program. TCP 
socket was used for communication between PC and the 
robot, such as sending the classification results. TCP sockets 
are selected for network connection and data transmission in 
order to transport the data in a correct sequence. Although 
UDP sockets allow faster communication, there is no guar-
antee that the packets sent would reach at all. The force/torque 
sensor was used with a configured low-pass filter and it was 
sampled at 100 Hz. The system architecture of the implemen-
tation is given in Figure 6. FIGURE 5  The difference between the level-wise algorithm 

and the leaf-wise algorithm.

 FIGURE 6  The system architecture of the implementation.
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Experimental Results
The experiment was conducted for the continuous force/
torque, that is, the force class Fconfm. Figure 7 shows the clas-
sification results when all different combinations of channels 
were tested. For example, 6 experiments were conducted for 
the case of single channel while 15 experiments for the two-
channel case. The marks on the figures shows the number of 
the false positives and false negatives with different number 
of channels used. Figure 7 indicates that, with the increase 
of the number of channels, nFN decreased for all of the three 
approaches. That means the chance of misclassification 
reduced largely due to more captured sensor data. Among 
these three approaches, LightGBM had an overwhelming 
performance when four or more than four channels were used. 
While the performance was not satisfactory when sensor data 
was collected from fewer channels. It is because LightGBM has 
advantages in large dataset processing. The last sub-figure in 
Figure 7 shows the average consumed time for all approaches 
with different channel numbers. The consumed time extended 
as the channel number increased because more data required 
more time for processing.

Table 2 illustrates the average total costs associated 
with the experiment. The costs of false positives and false 
negatives were defined as costFP = costFN = 1 while the cost 

of time consumed was set to costCT = 0.2 as time was less 
important as the accuracy in this experiment. The range of 
the cost is [0, 1]. This is a user-defined value so it is able to 
be changed with respect to the experiment setup. The goal 
of the approach is to minimize total cost, thus the minimum 
total cost indicates the best results in the form of accuracy 
and used time. It can be clearly seen that LightGBM had 
a better performance in the force classification than the 
SVM and LS. Force classification with a combination of four 
channels gave the minimum total cost which was only 17.115 
in all of the three classifiers. It is as expected because more 
channels will lead to more accurate results but will also cause 
larger computation load thus longer time used. Merging the 
force and torque channels shortened the training time but 
the accuracy did not get better. The reason is that in some 
cases, force/torque values may counteract each other when 
merging them. Therefore the total cost of merged channels is 
even larger than the case of two channels. Same results were 
obtained from more experiments that have been conducted 
for other force classes.

Discussion
Although LightGBM has been released for a period of time, 
it is still new to the robotics community. This paper hereby 
described a robotic application of LightGBM in an industrial 
setup, thus opened a door for enabling it with robotic data 
processing. As Xgboost platform is more commonly used 
in robotics, we have also conducted the experiment with 
the Xgboost algorithm and the results show that LightGBM 
is no better than the Xgboost in this setup. That is because 
LightGBM uses Leaf-wise tree splitting which enables it to 
converge much faster. It is more efficient in dealing with large 
datasets. In our experiments, when we trained the sensor 
data of a single or two channels, Xgboost has similar or 
faster speed and the accuracy is also similar (sometimes 
Xgboost is better). When 6 channels of data are used and 
more recordings (such as 50 recordings for all channels) 
are taken, LightGBM is slightly better in the accuracy but 
much better (about 2 times faster) in the training speed. In 
addition, when dealing with small datasets, some parameters 
such as the maximum depth of each tree should be tuned 
to avoid overfitting.

TABLE 2 Result from training: the average cost C of the three 
classifiers for the force class ( )1, 0.2confm FP FN CTF cost cost cost= = = .

LightGBM SVM Least-squares
1 channel 33.167 42.833 48.333

2 channels 22.067 38.44 47.4

3 channels 18.507 39.167 48.106

4 channels 17.115 33.25 41.655

5 channels 24.8 54.7 66.167

6 channels 28.6 65.8 78.6

Merged channels 30.06 59.934 72.76

 FIGURE 7  Classification result of three different classifiers. 
All different combinations of channels were tested. 
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Summary/Conclusions
This paper described an industrial application using force/torque 
sensor. A systematic procedure was presented for classification 
of interactive contact states between humans and robots. A 
number of force classes in a robotic sealant task were proposed 
to initiate different robot actions. The LightGBM platform which 
is currently very new and less documented was first applied to a 
robotic application. Experimental results verified the effective-
ness of this new platform in robotic data processing. By using 
the force classifier, the robot programming for pHRI was largely 
simplified. The total task time was averagely reduced by 14.6% 
because transitions among steps were detected on-the-fly, rather 
than manually. This paper will open a door for various robotic 
applications using the LightGBM platform.
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Definitions/Abbreviations
LS - Least-squares
nFP - Number of the false positives
nFN - Number of the false negatives
OvR - One-vs.-rest
SVM - Support Vector Machine
SubF - The subset of the force data
SubM - The subset of the torque data 
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