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Abstract—We tackle in this paper the Permutation Flow-
shop Scheduling Problem (PFSP) with predictive maintenance
interventions. The objective is to propose an integrated model
that coordinates production schedule and predictive maintenance
planning so that the total time to complete the schedule after
predictive maintenance insertion is minimized. Predictive main-
tenance interventions are scheduled based on Prognostics and
Health Management (PHM) results using a new proposed heuris-
tic. To jointly establish an integrated scheduling of production
jobs and predictive maintenance actions, we propose a tailored
genetic algorithm incorporating properly designed operators.
Computational experiments carried out on Taillard well known
benchmarks, to which we add both PHM and maintenance data,
show the efficiency of the newly proposed maintenance planning
heuristic and genetic algorithm.

I. INTRODUCTION

Production equipments reliability and availability has al-
ways been a major issue for manufacturers. Thus, attention to
the maintenance activity has rapidly increased as an inevitable
reality in industry. The earliest maintenance technique is
corrective maintenance which takes place only after break-
downs. To ensure a satisfactory level of reliability and reduce
failure risk, concept of maintenance before failure has emerged
to propose a type called systematic preventive maintenance.
However, maintenance efficiency is an important economical
issue and a bad choice can lead to an over cost that is not
acceptable. Two drifts can be observed in this case. The first
occurs when the maintenance frequency is too high inducing
an excessive cost of useless interventions. The second occurs
when the time between two successive maintenance interven-
tions is too long, consequently failures cannot be avoided
resulting in system shutdown. Hence, maintenance decision
must be taken according to the health status of the production
system. Thereby, a more efficient maintenance approach called
”predictive maintenance“ was proposed to prevent equipment
from risk of breakdowns while significantly reduce cost by
reducing the number of unnecessary interventions. In this
field, industrials show a growing interest in Prognostics and
Health Management (PHM) thematic [1]. Indeed, rather than
understanding a failure which has just appeared (diagnosis

process), it seems convenient to anticipate its occurrence, i.e.
prognostic process, in order to resort to protective actions [2].
Given the current machine condition and past operation profile,
prognosis module is able to estimate time to failure called the
Remaining Useful Life (RUL) [3].

PHM benefits are strongly tied to the decision making
following the assimilation of prognostic outputs. By prognostic
post decision, we mean the integration of the PHM results,
i.e. the estimated RUL, in the system schedule. Post prog-
nostic decision is still a novel axis of development and few
works have been led. In fact, conflicts could occur between
predictive maintenance planning and production scheduling
if a maintenance action is programmed when equipment is
used for production. Production and maintenance activities
are inter-dependent. Hence, solving production scheduling and
maintenance planning problems independently ignores these
inherent conflicts. Hence, integrated scheduling of produc-
tion operations and predictive maintenance activities must
be properly established. Note that researches on predictive
maintenance integration in the solution of scheduling problems
of any type are still scarce. [4] proposed a mathematical
programming for scheduling model of jobs and predictive
maintenance on a single machine to minimize the maximum
tardiness. A mixed integer linear model for solving flowshop
scheduling problem with predictive maintenance was devel-
oped by [5] where machines are able to switch between two
production modes: nominal and sub-nominal. [6] proposed
three heuristics for parallel machines scheduling problem with
predictive maintenance. The same problem was studied by [7]
in order to maximize the global useful life of the system under
service constraints. For scheduling jobs and predictive mainte-
nance on a single deteriorating machine, [8] proposed a mixed
integer linear programming and an integrated prognostics-
based genetic algorithm with the objective of minimizing the
total predictive maintenance cost. [9] proposed an integrated
model in which the job scheduling, predictive maintenance,
prognostic information and resource planning are proactively
determined simultaneously for a single machine. A case study
resolved using a genetic algorithm was used to demonstrate



the proposed model effectiveness.
In this work, we deal with flowshop, one of the most exten-

sively studied scheduling problem with a strong engineering
background [10]. A study on flowshop scheduling problem
with predictive maintenance was proposed by [5]. However,
the defined mixed integer program allows to solve only small
instances and is not able to compute the optimal solution for
instances with a significant number of jobs and machines. To
deal with larger instances, [11] proposed a variable neighbour
search algorithm to obtain near optimal solutions. However,
to take into account the several sources of uncertainty in the
prognosis process, authors model PHM outputs using fuzzy
logic. In this paper, we propose a population based meta-
heuristic based on genetic algorithm [12] to solve production
and predictive maintenance scheduling problem. Moreover,
to take into consideration the variable operating conditions
of machines, we suppose in this study that, due to various
deterioration levels, the corresponding RUL and degradation
value for each machine depends on the job being processed.

The remaining content of the paper is organized as follows.
In section 2, we present the integrated scheduling problem.
Section 3 is devoted to describe the proposed genetic algo-
rithm. Next, experiments results are discussed in section 4.
Finally, we draw some concluding remarks and perspectives.

II. PROBLEM STATEMENT

In this section, we describe first the integrated schedul-
ing problem we are dealing with: the permutation flowshop
scheduling problem with predictive maintenance. Next, objec-
tive function is defined.

A. Integrated scheduling problem

This paper addresses the Permutation Flowshop Scheduling
Problem (PFSP), a more restricted version of the flowshop
problem, under availability constraints where machines are
subject to predictive maintenance operations. It consists in
determining jointly the best sequencing of jobs and predictive
maintenance actions to be processed for each machine in
order to optimize the total time to complete the schedule
Cmax taking into account predictive maintenance operations
planning. The problem can be formally defined as follows. A
finite set J = {J1, J2, . . . , Jn} of n jobs must be processed
on a finite set M of m machines M = {M1,M2, . . . ,Mm}.
The processing order of operations on machines is the same
for all jobs, i.e. all jobs are processed by all machines in the
same order. All jobs are available and ready for processing at
time zero. Each job Jj , j ∈ {1, . . . , n}, requires a fixed and
known amount of processing time on each machine Mi, i ∈
{1, . . . ,m}; represented by pij . Furthermore, preemption is
disallowed, i.e., any started operation has to be continuously
executed without a break.

In order to improve machines availability and avoid down-
time and inopportune spending, predictive maintenance inter-
ventions must be planned using machines remaining useful
life (RULs) and degradation values. Indeed, given the cur-
rent machine health state and the operating environment, the

associated PHM module is able to predict the evolution of
degradation phenomena. As diverse jobs are being processed
by the machines, every kind of job causes various levels of
damage on each machine. When the accumulated degradation
of a machine reaches a maximal threshold ∆, a predictive
maintenance intervention must be performed to restore it to
its initial state. Processing times of predictive maintenance
operations are noted pPM

i .
In our paper, contrary to the classical PFSP, machines

are not continuously available due to predictive maintenance
operations. The PFSP under availability constraints is NP-
hard (Non deterministic Polynomial time hard), since the
two-machine flow shop scheduling problem is NP-hard in
the strong sense if two availability periods are considered as
proved by [13].

The studied problem is modeled on the following assump-
tions :

• At any given time, each machine can handle at most one
activity (production or predictive maintenance) and each
production job can be processed by at most one machine;

• A deteriorating prognosis system provides RULij cor-
responding to each job Jj when being processed by
machine Mi. RULij represents the period during which
the “as good as new” machine Mi could achieve job Jj
before failure. The PHM module is also able to provide
an associated degradation value δij (see Fig. 1) ;

• δij ∈ ]0;1[ represents the wear and tear of the machine
Mi when only job Jj is processed during the processing
time pij (0 no degradation, 1 full degradation) ;

• δij = f(pij) where f characterizes the evolution of the
machine degradation. To seek simplicity, we consider in
our model that for each job Jij is expressed by δij =
pij/RULij .

• We fix the full potential, i.e. the maximal degradation
threshold, of the machine ∆ = 1. When exceeding this
limit, the failure risk increases;

• During the planning horizon, at least one predictive
maintenance operation is performed on each machine and
no predictive maintenance operation is performed after
the processing of last job;

• After a predictive maintenance operation, the machine is
recovered to be “as good as new”.

The resulting integrated scheduling is denoted π =
{π1, π2, . . . , πm} where πi represents the corresponding
integrated scheduling for machine Mi (see Fig. 2). πi
can be seen as a succession of several production block-
s separated by predictive maintenance operations: πi =
{Bi1,Mi1,Bi2, . . . ,Mi(li−1),Bili}, where:

• Bik is the kth production block processed by machine
Mi;

• Mik is the kth predictive maintenance operation per-
formed in machine Mi;

• li is the number of blocks required to process all jobs by
machine Mi :

⋃li
k=1 Bik = J .
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Fig. 1. Degradation estimation

B. Objective function

Our objective is to find an integrated sequence of production
jobs and predictive maintenance operations that minimizes the
completion time of the last processed job when the schedule
also includes predictive maintenance operations, referred to as
makespan or Cmax. Given a sequence S = {Js1 , . . . , Jsn}
where Jsj indicates the jth job to be executed, taking into
account predictive maintenance interventions planned on each
machine, Cmax = C(Jsn ,m) where C(Jsn ,m) is the com-
pletion time of the last job of the production sequence on
the last machine Mm after predictive maintenance operations
insertion.

III. THE PROPOSED GENETIC ALGORITHM

Genetic Algorithms (GAs) were widely used to solve pro-
duction scheduling problems [14]. They were next successfully
applied to production scheduling with systematic preventive
maintenance [15], [16], [17], [18]. We develop here a genetic
algorithm for the integrated production and predictive mainte-
nance scheduling problem with Cmax minimization. The most
significant characteristics of our proposed GA are:

1) The use of a unique representation of integrated solution
regrouping both production and predictive maintenance
data;

2) The proposition of a new predictive maintenance plan-
ning heuristic that inserts maintenance operations on
each machine only when necessary to guarantee an
efficient exploitation based on PHM results;

3) The design of well chosen operators and the sensitive
calibration of its parameters;

4) The use of an embedded restart mechanism to avoid
premature convergence of the search process.

A. The encoding scheme and fitness function

The proposed representation is an adaptation of the work
of [16]. A solution π is coded by a two-field structure. The

first field is a sequence S representing the execution order
of production jobs by machines S = {Js1 , . . . , Jsn} where
Jsj indicates the jth job to be executed. The second field
is a binary matrix PM of size m × n that represents the
scheduling of predictive maintenance operations on each ma-
chine. PM [i, j] = 0 indicates that no maintenance operation
is planned on the ith machine after the jth production job in
the sequence S and PM [i, j] = 1 indicates that there is one.

For the example in Fig. 3, given a sequence S of 10 jobs
to be processed by 3 machines, PM [3, 2] = 1 indicates that
a predictive maintenance intervention is planned on machine
M3 after the 2nd job in the sequence S, i.e. J9.

To evaluate the quality of an individual in the population,
GA needs a fitness function. Giving a candidate solution Sol,
the objective function is to minimize f(Sol) = Cmax(Sol)
and the fitness function is the reciprocal of f(Sol) :

Affinity(Sol) = 1/f(Sol) (1)

B. The generation of the initial population
Instead of starting with an initial population randomly

generated, it is more efficient to use special techniques to
produce a higher quality initial population [14]. In this paper,
we propose a two-step initialization procedure where an initial
population of PopSize individuals is generated as follows:
• Step 1. In this step, we generate three parts of the initial

population:
1) The first part contains the first production sequence

generated using the well-known NEH (Nawaz, En-
score and Ham) heuristic [19] with Cmax minimiza-
tion for PFSP;

2) The second part is made up the α%PopSize pro-
duction sequences generated using the modified
NEH heuristic proposed by [14]. Thus, we ensure
that these parts of the population is formed by fit
members;

3) The third part (the largest one) contains the remain-
ing (100 − α%)PopSize − 1 randomly generated
production sequences.

• Step 2. In this second step, the predictive maintenance
operations are inserted in the production sequences that
are generated in Step 1 using a new heuristic that we
propose. Maintenance operations will be planned starting
from the first machine M1 until the last one Mn. The
main idea of our proposed heuristic is to guaranty an ef-
ficient exploitation of machines by planning maintenance
interventions only when necessary. The job sequence
S is scanned and maintenance operations are inserted
according to the current cumulative degradation δ with
respect to the threshold ∆ = 1 (see Algorithm 1).

– If δ < ∆, i.e. the full degradation has not been
achieved yet, we move to the next job in the se-
quence S without inserting a predictive maintenance
operation;

– When δ > ∆, which means that the complete
degradation is exceeded, we insert a maintenance
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Fig. 2. Gantt diagram for integrated scheduling πi of machine Mi

operation in the best position that optimizes Cmax,
i.e. before or after the last production job added.

Algorithm 1 Insert PM(π)
1: S = (Js1 , . . . , Jsn) // job sequence associated to π
2: PM // maintenance matrix associated to π
3: for machine Mi i=1 to m do
4: δ=0 // accumulated degradation
5: for jobs Jsj j=1 to n do
6: δ=δ+δsj ,i
7: if δ > ∆ then
8: Compute Cmax when inserting PM before Jsj

(early intervention) and after Jsj (tardy interven-
tion) and choose the one optimizing the best Cmax

9: Update PM // PM [i, sj−1] = 1 or PM [i, sj ] = 1
10: δ=0
11: end if
12: end for
13: end for
14: return π

We note that, the integrated solution obtained after predic-
tive maintenance insertion in the sequence generated by NEH
heuristic is called I NEH.

C. The population improvement

The effectiveness of GAs greatly depends on the correct
choice of the selection, crossover and mutation operators, as
well as the probabilities by which they are applied. In the
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Fig. 3. Example of integrated solution representation

following subsections, we detailed the specification of the
different genetic operators we designed.

1) Selection operator: The first parent is selected using
the 2-tournament classical scheme [20]. The second parent
is picked either by roulette wheel selection [20] during the
first 40% iterations, or by random selection during the next
iterations. This selection scheme ensures that at least one of
the selected parents is a fit one. Furthermore, we seek by this
strategy to accelerate the convergence of the research process



when it starts, then its diversification is promoted using a
random method.

2) Crossover operator: It generates new individuals by
combining selected parents with a probability CrossProb.
Many different general and specific crossover operators have
been proposed for the PFSP [14]. Since we deal with integrated
scheduling problem, our study include four types of crossover
operators :

- Crossovers on production sequences. We use the classical
2X [20] and the SJOX (Similar Job Order Crossover) scheme
proved to be effective for the PFSP [14].

- Crossover on maintenance emplacements. We use the 1HX
(1 point Horizontal crossover) which deals with maintenance
matrix [16]. The first child, respectively the second, inherits
the job sequence of the first parent, respectively the second.
First, a random horizontal cut point C is chosen (between
1 and m). Then, lines above the cut point (maintenance
emplacements for machines Mi, 1 6 i < C) of the first parent,
respectively the second, are copied to the first child, respec-
tively the second. In the same way, lines under the cut point
(maintenance emplacements for machines Mi, C 6 i 6 m)
of the first parent, respectively the second, are copied to the
second child, respectively the first.

- Crossover on both production and maintenance. The previ-
ous crossover schemes deal with either production sequences
or maintenance matrix exclusively. Hence, we propose a new
crossover (IntX for Integrated crossover) which acts on both
production and maintenance structures. We design a crossover
operator so as to allow children to jointly inherit production
and maintenance characteristics from parents. Job sequences of
offspring are the results of 1 point crossover (1X) on parents’
production sequences. Whereas their maintenance matrix are
obtained using horizontal crossover (1HX) on parents mainte-
nance matrix.

3) Mutation operator: We incorporate a mutation operator
to avoid convergence to local optimum. Children suffer a muta-
tion with a probability MutProb. Maintenance emplacements
are retained whereas job sequence is updated by swapping
two jobs that are randomly selected from either the same
production block, i.e. no maintenance operation exists between
them, or from different production blocks.

D. The population renewal

1) Population replacement: Individuals of the next gen-
eration are selected from a pool gene which combines the
previous parent population and the newly created children.
40% of the best individuals are directly inserted in the new
population, consequently, the best solutions are preserved
to the next generation. Then, we complete the rest of the
population by randomly chosen members from the pool gene.
This allows a certain percentage of chromosomes with poor
fitness values to be included in the population so that there
will be a better chance of breaking out of local minima.

2) Restart scheme: A common problem of GAs is that the
population could sometimes stall around a local optimum. To
avoid that, a restart mechanism can be embedded into the GA

[14]. If the best solution found doesn’t improve after 10% of
the algorithm iterations, we update the current population as
follow so as to improve its diversity. The best 20%×PopSize
individuals of the population are skipped, 20% × PopSize
individuals from the remaining ones suffer a swap or shift
mutation [20], 20%×PopSize individuals are generated using
modified NEH heuristic and the rest (40% × PopSize) are
replaced by newly randomly created members.

Our algorithm terminates after MaxGen generations.

IV. COMPUTATIONAL RESULTS

In this section, we present the results of computational
experiments we conducted to test the newly proposed GA
on a PC with Intel Xeon R© E5 and 28.00 GB RAM. We
will first describe test data generation. Secondly, we present
the calibration step results. Next, we analyze performance
of our newly proposed algorithm. Finally, we discuss the
computational time of the proposed algorithm.

A. Data generation

We use the well-known Taillard benchmarks [21] available
in the literature to which we add both PHM and maintenance
data. Our test bed consists of a total of 11 subsets, where
each contains 10 instances with the same size n ×m where
n ∈ {20, 50, 100, 200} and m ∈ {5, 10, 20}. From each partial
instance we build a complete instance by adding PHM and
maintenance data as follow.

We have three kinds of jobs :
• jobs inducing small machine deterioration where the

degradation δij is generated from a uniform distribution
U [1%, 2%];

• jobs inducing medium machine deterioration generated
from a uniform distribution U [2%, 5%];

• jobs inducing big machine deterioration generated from
a uniform distribution U [5%, 10%].

Moreover, we define three (03) maintenance modes:
• Mode 1 represents small maintenance interventions with

processing time pPM
i generated from a uniform distribu-

tion U [1, 19].
• Mode 2 represents medium maintenance interventions

with processing time pPM
i generated from a uniform

distribution U [50, 99].
• Mode 3 represents long maintenance interventions with

processing time pPM
i generated from a uniform distribu-

tion U [100, 200].
We have then 3 possible configurations which will be run

on the 11 subsets of 10 instances. There is therefore a set of
330 different instances to perform the tests. For each instance,
5 executions are carried out, and in all 1650 executions for
the proposed GA. We average the results for all the given
instances.

For evaluation, we discuss two different metrics listed
below:
• RPD : the relative percentage deviation of the Cmax

provided by each algorithm (with predictive maintenance



interventions) Csol
max with respect to the best known

solution for Taillard instance Cbest
max expressed as follows:

RPD =
Csol

max − Cbest
max

Cbest
max

× 100 (2)

• CPU : computation times of the proposed algorithm.

B. GA calibration

For the first set of experiments, we have undertaken a sen-
sitive analysis of performance for the proposed algorithm by
varying different parameters. We have chosen a full factorial
design in which all possible combinations of the following
factors are tested:
• Population size PopSize : 2 levels (100, and 150);
• Crossover type : 4 levels (2X, SJOX, 1HX, and IntX);
• Crossover probability CrossProb : 4 levels (0.5, 0.6, 0.7,

and 0.8);
• Mutation probability MutProb : 3 levels (0.05, 0.01, and

0.15);
• Stopping criteria MaxGen : 3 levels (100, 200, and 400).
All the cited factors result in a total of 2× 4× 4× 3× 3 =

288 different combinations. Every combination is tested on
a set of problem instances using procedure proposed by [21]
where n ∈ {20, 50, 80, ..., 470, 500} and m ∈ {5, 10, 15, 20}.
We generates 02 instances for each combination n × m. 10
replicates of each instance is executed. The response variable
of the experiment is the RPD.

The resulting experiment was analyzed by means of a
multifactor analysis of variance (ANOVA) technique [22] with
the least significant difference (LSD) intervals (at the 95%
confidence level). We focus on the F-ratio, the greater this
ratio is, the more effective the parameter will be. Fig 4 shows
means plots of the calibration parameters ordered by their F-
Ratio. By analyzing different levels in a means plot for each
factor, one by one respecting their F-ratio order, we fix each
factor at its best level as follow :
• PopSize = 150 ;
• MaxGen = 400 ;
• Crossover type : 1HX ;
• CrossProb = 0.8 ;
• MutProb = 0.15.

C. Performance analysis of the proposed algorithm

The first set of experiments were conducted to evaluate
the efficiency of the newly proposed predictive maintenance
planning heuristic (Algorithm 1). For this reason, we evaluate
both Cmax and the total sum of maintenance operations
earliness/tardiness for maintenance mode 2.

According to the machine accumulated degradation at the
moment of predictive maintenance intervention, 3 cases may
appear:

1) The maintenance operation is ideally scheduled if the
machine is fully exploited, i.e its accumulated degrada-
tion is = ∆;

2) Otherwise, it is either early if the accumulated machine
degradation is < ∆;

2X     1HX     SJOX    IntX
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Fig. 4. Means plots for GA parameters calibration

3) Or tardy if the accumulated machine degradation is > ∆.
Given the integrated scheduling of each machine Mi : πi =
{Bi1,Mi1,Bi2, . . . ,Mi(li−1),Bili} , the earliness/tardiness of
intervention Mik is calculated as follows:

ET (Mik) = |∆−
∑

Jj∈Bi,k−1

δij | × 100 (3)

Then, the total sum of earliness/tardiness for all maintenance
operations scheduled on all machines is expressed in Eq. 4

ET (π) =

m∑
i=1

li∑
k=1

ET (Mik) (4)

Results reported in Table I present a comparison of ET and
Cmax of solutions obtained by our GA using the proposed
maintenance insertion heuristic and the same GA using an
insertion method that systematically schedules interventions
before the maximal threshold ∆. We remark that, for several
cases, results of ET of the proposed heuristic are better than
those obtained by the systematic one. In the other cases, they
are equivalent. However, when observing Cmax results, we can
easily note that the proposed maintenance planning heuristic
provides the best solutions for all cases. In average, Cmax

deviation is decreased from 7.16% to 4.26%. Hence, we can
deduce that the proposed heuristic is efficient since it allows
to find good quality solutions regarding Cmax minimization
while scheduling interventions with small earliness/tardiness.



TABLE I
PREDICTIVE MAINTENANCE INSERTION HEURISTIC EVALUATION

size
Proposed heuristic Systematic heuristic

RPD ET RPD ET

20×5 3.63 3.45 5.15 3.75
20×10 3.51 3.50 5.08 3.47
20×20 2.64 3.83 4.82 3.62
50×5 3.33 3.26 5.81 3.05
50×10 5.27 2.74 7.60 2.52
50×20 5.61 3.65 7.89 3.77
100×5 3.92 3.39 7.23 3.51
100×10 4.71 3.06 8.04 2.82
100×20 6.10 3.61 9.15 3.87
200×10 5.24 3.55 8.37 3.43
200×20 6.16 3.98 9.58 3.72
Average 4.26 3.46 7.16 3.41
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Fig. 5. Comparison between standard GA and our GA

The proposed genetic algorithm incorporates a restart
scheme designed to enhance the diversification of the search
process in case of stagnation. To study the influence of this
mechanism, we show in Fig. 5 a comparison between the
RPD obtained by our GA and a standard GA that uses
the same operators without restart scheme for maintenance
mode 2. We note that the standard GA parameters were also
calibrated and the best combination was fixed. We remark
that results obtained by our GA are better for all benchmarks.
Deviations obtained by the standard GA are decreased by our
GA by about 50%. Indeed, the standard GA converges quickly
to a local optimum and then the search process wont be able
to find new solutions of improved quality. On the other hand,
our genetic algorithm is able to resume its search process and
the best solution is once again improved after stagnation by
exploring new promoting zones.

The third set of experiments reported in Table II were
conducted to evaluate the proposed GA for Cmax optimization
when compared to results obtained by the I NEH heuristic
(NEH solution with predictive maintenance insertion as de-
scribed in section III-B). Even if the NEH heuristic is the most
powerful construction heuristic for Cmax minimization [10],

TABLE II
RPD RESULTS FOR MAINTENANCE MODE 1,2 AND 3

size
Mode 1 Mode 2 Mode 3

GA I NEH GA I NEH GA I NEH

20×5 0.82 3.94 3.63 7.93 8.72 15.12
20×10 0.94 4.83 3.51 7.85 9.02 16.16
20×20 1.12 4.11 2.64 6.70 6.54 13.01
50×5 0.53 1.27 3.33 6.13 8.36 12.21
50×10 1.34 5.03 5.27 9.67 9.71 17.52
50×20 1.76 5.14 5.61 10.58 10.05 20.62
100×5 0.88 1.43 3.92 6.88 9.37 13.76
100×10 1.02 2.86 4.71 7.82 10.12 19.02
100×20 1.45 5.14 6.10 10.71 11.82 23.11
200×10 0.92 2.08 5.24 8.10 12.04 17.87
200×20 1.06 3.79 6.16 9.65 13.47 19.21
Average 1.08 3.60 4.56 8.37 9.93 17.06

it fails to reach results obtained by our GA. That confirms
the designed GA efficiency to find high quality solutions
for all problem instances. This is argued by the design of
appropriate GA operators, especially the crossover one, and the
good parameters setting based on the sensitive calibration step.
When comparing the effect of different maintenance modes on
Cmax deviations (average results for maintenance mode 1, 2
and 3), we note that the longest is the maintenance operations,
the higher is the Cmax deviation. This can be explicated by
the insertion of predictive maintenance operations of more
important processing time which yields higher deviations. An
important note to report is that, high Cmax deviations do not
reflect bad solution quality since they are calculated relatively
to Taillard best known solutions without maintenance opera-
tions. It is natural that the insertion of maintenance operations
will certainly yield an increase of Cmax.

The average computational times (CPU) grouped for each
size of the problem are depicted in Table III. CPU times vary
by the size of the problem. As the problem size increases, the
CPU time becomes more important. Small instances, where
n × m < 100 × 20, are resolved in less than a minute.
When the problem size increases, the proposed GA becomes
slower. This can be explain by the computational time spent
in manipulating the solutions structures (job sequences and
maintenance matrix) by different genetic operators.

V. CONCLUSION

We study the permutation flowshop scheduling problem
with predictive maintenance activities under makespan min-
imization criterion. In our model, a PHM system is supposed
to provide RULs and the degradation values for each machine
when processing each kind of job. We proposed a new mainte-
nance planning heuristic to guarantee an efficient exploitation
of machines. Furthermore, we developed a tailored genetic
algorithm including carefully tuned operators and parameters.
The proposed algorithm incorporates a restart mechanism that
allow diversification of the manipulated population when the



TABLE III
COMPUTATION TIMES (CPU)

size CPU

20×5 02.13 s
20×10 04.96 s
20×20 11.81 s
50×5 06.24 s
50×10 15.23 s
50×20 40.02 s
100×5 10.14 s
100×10 0.52 min
100×20 2.03 min
200×10 1.37 min
200×20 6.04 min

search process is stagnated. We have carried out various
experiments on well known Taillard benchmarks for PFSP.
Results show the efficiency of the proposed genetic algorithm
and maintenance insertion method.

Further topics would be continued with regards to this
results. The proposed integrated scheduling model can be
extended to manage other production systems typologies like
jobshop. Another work can deal with the bi-objective character
of the tackled problem in order to minimize both makespan
and maintenance earliness/tardiness.

REFERENCES

[1] V. Venkatasubramanian, “Prognostic and diagnostic monitoring of com-
plex systems for product lifecycle management: Challenges and oppor-
tunities,” Computers & chemical engineering, vol. 29, no. 6, pp. 1253–
1263, 2005.

[2] T. Brotherton, G. Jahns, J. Jacobs, and D. Wroblewski, “Prognosis of
faults in gas turbine engines,” in Aerospace Conference Proceedings,
IEEE, vol. 6, 2000, pp. 163–171.

[3] ISO, “Condition monitoring and diagnostics of machines, prognostics
part 1: General guidelines,” International Organization for Standardiza-
tion, Tech. Rep. ISO13381-1, 2004.

[4] E. Pan, W. Liao, and L. Xi, “A joint model of production scheduling and
predictive maintenance for minimizing job tardiness,” The International
Journal of Advanced Manufacturing Technology, vol. 60, no. 9, pp.
1049–1061, 2012.

[5] C. Varnier and N. Zerhouni, “Scheduling predictive maintenance in
flow-shop,” in IEEE Conference on Prognostics and System Health
Management (PHM), Beijing, China, 23–25 May 2012 2012, pp. 1–6.

[6] N. Herr, J. M. Nicod, and C. Varnier, “Prognostics-based scheduling in a
distributed platform: Model, complexity and resolution,” in IEEE Inter-
national Conference on Automation Science and Engineering (CASE),
Taipei, Taiwan, 18–22 Aug 2014 2014, pp. 1054–1059.

[7] S. Chrétien, N. Herr, J. M. Nicod, and C. Varnier, “A post-prognostics
decision approach to optimize the commitment of fuel cell systems in
stationary applications,” in IEEE Conference on Prognostics and Health
Management (PHM), TX, USA, 22–25 Jun 2015 2015, pp. 1–7.

[8] A. Ladj, C. Varnier, F. Benbouzid-Si Tayeb, and N. Zerhouni, “Exact
and heuristic algorithms for post prognostic decision in a single mul-
tifunctional machine,” International Journal of Prognostics and Health
Management, vol. 8, no. 2, 2017.

[9] Q. Liu, M. Dong, and F. Chen, “Single-machine-based joint optimization
of predictive maintenance planning and production scheduling,” Robotics
and Computer-Integrated Manufacturing, vol. 51, pp. 238–247, 2018.

[10] V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan, “A new vision
of approximate methods for the permutation flowshop to minimise
makespan: State-of-the-art and computational evaluation,” European
Journal of Operational Research, vol. 257, no. 3, pp. 707–721, 2017.

[11] A. Ladj, F. Benbouzid-Si Tayeb, C. Varnier, A. A. Dridi, and N. Sel-
mane, “A hybrid of variable neighbor search and fuzzy logic for the
permutation flowshop scheduling problem with predictive maintenance,”
Procedia Computer Science, vol. 112, pp. 663–672, 2017.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.
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