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Abstract

An approach suitable for modeling viscoelastic-viscoplastic response with isother-
mal fatigue damage in amorphous solids is proposed. The theory explicitly ac-
counts for frame-indifference and dependence of the free energy on both the
viscoelastic-viscoplastic deformation and fatigue damage in a thermodynami-
cally consistent manner. The damage evolution per se is formulated by utilizing
an endurance surface that shifts in an effective stress space independent on
damage. The idea is suitable for solids in which the fatigue behavior is duc-
tile, i.e. localized damage during the creation of micro-cracks governs majority
(up to 95%) of the total fatigue life. Based on implicit numerical integration,
the solution procedure is presented, and the capability for technologically im-
portant polycarbonate (PC) polymer is addressed. To simulate the fatigue in
real specimens, the approach is implemented in a finite-element program. The
results show that fatigue life can be predicted using a single point at which fa-
tigue most intensively initiates. A microscopic, rectangular region representing
a RVE of the specimen is also investigated. Simulations, in accordance with
the model assumption, indicate that damage develops in small zones around
involved inhomogeneities while majority of the material remains undamaged.

Keywords: low- to high-cycle fatigue, viscoelastic-viscoplastic,
thermodynamics, amorphous, simulation testing

1. Introduction

Fatigue denotes the cyclic deformation behavior of materials that may sig-
nificantly reduce the service life of engineering components at stress levels well
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below the nominal yield strength. Economical, energy efficient, and recyclable
design under such conditions favors components made of materials that enable
reaching the targeted strength and elongation properties in an optimal man-
ner. Manufacturers are interested in the fatigue resistance, especially when
the service life is difficult to inspect or fatigue may cause an accident under
service, Maxwell et al. (2005). In fact, for a long time, the service failures
of engineering components owing to mechanical fatigue have been estimated
to be the most dominant cause of remarkable financial losses, Ritchie (1999);
Beesley et al. (2017). Moreover, time-consuming and costly testing of long-term
fatigue life exposed to environmental conditions and previous operation histo-
ries can capitalize capable models and the high computational power currently
procurable.

Examples of materials having an excellent combination of strength and
toughness are amorphous polymers and amorphous metals or alloys, termed
bulk metallic glasses (BMGs). However, amorphous solids, particularly BMGs,
are susceptible to cyclic fatigue damage that emerges as a low endurance limit,
e.g. Launeya et al. (2009); Sun and Wang (2015). Despite this feature and the
motivation above, fatigue failure of amorphous solids has received little atten-
tion so far. Instead, many of the recent, appealing approaches have focused
on micromechanically based damage evolution under multiaxial static loadings
that may cause large deformations but not fatigue failure, Lugo et al. (2014);
Wang et al. (2016); Engqvist et al. (2016). Much of recent studies has also
been dedicated to the research of crack development under arbitrary fatigue
loadings, see Sun and Wang (2015); Dündar and Ayhan (2015); Kanters et al.
(2016); Hughes et al. (2017); Ding et al. (2017). However, referred fracture me-
chanics based approaches are not aimed at the crack initiation phase that can
encompass the majority (even 95%) of the entire fatigue life, Marissen et al.
(2001); Janssen et al. (2008). Furthermore, research including multiaxial fa-
tigue data for amorphous solids is nonexistent in literature.

Fatigue failure of amorphous solids is owing to either thermally or mechan-
ically governed mechanisms, see Janssen et al. (2008); Murakami (2012). This
paper is focused on the mechanically dominated fatigue that does not influence
a marked temperature rise and comes forth at relatively low stress frequencies
below the yield stress. Fatigue development under such conditions can be di-
vided into two phases. During the first, initiation phase, failure is typically
attributed to impurities or deficiencies producing notable stress concentrations,
which may exceed the strength limits of the material, as has been noted for poly-
mers Marissen et al. (2001); Kanters et al. (2016); Holopainen et al. (2017) and
BMGs Launeya et al. (2009); Sun and Wang (2015). During repeated loadings,
these deficiencies can nucleate and form wide crazes already before the desired
service life at stress levels far below the nominal yield strength. The second
phase is featured by rapid damage growth owing to the coalescence of matured
micro-cracks to form large cracks that finally cause material’s brittle failure,
Ritchie (1999); Lesser (2002); Lemaitre and Desmorat (2005); Lawrimore et al.
(2016). However, in many amorphous solids, the timespan of the first phase is
invariably orders of magnitude greater than the second phase, Ritchie (1999);
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Janssen et al. (2008); Kanters et al. (2016). Based on that observation, the
second, propagation phase is often omitted in the fatigue models.

When dealing with fatigue from low- to high-cycle regimes, a suitable dam-
age rule, in addition to the plasticity model, constitutes a substantive part
of the analysis. A multitude of approaches exist for fatigue analysis and can
be divided into three main groups: energy, strain, and stress approaches, cf.
Bannantine et al. (1990); Ottosen et al. (2008). The stress approach, which
has been broadly designed for mechanically governed high-cycle fatigue (HCF),
constitutes a backbone of the proposed approach. Abounding of those ap-
proaches rely on the fatigue-limit criteria, wherein the fatigue strengths or
limits are determined by exploiting a large set of identical cycles. They are
also equipped with cumulative damage theories that define the damage increase
per cycle, thus requiring that the load spectrum consists of well-defined cy-
cles, Fatemi and Yang (1998); Ottosen et al. (2008). To extract equivalent cy-
cles from load histories, cycle-counting technics are required, Fatemi and Yang
(1998). However, it may be challenging to determine a standard cycle from a
complex load spectrum, which results in the cycle-counting approaches being
inadequate for weighty practical applications.

A different approach to formulate the fatigue model is based on a continuum
mechanics framework benefiting an incremental formalism without measuring
damage growth per loading cycles, Ottosen et al. (2008); Ayoub et al. (2011);
Murakami (2012); Kanters et al. (2016); Holopainen et al. (2017). Such an ap-
proach applied here is a modification of an appealing model originally introduced
in Ottosen et al. (2008). Albeit the Ottosen et al. (2008) -model is intended for
the high-cycle fatigue of metals, its conception is rather general and is suit-
able for amorphous solids that macroscopically show many similar mechanical
and fatigue characteristics, Chaboche (1997); Lesser (2002); Anand and Gurtin
(2003); Zäıri et al. (2005); Lugo et al. (2014); Holopainen et al. (2016, 2017).
Against canonical [1−D] effective stress damage concepts, cf. Lemaitre and Desmorat
(2005); Murakami (2012); Wang et al. (2016), and Holopainen et al. (2017), de-
formations and stresses are now considered independent on fatigue damage, and
damage evolution is formulated by using an endurance surface that shifts in a
stress space independent on damage. Owing to this assumption, complex rela-
tionship between the deformations and damage as well as challenges in numerical
implementation due to a damage-induced stress reduction are not encountered.
However, coupling between the fatigue model and the governing constitutive
model exists and is treated by using a backstress type of internal variable that
explicitly influences both the damage evolution and the plastic flow. The idea
is valid for amorphous solids in which the fatigue behavior is ductile, i.e. fatigue
damage represents solely the formation of micro-cracks and initial crazing that
typically cover most of (over 90%) the total service life, Janssen et al. (2008);
Lugo et al. (2014). In this phase, damaged regions in the material can be con-
sidered small and localized compared to those observed after the formation of
large cracks. Thus, damage fields do not represent the macroscopic stress reduc-
tion in such a manner as is assumed in classical effective stress damage concepts.
Since the inhomogeneous stress reduction due to damage is not considered, the
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proposed approach allows for the prediction of fatigue life of an entire struc-
tural element by exploiting solely a single location at which the repetitive load
spectrum achieves the most determinative fatigue damage.

After introducing kinematics, subsequent thermodynamic treatment as well
as the specific fatigue model mentioned in Sections 2.1 - 2.4, the approach
is demonstrated by introducing specific constitutive equations for technolog-
ically important amorphous solid polymers in Section 2.5. The constitutive
counterpart of the proposed approach is based on large deformations, i.e. the
multiplicative decomposition of the deformation gradient into viscoplastic and
elastic parts is applied, cf. Arruda et al. (1993); Anand and Gurtin (2003);
Wallin and Holopainen (2012). Many amorphous solids also show viscoelastic
deformation behavior, Chaboche (1997); Zäıri et al. (2005); Kwang (2016). To
improve predictions under cyclic loading processes as well as under long-term
creep and recovery, the model is augmented by a viscoelastic element that fur-
ther splits the elastic part of the deformation gradient into a viscous compo-
nent and a purely elastic component, Holopainen (2013). When neglecting vis-
coelasticity and fatigue, the proposed model reduces to the celebrated 8-chain
model, referred to as the BPA (Boyce-Parks-Argon) model, see Boyce et al.
(1988). Therefore, the presented thermodynamic treatment involving frame-
indifference, force and moment balances is also valid for the BPA model. By
the authors’ knowledge, such a treatment in that extent has not previously been
presented for the BPA model. The proposed approach including fatigue requires
a single parameter set and only few macroscopic quantities, which makes the
approach suitable for practical applications.

The article continues by introducing a numerical treatment of the approach
mentioned in Section 2.6. Capability of the approach under different load and
displacement controlled loadings for technologically important polycarbonate
(PC) polymer is addressed. Based on a finite-element implementation, fatigue
testing is simulated, and the contribution of an amorphous polymer structure,
in view of dispersed inhomogeneities, to the localization of fatigue damage is
debated in Section 3. The article closes with concluding remarks and avenues
for future research.

2. The approach

2.1. Kinematics: deformation

Many amorphous materials exhibit distinct time-dependent behavior and
also display nonlinear response during loading and unloading which both re-
peatedly occur in cyclic fatigue loadings, Lesser (2002); Khan et al. (2006);
Dreistadt et al. (2009); Lawrimore et al. (2016). These viscous effects show
up as creep and relaxation and are due to a microstructure that needs a re-
laxation time to attain its equilibrium state after deformation. Representative
materials are many polymers that show both the viscoelastic and viscoplastic
behavior, Chaboche (1997), Zäıri et al. (2005), and Kwang (2016). Although
viscoelastic deformation is considered low in certain amorphous solids includ-
ing BMGs, Anand and Gurtin (2003), their microstructure also indicates both
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viscoelastic and viscoplastic behavior (decrease in atomic mobility) of which im-
pact inevitably increases under cyclic fatigue processes owing to factors such as
ratcheting and temperature rise, Sun and Wang (2015). To ensure the model’s
ability to follow the viscous deformation behavior under such conditions as well
as under creep and recovery, also the elastic deformation is considered viscous,
cf. Chaboche (1997); Khan et al. (2006); Dreistadt et al. (2009); Holopainen
(2013).

Deformation of a solid body at time t ∈ R
+ is defined by the mapping

y : X 7→ x where X ∈ B and x ∈ b are arbitrary material points of the bodies
B and b given in the reference and current deformed placement, respectively.

The Kröner-Lee decomposition is applied, i.e.

F = F veF p, (1)

where F is the deformation gradient with Jacobian J := det(F ) > 0, and F ve

and F p define the local deformation for the intermediate placement N̄ due to
viscoelastic and plastic (also viscous) mechanisms, respectively, see Fig. 1 for
clarification. The plastic mechanism denotes the deformation of coiled molecular
chains or mutual action of disordered atomic clusters in amorphous polymers
and BMGs, respectively, Anand and Gurtin (2003). The viscoelastic mecha-
nism represents deformation of the intermolecular or interatomic amorphous
structure. The intermediate placement is only locally defined, i.e. the map-
pings, F ve and F p respectively, are not true deformation gradients. However,
both are mappings for which det(F ve) > 0 and det(F p) > 0, i.e. the inverses
F ve−1 and F p−1 exist. The local, intermediate placement N̄ is stress-free, since
it represents the effects of only the plastic deformation uncoupled from elastic
deformation. Since F ve and F p express elastic and plastic deformation, respec-
tively, they are uncoupled.

The positive definite and symmetric stretch tensor v is defined by the polar
decomposition

F = vR, (2)

where R is the rotation tensor.
The plastic deformation in the relaxed intermediate placement is given in

terms of a symmetric and positive definite plastic deformation tensor

C̄p := F pF p,T (3)

wherein the tensor transpose is symbolized by T. The quantities in the interme-
diate placement are accentuated by the bar.

The viscoelastic deformation in the current placement is defined according
to

bve := F veF ve,T = (vve)2. (4)

Alternatively, the decomposition

F̂ p = R̄F p and F̂ ve = F veR̄T, (5)
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Figure 1: Deformation of a solid body in terms of the mappings between different place-

ments (configurations): N , N̄ , n, ¯̄N , NR, and N
veR for total viscoelastic-viscoplastic

deformation (left) and N̄
e, ¯̄N e, and N

eR for solely viscoelastic deformation split into
an elastic (small deformations) and a viscous part (right). The symbols accentuated
by the bar(s) refer to intermediate placements.

where R̄ is a rotation of the stress-free intermediate placement, can applied in
(1). It appears from (5) that the stress-free intermediate placement is not unique
and any rigid body rotation leaves it unstressed. Thus, additional restrictions
are needed and it will be returned to this issue subsequently in Section 2.6.
Fig. 1 illustrates this non-uniqueness, i.e. both N̄ and ¯̄N represent suitable
intermediate configurations.

Based on rubber viscoelasticity Lubliner (1985); Bergström and Boyce (1998);
Dal and Kaliske (2009), in accordance with (1), the decomposition of F ve into
a viscous and purely elastic part is applied, i.e.

F ve = F eF v. (6)

The decomposition (6) is also known as the Sidoroff decomposition, Sidoroff
(1974). The polar decompositions of F e and F ve define the positive definite
and symmetric stretch tensors ve and vve in the spatial placement as

F e = veRe and F ve = vveRve (7)

where Re and Rve denote the rotation tensors, see Fig. 1.
Like with (5), also the decomposition

F̂ ve = F̂ eF̂ v where F̂ v = R̄eF vR̄T, F̂ e = F eR̄e,T, (8)

and R̄e represents a rotation of the elastic intermediate placement, can be ap-
plied in (6), see Fig. 1. It then appears from (8) that nor is the elastic in-
termediate placement unique and certain restrictions are needed, see Section

6



2.61.
For later use, symmetric deformation tensors,

be := F eF e,T = (ve)2, b̄v := F vF v,T =: (v̄v)2, bv := F e−Tb̄vF e−1 =: (vv)2,

cp := F ve−TC̄pF ve−1

(9)
given in the spatial and the intermediate placements n and N̄ e, are also intro-
duced.

2.2. Rate kinematics

Motion of a material body is modeled by the velocity field v, which defines
the spatial velocity gradient

l := grad(v) = Ḟ F−1 (10)

where the accent dot means the material time derivative. The product decom-
positions (1) and (6) in (10) yield

l =: lve + lp = le + lv + lp (11)

wherein

le := Ḟ eF e−1, lv := F e l̄vF e−1, lp := F veL̄pF ve−1,

l̄v := Ḟ vF v−1, L̄p := Ḟ pF p−1.
(12)

Moreover, the symmetric and skew-symmetric counterparts are defined as

d := sym(l), dve := sym(lve), de := sym(le), dv := sym(lv),

d̄v := sym(l̄v), dp := sym(lp), D̄p := sym(L̄p)
(13)

and

ω := skew(l), ωve := skew(lve), ωe := skew(le), ωv := skew(lv),

ω̄v := skew(l̄v), ωp := skew(lp), W̄ p := skew(L̄p),
(14)

respectively.
Based on (3) and (11), the rate of the plastic deformation tensor C̄p is

derived as

˙̄Cp =
˙

F pF p,T = Ḟ pF p,T + F pḞ p,T = L̄pC̄p + C̄pL̄p,T. (15)

In accordance with (15), (9) in conjunction with (12) result in

ḃe = lebe + bele,T, ˙̄bv = l̄vb̄v + b̄v l̄v,T. (16)

1Due to the path dependency, the polar decompositions of F p and F v are not applied
since it is practically difficult to show the relationship between the rotations and stretching.
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2.3. Thermodynamic treatment of the model

The theory presented here is based on the principle of virtual power consist-
ing of the following requirements, cf. Anand and Gurtin (2003):

[1 ] the internal and external virtual powers are equal for all virtual ve-
locities V within a subregion or part of the solid body A(t) ⊆ b(t), i.e.
Wext(A,V) = Wint(A,V) (power balance);

[2 ] given any partA and any virtual velocityV, the internal powerWint(A,V)
is frame-indifferent, i.e. invariant under all changes in frame.

Macroscopic force balance

Based on the power balance [1] mentioned above, one is at liberty to choose
a virtual velocity field Ṽ consistent with (10), i.e. in the current placement.
Denoting outward unit vector of the boundary region ∂A of the part A by n,

W
ext(A,V) =

∫

∂A

t(n) · ṽda+
∫

A

f · ṽdv =

∫

A

τ · grad(ṽ)dv (17)

where t(n) and f are a local surface traction and a body force, respectively; ṽ
is a virtual velocity field of V; and τ is the governing stress field. Using the
divergence theorem, (17) takes the form

∫

∂A

(t(n) − τn) · ṽda+

∫

A

(div(τ ) + f) · ṽdv = 0. (18)

The relationship (18) must hold for all A and ṽ and thus, t(n) − τn = 0 and
div(τ ) + f = 0, which equalities represent the macroscopic force balances.

Microforce balance

Assuming the internal virtual power is expended by a stress τ rate conjugate
to l̃ve, and also by an internal microstress τp rate conjugate to l̃p, i.e.

W
int(A,V) :=

∫

A

(τ : l̃e + τ : l̃v + τp : l̃p)dv, (19)

cf. Anand and Gurtin (2003). The operator : in (19) is argued to be the tensor
trace as A : B := trace(ABT).

Assuming the virtual velocity field, ṽ in (17) vanishes. Consequently, the
external virtual power identically vanishes when the internal virtual power also
vanishes according to the power balance [1]. Then, by (10) and (11), l̃e + l̃v =
−l̃p when (19) becomes

(τp − τ ) : l̃p = 0. (20)

Since l̃p is an arbitrary tensor field, (20) is fulfilled by assuming τp = τ . The
stress τp represents an internal microstress affected by damage due to mutual
interaction of microcavities, see Lemaitre and Desmorat (2005). Damage prior
to the cracking phase, as considered here, is strongly localized and thus does
not influence the macroscopic stress.
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Frame-indifference

Considering an arbitrary change in frame of the (Euclidean) space through
which the material body shifts. In the current frame, A transforms rigidly to a
region A∗, V to a virtual velocity V∗, and τ to a stress τ ∗ conjugate to virtual
velocities. The theory must be invariant under such transformations, i.e. under
a motion of a homogeneous body of the form

y(X, t) → Q(t)(y(X, t) −O) + q(t) (21)

where Q(t) is an orthogonal rotation tensor, q(t) is a vector at time t, and O

is a fixed origin.
Considering that the reference placement is unaltered under the choice of

changes in frame, while the current and the intermediate placements are depen-
dent on such choices,

F → QF , F p → Q̄F p, F ve → QF veQ̄T,

F e → QF eQ̄e,T, F v → Q̄eF vQ̄T
(22)

where a distinction is made between the rotations of the placements. Further-
more, the deformation measures in (3) and (9) become

C̄p → Q̄C̄pQ̄T, bve → QbveQT,

be → QbeQT, b̄v → Q̄eb̄vQ̄e,T,

bv → QF e−TQ̄e,TQ̄eb̄vQ̄e,TQ̄eF e−1QT = QbvQT.

(23)

Based on the transformations in (22), the motion of a body transforms ac-
cording to

l → QlQT + Q̇QT, d → QdQT,

L̄p → Q̄L̄pQ̄T + ˙̄QQ̄T, D̄p → Q̄D̄pQ̄T,

lp → QlpQT +QF veQ̄T ˙̄QF ve−1QT,

lve → QlveQT + Q̇QT +QF ve ˙̄QTQ̄F ve−1QT,

le → QleQT + Q̇QT +QF e ˙̄Qe,TQ̄eF e−1QT,

l̄v → Q̄e l̄vQ̄e,T + ˙̄QeQ̄e,T + Q̄eF v ˙̄QTQ̄F v−1Q̄e,T,

lv → QlvQT +QF eQ̄e,T ˙̄QeF e−1QT +QF eF v ˙̄QTQ̄F v−1F e−1QT

= QlvQT −QF e ˙̄Qe,TQ̄eF e−1QT −QF veQ̄T ˙̄QF ve−1QT.

(24)

The results in (24) yield l = le + lv + lp → Q(le + lv + lp)QT + Q̇QT =

QlQT + Q̇QT, ω = QωQT + Q̇QT, and W̄ p → Q̄W̄ pQ̄T + ˙̄QQ̄T.
It is assumed that the fields of a virtual velocity transform as their non-

virtual counterparts do. Then, the frame-indifference [2] indicates thatWint(A,V) =
Wint∗(A∗,V∗), i.e. considering the micro-force balance, (19) and (20),

W
int∗(A∗,V∗) :=

∫

A

(τ ∗ : (Ql̃QT + Q̇QT)dv. (25)
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Since A, the change in frame, the field l̃, and the skew-symmetric tensor Q̇QT

are all arbitrary, the frame-indifference [2] results in the stress transforming
according to

τ → QτQT (26)

and is symmetric, i.e. τ = τT similar to the Kirchhoff stress (macroscopic
moment balance).

Lemma 2.1. The results in (24) dictate the invariance of the internal power
according to the requirement [2].

Proof. Using the transformations (24) and (26), and the symmetry of τ (macro-
scopic moment balance) yield

τ : dp → τ : dp + T̄ : Q̄T ˙̄Q = τ : dp,

τ : de → τ : (de + Q̇QT) + τ̄ e : ˙̄Qe,TQ̄e = τ : de,

τ : dv → τ : dv + τ̄ e : Q̄e,T ˙̄Qe + T̄ : ˙̄QTQ̄ = τ : dv

(27)

where T̄ and τ̄ e are symmetric, mixed-variant counterparts of τ expressed in
the stress-free and elastic intermediate placements, respectively. Exploiting the
rule A : B = AT : BT for all second order tensorsA, B, the stresses are defined
as

0 = τ : F veQ̄T ˙̄QF ve−1 − τ : F ve−T ˙̄QTQ̄F ve,T =: T̄ : Q̄T ˙̄Q

and

0 = τ : F e ˙̄Qe,TQ̄eF e−1 − τ : F e−T ˙̄Qe,TQ̄eF e,T = τ̄ e : ˙̄Qe,TQ̄e

Dissipation power

Mechanical theory based on the second law of thermodynamics in its spatial
form takes the form

∫

A

ϕ̇dv ≤ W
ext(A) = W

int(A) (28)

where ϕ̇ is the rate of the thermomechanical potential ϕ. The formula (28) is
known as a dissipation inequality.

Since the part A of the solid body is arbitrary, the second thermodynamics
principle (28) can be localized. Exploiting the equations (11), (13), and (20),
(28) takes the following form of the so-called Clausius-Duhem inequality:

D = τ : de + τ : dv + τ : dp − ϕ̇ ≥ 0, (29)

in which D denotes the power of the local dissipation in the deformed current
placement.

10



τ

τ

L
e 1)

be, de

τ

L
vη 2)3)

bv, dv

cp, dp

4) L−1(λp
ec)

βα

6)5) s

τ̃

Figure 2: Rheological description of the approach comprising of elastic springs 1) and
2), a viscoelastic dashpot 3), a nonlinear spring 4), a viscoplastic dashpot 5), and a
nonlinear device 6) for fatigue. Difference between the backstresses β + α and the
Kirchhoff stress τ determines the driving stress τ̃ .

Constitutive theory

The constitutive restrictions that have been required so far are rather uni-
versal. The approach is constrained by imposing additional constitutive con-
straints based on existing theories and knowledge on viscoelastic-viscoplastic
amorphous materials, Khan et al. (2006); Dreistadt et al. (2009); Holopainen
(2013); Sun and Wang (2015). The applied constitutive model seizes creep and
recovery through the Kelvin-Voigt element which is comprised of an elastic
spring 2) and a viscous dashpot 3) as demonstrated in Fig. 2. Its function
with the elastic spring 1) is able to predict the stress relaxation. This model
was extended to large deformations in Haward and Thackray (1968). Another
Kelvin-Voigt-like element consists of a viscoplastic dashpot 5) parallel to a spring
4) resulting in anisotropic nature of material at large strains. A nonlinear device
6) dictates the fatigue development.

When neglecting viscoelasticity and fatigue, the proposed model reduces
to the well-known BPA model for amorphous polymers including the elements
1), 4), and 5), see Boyce et al. (1988), and thus, the given thermodynamic
treatment is valid for the BPA model too. A detailed account concerning the
extended BPA model including the first Kelvin-Voigt element for viscoelasticity
is discussed in (Holopainen, 2013, Sections 4-4.1).

Due to the difficulties of a single potential to define different phenomena of
viscoelasticity, viscoplasticity, and damage well, see Chaboche (1997), a broader
framework based on several independent potentials is proposed. Therefore, the
Helmholtz free energy ϕ, consistent with the proposed concept (stresses are
independent on damage), is taken to be a sum of a viscoelastic, a viscoplastic,
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and a damage part as

ϕ = ϕ̂(be, b̄v, C̄p, D;ϕα) = ϕ̂e(be) + ϕ̂v(b̄v) + ϕ̂p(C̄p)+

ϕ̂d(D) + ϕ̂α(be, cp)
(30)

where the potentials ϕe, ϕv, ϕp, ϕd, and ϕα are contributions owing to the elastic
spring 1, the spring 2, the Langevin spring 4, pure damage, and the device 6,
respectively, shown in Fig. 2. Since the damage development represents the
formation of micro-cracks that typically covers most of (over 90%) of the total
fatigue life, Janssen et al. (2008); Lugo et al. (2014), damaged regions in the
material are considered small and localized, and stresses (and deformations) are
practically independent on damage. Therefore, damage does not enter the first
three functions in (30). However, the damage variable D is considered as a
mesoscopic quantity that affects separately the free energy, i.e. the dissipation
power (29) includes the effect of material degradation during thermodynamic
processes, cf. Chaboche (1997). Moreover, a coupling between the constitutive
and fatigue model exists and is treated by the function ϕα defined subsequently.

Remark 2.2. Expressions for the potential functions in (30) are, as defined
subsequently, functions of their tensor arguments defined solely via the invari-
ants of the arguments. This requirement guarantees that the free energy remains
unchanged under rigid body rotations.

The rate ϕ̇ becomes

ϕ̇ =
∂ϕe

∂be
: ḃe +

∂ϕv

∂b̄v
: ˙̄bv +

∂ϕp

∂C̄p
: ˙̄Cp +

∂ϕd

∂D
Ḋ + ϕ̇α (31)

where
ϕ̇α := α : dp. (32)

was introduced. The tensor-valued quantity α = α̂(be, cp) will be defined as
a backstress that drives fatigue and also influences the development of plastic
deformation, see Fig. 2. Then, the term (32) in (31) constitutes the coupling
between the constitutive and fatigue models. Since degradation of the mate-
rial occurs in plasticized zones, cf. e.g. Li et al. (1995); Janssen et al. (2008);
Lugo et al. (2014); Ding et al. (2017), the plastic rate of deformation dp is taken
to be the rate conjugate of α. Evolution of α and dp will be discussed later on.

Taking advantage of (9) and (16), and noting the symmetry of ∂ϕe/∂be

results in
∂ϕe

∂be
: ḃe = 2

∂ϕe

∂be
be : de. (33)

In accordance with (33),

∂ϕv

∂b̄v
: ˙̄bv =: 2

∂ϕv

∂b̄v
b̄v : d̄v =: 2F e(

∂ϕv

∂b̄v
b̄v)F e,T : dv (34)

and
∂ϕp

∂C̄p
: ˙̄Cp =: 2

∂ϕp

∂C̄p
C̄p : D̄p =: B̄ : D̄p (35)
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in which B̄ represents a backstress due to the plastic work being reserved in the
material. Its counterpart β given in the deformed current placement becomes

β = F veB̄F ve,T, (36)

see Boyce et al. (1988, 1989).
A complementary dissipation potential, φ, is defined by the viscoelastic,

viscoplastic, and the damage components as

φ(τ ve, τ̃ , Y ) := φve(τ ve) + φvp(τ̃ ) + φd(Y )

where τ ve and τ̃ stand for driving stresses in the dashpot 3) and 4), see Fig.
2, and Y is a driving force for material degradation. Exploiting the proposed
dissipation potential, the dissipation power is defined as

D =
∂φve

∂τ ve
: τ ve +

∂φvp

∂τ̃
: τ̃ +

∂φd

∂Y
Y (37)

Substituting (32), (33), (34), and (35) into (29) and taking (37) into account
yield

(

τ − 2
∂ϕe

∂be
be
)

: de +

(

τ − 2F e(
∂ϕv

∂b̄v
b̄v)F e,T

)

: dv − ∂φve

∂τ ve
: τ ve+

(τ − β − α) : dp − ∂φvp(τ̃ )

∂τ̃
: τ̃ − (

∂ϕd

∂D
Ḋ +

∂φd

∂Y
Y ) = 0.

(38)

Since equation (38) must fulfill all possible thermodynamically admissible pro-
cesses, the constitutive equations

τ = 2
∂ϕe

∂be
be (39)

and

Ḋ =
∂φd

∂Y
(40)

with the additional equations,

τ : dv = 2F e(
∂ϕv

∂b̄v
b̄v)F e,T : dv +

∂φve

∂τ ve
: τ ve, (41)

and

(τ − β −α) : dp =: τ̃ : dp =
∂φvp(τ̃ )

∂τ̃
: τ̃ =: −ṡ, (42)

are obtained. When obtaining (40), the relationship

Y := −∂ϕd/∂D (43)

was defined.
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Flow rule

Considering many amorphous solids, against many metals, there does not
exist a threshold yield stress value below which only elastic and viscoelastic de-
formations occur, i.e. the plastic deformation develops once a loading is applied,
see Boyce et al. (1988); Arruda et al. (1993). Based on this characteristic, the
current rate of plastic deformation, dp, is determined to align with the normal-
ized direction of the effective stress τ̃dev given in (42) as

dp := γ̇pn, n :=
τ̃dev

√
2τ

, τ :=

√

1

2
τ̃dev : τ̃dev (44)

wherein the notation dev implies to the deviatoric part being defined by the
identity i as [·]dev := [·]− 1/3trace([·])i for each second order tensor [·]. It then
follows that

2JpJ̇p :=
d

dt
det(C̄p) = trace(C̄p−T ˙̄Cp,T) = trace(D̄p) = trace(dp) = 0,

i.e. the plastic deformation is incompressible and thus, J = Jve := det(F ve).
The flow rule influenced by both damage and the backstress β is generally

known from the Gurson model, which model has later been augmented e.g. by
Anand and Gearing (2004); Zäıri et al. (2011) for amorphous polymers in large
deformations. The difference between these previous models and the proposed
model for fatigue is that damage does not explicitly affect the flow rule, but
through the backstress α involved in the effective stress. As has previously been
discussed, this feature of the proposed approach originates from the presumption
that deformations and stresses during the crack initiation phase are independent
on damage.

Viscoelastic deformation

The applied stress τ is independent of fatigue damage D, in which sense
it can be termed an effective stress in accordance with Lemaitre and Desmorat
(2005); Murakami (2012). The molecular chain structure of polymers and atomic
structure of BMGs are presumed to be completely disordered when the following
isotropic strain energy functions,

ϕe =
1

2
κe(Ie1)

2 + 2µeJe
2 , ϕv =

1

2
κv(Iv1 )

2 + 2µvJv
2 , (45)

where κe, κv, µe, and µv are the bulk and the shear moduli, respectively, are
used. The logarithmic invariants present in (45) are

Ie1 := trace(lnve) = ln Je, Iv1 := trace(lnvv) = ln Jv,

Je
2 := 1/2(lnve)dev : (lnve)dev, Jv

2 := 1/2(lnvv)dev : (lnvv)dev

where Je := det(ve) and Jv := det(vv).
The first component in the dissipation potential (37) is defined as

φve := 1/2τ ve : η−1 : τ ve (46)
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in which a symmetric fourth-order tensor η, for simplicity, is considered a con-
stant. In addition, assuming τ ve := η : dv it follows from (39), (41), (45), and
(46) that the constitutive law is based on the stress equilibrium

τ = L
e : lnve = η : dv +L

v : lnvv, (47)

where L
e and L

v stand for the standard fourth order stiffness tensors, for in-
stance, Le := 2µe(I + (3κe − 2µe)/(6µe)i ⊗ i) where the tensor I denotes the
fourth order, spatial identity. In following treatments, the shear and the bulk
moduli will be given in terms of the Young’s modulus and the Poisson’s ratio.

The viscous damper in (47) is defined by

η = η1(I− 1/3i⊗ i) + η2i⊗ i (48)

in which the viscosities η1 and η2 govern elastic shear and volumetric deforma-
tion, see Reese and Govinjee (1998). The symbol ⊗ denotes the common tensor
product which defines the components of η in orthonormal coordinates as

ηijkl = η1 (δikδjl + δilδjk − 2/3δijδkl) /2 + η2δijδkl. (49)

Using a more simple form, as given in Boyce et al. (1989); Reese and Govinjee
(1998), the latter term in (48) and (49) is considered to vanish, i.e. η2 = 0. It
then follows that solely a few new material parameters, Ev, νv, and η1 := η,
are introduced to the proposed model extension for viscoelasticity.

Damage contribution

In the isotropic damage mechanics framework based on (40), the damage
contribution of the dissipation potential is constrained. During fatigue damage
processes, the part of free energy ϕd needed for a damage increase tends to
decrease, which in agreement with experimental observations that embodies a
remarkable material decay before complete failure, see e.g. Murakami (2012).
Since damage never decreases, it is positive and an assumption that the driving
force Y for damage is, according to (43), also positive, builds up this fatigue
characteristic.

Theorem 2.3. Assuming the force Y is positive, the proposed model satisfies the
Clausius-Duhem inequality, i.e. the power of the local dissipation, D, is greater
than or equal to zero.

Proof. Taking into account the equations (39), (41), (43), (44), and (46) in (38),
the Clausius-Duhem inequality (29) takes the form

D = dv : η : dv +
√
2τ γ̇p + ḊY ≥ 0. (50)

Since γ̇p ≥ 0 and Ḋ ≥ 0 (damage never decreases) in (50), the dissipation power
is always positive or zero provided Y ≥ 0
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2.4. Fatigue model

The applied fatigue model can be considered as an evolution equation-based
fatigue model where the endurance surface is defined to be a function of a stress
history. The proposed model is an annex of an appealing HCF model proposed
by Ottosen et al. (2008), suitable for predicting mechanically dominated fatigue
of metals. Although this approach is aimed for use in the context of metal fa-
tigue, essentially characterized by dislocation micromechanisms, its formulation
is rather general and suitable for amorphous solids that macroscopically show
many similar fatigue characteristics, Lesser (2002); Anand and Gurtin (2003);
Lugo et al. (2014); Holopainen et al. (2017). The most important characteristic
is the macroscopical asymptotical extremes of lifetimes, i.e. the endurance lim-
its can be determined and fatigue under these limits is attenuated, Lugo et al.
(2014).

According to the original model by Ottosen etal (2008), it is the backstress
α of the effective stress that defines the midpoint of the endurance surface and
also germinates the shift of the endurance surface. This idea is followed here.
A thermodynamically consistent effective stress is given by (42). The effective
stress further comprises the backstress β since the plastic deformation, against
many metals, develops once a loading is applied and may be significant affecting
hardening (especially around inhomogeneities). Furthermore, degradation of
the material occurs in plasticized zones, cf. e.g. Li et al. (1995); Janssen et al.
(2008); Lugo et al. (2014); Holopainen et al. (2017). A consequence is that the
proposed fatigue model is suitable for application in the LCF regime, where a
significant macroscopic plastic deformation may take place. The applied fatigue
model is described in detail in (Holopainen et al., 2017, Sec. 2.4) and is therefore
only briefly summarized below.

According to this model, the endurance function is defined as

β = (τ̄ + aI1 − σ0)/σ0 (51)

wherein

τ̄ :=
√

3
2
τ̃dev : τ̃dev :=

√

3J2(τdev − βdev − α). (52)

In the endurance function, the first stress invariant I1 = trace(τ ) reflects the
effect of the hydrostatic stress, I1/3, i.e. the hydrostatic tension promotes the
fatigue accumulation whereas fatigue is attenuated under hydrostatic compres-
sion. The positive parameter a in (51) defines in uniaxial cyclic loading the
(negative) slope of the Haigh-diagram, and σ0 denotes the endurance limit for
zero mean stress at infinite fatigue life. The endurance surface, as demonstrated
in Fig. 3, is spherical in the deviatoric plane, and it is the α+βdev tensor that
determines the midpoint2.

2Considering many metals with an explicit yield surface. If the midpoints of their endurance
surface and the yield surface would be separately defined by α and β, respectively, these could
locate at the sites where they do not cross or are not one inside another as they probably
should in order to provide realistic results.
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As has been previously mentioned, fatigue failure occurs in plasticized zones
and the backstress α that drives fatigue is also presumed to evolve with plastic
deformation. Although the plastic deformation may be low under service load-
ings at room temperature, its influence on microstructural changes and also on
macroscopic material response can be significant due to ratcheting and temper-
ature rise, Anand and Gurtin (2003); Janssen et al. (2008); Lugo et al. (2014);
Holopainen et al. (2017). The plastic deformation under such conditions may
result in strain hardening and anisotropy of the material represented by the
backstress β. Therefore, the evolution of α is described by

α∇ = C(τdev − βdev −α)β̇ − βdev,∇ (53)

where C is a material parameter and

β∇ = β̇ − lβ − βlT (54)

defines an objective rate of β. Hydrostatic stress effects also the evolution of α
through the rate β̇ of the endurance surface (51).

Once a fatigue loading is actuated, the endurance surface is able to track the
current stress due to the movement of α+βdev that is, according to (53), always
in the direction of τdev − βdev − α, see Fig. 3. The evolution equation (53)
also reveals that the α tensor can memorize the load history since its evolution
allows the value β = 0, i.e. the movement of the endurance surface in the stress
space. It is only postulated that fatigue damage D and the backstress α, which
is considered an overall force for D, solely evolve on or outside the endurance
surface (β ≥ 0) and only when β̇ > 0, i.e. when the stress has crossed the surface
and recedes from it, cf. Ottosen et al. (2008). This situation is demonstrated
in Fig. 3.

Proposition 2.4. The fatigue damage only develops under the condition

β ≥ 0, β̇ > 0 ⇒ Ḋ > 0, α∇ 6= 0. (55)

What remains to be shown is that α and its rate α∇ are objective.

Corollary 2.5. Backstress α and its rate α∇ are objective, i.e. they fulfill the
second requirement of the principle of virtual power.

Proof. Based on the moment balance the spatial deviatoric Kirchhoff stress
τdev is symmetric and transforms by τdev → QτdevQT, cf. (26). Moreover,
using the transformations (22) in conjunction with (35) and (36) yields βdev →
QβdevQT. Additionally, assuming that α (symmetric, given in the current
placement) transforms under a change in frame (observer) as α → QαQT, it
follows that

α∇ →C(QτdevQT −QβdevQT −QαQT)β̇∗ − Q̇βdevQT −Qβ̇
dev

QT −QβdevQ̇T+

QlQTQβdevQT + Q̇QTQβdevQT +QβdevQTQlTQT +QβdevQTQQ̇T

=QC(τdev − βdev −α)β̇∗QT −Q(β̇
dev − lβdev − βdevlT)QT = Qα∇QT,
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τ1
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dτ dev,∇′
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A

dτ dev,∇

B

β < 0

β > 0
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τ2 τ3
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A

dτ dev,∇

B

β < 0

β > 0

Figure 3: Movement of an endurance surface in deviatoric plane under a fluctuating stress
(possibly non-proportional) (left). The endurance surface reaches the current stress point and
then starts to move between the states A and B (not necessarily fixed) (right). Peripheries of
the surfaces in an initial and the current state are highlighted by the dashed and solid curves,
respectively. Marking d signifies a small increment, and the symbol ∇ refers to objective stress
rates. Reused with permission from Elsevier license.

i.e. α∇ is objective since β is a scalar-valued function for which β̇∗ = β̇ holds,
see (51). In addition to the objectivity of τ and β, it appears that β∇ is
objective. In turn, the assumption that α∇ is objective reveals that α in (53)
is also objective

Damage evolution

When dealing with fatigue from low to high cycles, a suitable damage rule, in
addition to the plasticity model, constitutes an integral part of the analysis. The
damage growth is computed by using an evolution law based on a scalar valued
damage quantity. Description of damage by a scalar valued quantity is valid
since damage now represents solely the formation of micro-cracks that, most of
all, typically covers a majority of the total fatigue life of amorphous solids (over
90%), Marissen et al. (2001); Janssen et al. (2008); Lugo et al. (2014).

Let then x0, xc, t0, and tc be the initial material placement, final critical
placement, initial time, and critical time instant, respectively. Then, damage
at an initial instant and a local fatigue failure instantaneously prior to a rapid
progress of small cracks to a form of large cracks are given by D = D(x0, t0) :=
D0 ≥ 0 and D(xc, tc) = Dc = 1, respectively.

Based on (40) and Proposition 2.4, an exponential expression,

Ḋ = K exp(f(β;L1, L2, ϑ))β̇ (56)

where K, ϑ, L1, and L2 are positive parameters, will be applied for the damage
evolution, see the Appendix A. Since damage never decreases, (56) implies that
β̇ ≥ 0. The damage evolution (56) obviously satisfies the dissipation inequality
D ≥ 0, see Theorem 2.3.
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Many amorphous polymers exhibit only a minor accumulation of the applied
stress as the cyclic lifetime decreases, see the Wöhler curves in Janssen et al.
(2008). The behavior of BMGs is considerably different; the endurance limit
may be remarkable lower than the fatigue strength under LCF loadings, Launeya et al.
(2009). To capture different behaviors, a function f having two distinct linear
asymptotes for a β-function is defined, i.e.

f(β;L1, L2, ϑ) :=

[

L1 − L2

(

1 +
L2

ϑβ
(exp(−ϑβ/L2)− 1)

)]

β. (57)

The function f has the asymptote L1β as β is near zero in the HCF-regime and
(L1 − L2)β as β is large in the LCF-regime. The curvature ϑ completes the
definition of how rapidly the second asymptote is reached.

2.5. Specific constitutive equations

In this section, the approach is refined to concern the mechanical behavior
of technologically important amorphous polymers under ambient conditions at
room temperature.

Plastic deformation

The plastic deformation is managed by the plastic shear strain rate

γ̇p = γ̇0 exp
(

−Ass
T

(1− (
τ̃dev

Jvess
)

5

6 )
)

(58)

that describes an isotropic barrier to chain segment rotation followed by strain
softening. The effective stress τ̃ is defined by (42) and γ̇0, A, and T are positive
parameters, see Boyce et al. (1989); Holopainen (2013). The athermal shear
strength is given by ss = s1 + αp in which p = −trace(σ)/3 is the pressure (in
terms of the Cauchy stress σ = τ/J) and α is a pressure dependence factor.

Function of the viscoplastic dashpot for strain softening is modeled by

ṡ1 = h1γ̇
p(1− s1/sss), s1(0) = s0 > sss, (59)

where the positive parameters h1 and sss define the softening slope and the
saturation value of s1, i.e. s1 > sss as ṡ1 < 0. Despite the fact that −ṡ1 6= −ṡ =√
2τ γ̇p ≥ 0 in (42), the rate ṡ1 also satisfies the dissipation inequality (50).
The plastic part of the free energy is based on non-Gaussian chain statistics

and is governed by the following function:

ϕp(λp
ec) = CR

( λp
ec√
N

χ+ ln
( χ

sinh(χ)

))

≥ 0, ϕp(1) = 0 (60)

where CR ([CR]=MPa) and N are material parameters and χ := L
−1(λp

ec/
√
N)

is the inverse of the Langevin function L, Boyce et al. (1988). Using a non-affine
plastic network stretch,

λp
ec :=

1√
3

√

trace(C̄p), (61)
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the backstress β introduced in (35) takes the following form

B̄ =
CR

3λp
ec

√
NχC̄p. (62)

When evaluating χ in (62), the Padé approximation is used, Wallin and Holopainen
(2012); Holopainen (2013).

2.6. Numerical analysis of the approach

Uniqueness of the intermediate placements

To recall from (5) and (8), as a consequence of the multiplicative decomposi-
tions (1) and (6), the arbitrariness of the intermediate placements can be given
as

F = F veR̄TR̄F p =: F̂ veF̂ p, F̂ ve = F eR̄e,T(R̄eF vR̄T) =: F̂ eF̂ v. (63)

It appears that the rotations R̄ and R̄e, which determine the orientations of
the intermediate placements N̄ and N̄ e, are not unique and additional kine-
matic assumptions are needed. Although the plastic spin in certain finite strain
elasto-plasticity models has been chosen to vanish, see e.g. Miehe et al. (1993);
Anand and Gurtin (2003), the BPA model involving nonzero plastic spin is
strictly followed here. The assumption of a nonzero plastic spin is motivated
by the observations showing the elastic portion of deformation is small espe-
cially when compared to the plastic deformation, see Agah-Tehrani et al. (1987);
Boyce et al. (1988, 1989); Arruda et al. (1993); Dreistadt et al. (2009). The rea-
son is that the plastic deformation, against many metals, develops rapidly once
the loading is applied. Therefore, the elastic counterpart F̂ e in (63) is considered
symmetric3, which restriction constraints the rotation R̄e:

F̂ ve = F veR̄T = vveRveR̄T = sym(F̂ e)F̄ v = sym(veReR̄e,T)(R̄eF vR̄T).
(64)

Moreover, the presumption that F̂ ve in the decomposition (63) is symmetric
at the end of the integration interval is applied. Then, through an appropriate
choice of rotations, F̂ e = ve, F̂ ve = vve, and the decomposition (64) reduces to

vve = veF̂ v = ve(ReF vRve,T). (65)

Noting the symmetry of vve, a possible choice is that F̂ v is symmetric, i.e. ve and
F̂ v are coaxial. The restriction that the elastic deformation gradient is symmet-
ric and specifies uniqueness of the stress-free intermediate placement of elastic-
viscoplastic responses is known from Boyce et al. (1988); Weber and Anand
(1990); Arruda et al. (1993). In contrast, the identification of the intermedi-

ate placements by assuming ve and F̂ v to be coaxial (rotation Rve is restricted)

3In more detail, F̂ e is a mapping between two configurations when only the presentation
of the component matrix is symmetric: [F̂ e]i

.J
= [F̂ e]J

.i
.
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in (65) can be questioned. However, there exists experimental evidence that
it is the viscoplastic deformation that encompasses a majority of the deforma-
tion (including rotations), also when long-term creep and recovery take place,
Arruda et al. (1993); Melick (2003); Dreistadt et al. (2009). Due to this reason,
the identification of the intermediate placements by the proposed constraints is
accepted here. Furthermore, the viscoelastic stretching is not limited.

Constitutive model

An outgrowth of the imposed symmetry of F̂ ve is that the plastic spin be-
comes

Ŵ p = skew(
˙̂
F pF̂ p−1) = ṘveRve,T +RveW̄ pRve,T,

i.e. it is nonzero. To define the alignment of the stress-free intermediate place-
ment, the plastic spin is calculated by introducing an algorithmically consistent
plastic spin W̃ p, which becomes skew-symmetric finally at the integration in-
terval. A similar scheme is applied in Holopainen (2013); Engqvist et al. (2016).
Assuming that the current deformation gradient F can be extracted during in-
cremental calculations, which is the situation in standard finite element codes,
the state variables that need to be solved are F ve, W̃ p, F v, and s1 while F

p and
F e are solved from the decompositions (1) and (6), respectively. To compress

the notation, the accent (̂·), used for the deformation measures to define the
intermediate placements, has been omitted. The variable s1 is defined by (66).

Since the model is rate-dependent and long-term periods are investigated, the
algorithmic update is conducted by using an implicit (backward Euler) scheme.
This method has been reported to be effective for rate-dependent solids, espe-
cially under long-term periods, Miehe et al. (1993); Stein and Sagar (2008). To
integrate the plastic flow, the exponential update of F p by Weber and Anand
(1990); Miehe et al. (1993) is applied, i.e. the formula

F ve = FF p−1
n exp(−∆tL̃p), (66)

in which L̃p = D̄p + W̃ p, is used. To flatten the notation, the index n + 1
for the updated state is neglected, and the quantities at the known state tn are
symbolized by n.

To evaluate W̃ p and F v, their symmetry-properties as well as the stress
equilibrium (47) are benefited, i.e. the system of nonlinear equations to be solved
becomes

R1 : = F ve − FF p−1
n exp

(

−∆tL̃p
)

,

R2 : = skew(F ve),

R3 : = sym(W̃ p),

R4 : = skew(F v),

R5 : = lnvv − lnvv
n −∆td(ln vv)/dt,

R6 : = (s1 − s1,n −∆tṡ1)/sss.

(67)

The viscoelastic stretch vv that appears in (67) is defined by (9). Moreover, the
material time derivative of the tensor logarithm lnvv is not directly available,
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but is determined by exploiting the corresponding rate of deformation dv defined
by (47), see Hoger (1986) for a detailed account. In this relation, owing to the
symmetry of F v, all the rotation terms vanish. The residuals R2 and R4 consist
of only upper (lower) non-diagonal three components and the residuals R3 and
R5 consist of six equations.

Solution of (67) is performed by using Newton-Raphson procedure. When
solving the system (67), the state variables are given in the vectorized form, i.e.

Y := [F ve W̃ p F v s1], (68)

and the solution becomes Yn+1 = Yn +∆Y with the increment

∆Y = −J−1R, and the Jacobian J :=
∂R

∂Y
. (69)

The vectorized form R := [R1 R2 R3 R4 R5 R6] consists of the residuals in-
troduced in (67).

Fatigue model

The differentiation of β-function (51), required to integrate the evolution
equations (53) and (56) for fatigue, also needs to be defined. Assuming that an
increment of the strain tensor dǫ is available. Then, based on the relation (13),

dǫ =
1

2
(dl+ dlT) (70)

which relation defines the increment dF := dtḞ as

dl := dFF−1. (71)

Using (11), one obtains

dl := dlve + F vedL̄pF ve−1 (72)

where
dlve := dF veF ve−1 and dL̄p := dt(D̄p + W̃ p) (73)

express the incremental counterparts for the viscoelastic and plastic velocity
gradients. Due to the symmetry of dF ve at the end of the integration interval,

dF ve =
1

2

[

(dǫ− F vedL̄pF ve−1)F ve + F ve,T(dǫ− F ve−TdL̄p,TF ve,T)
]

.

(74)
Substitution of (74) into (73) gives a result which in (72) leads to the formula
for dlve and dl, respectively.

The differentiation of β, defined by (51), results in

dβ =

[

3
2

(τdev − βdev −α)

τ̄
: dτdev,∇ + a trace(dτ∇)

]

/(σ0 + Cτ̄ ) (75)

22



where dβ := dtβ̇ and dτ∇ := dtτ∇ is an objective stress increment determined
later on.

According to (53), in which dα∇ = dtα∇,

dβ∇ := dtβ∇ = Fd

(

F−1βF−T

)

FT = dβ − dlβ − βdlT (76)

and
dβ := F vedB̄∇F ve,T + dlveβ + βdlve,T. (77)

Differentiation of (61) results in

∂λp
ec

∂C̄p
= Ī/(6λp

ec), (78)

and this result in (62) gives

dB̄∇ =
CR

√
N

3λp
ec

[

(
χecξec

3
√
Nλp

ec

− 1

3(λp
ec)2

)trace(dL̄pC̄p)C̄p+2sym(dL̄pC̄p)

]

L
−1(

λp
ec√
N

)

(79)
wherein χec := 1/L−1(λp

ec/
√
N). The inverse Langevin function L−1 is calcu-

lated using the Padé-approximation, see Steinmann and Stein (1996).
Lastly, the stress increment needed in (75) becomes

dτ∇ = Fd(F−1τF−T)FT = dτ − lτ − τ lT = c : dǫ (80)

where

c :=
dτ

dF
: (i⊙ F )− i⊙ τ − τ ⊙ i (81)

is the algorithmic tangent stiffness (ATS) tensor defined using a non-standard
tensor product4

(A⊙B)ijkl = 1/2(AilBjk +AikBjl).

In view of (47),
dτ

dF
= L

e :
∂(lnve)

∂ve
:
dve

dF
(82)

wherein the differentiation of the tensor logarithm is considered followingMiehe et al.
(1993).

Based on the fact that the residualsR in (67) vanish finally at the integration
interval for all F , i.e. R(Y (F ),F ) = 0, one obtains

dY

dF
= −

(

∂R

∂Y

)−1
∂R

∂F
=: −J−1 ∂R

∂F
. (83)

4The component representation of this tensor product is general and does not include all
possible (sub)symmetries needed in its numerical development. Treatment of possible sym-
metries of high order tensors including different tensor products is discussed in (Holopainen,
2014, Sec. 6).
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Using (83), one can also extract dve/dF that is consistent with the applied
integration method and thus, all components for the calculation of the ATS-
tensor (81) are available.

In different finite-element softwares, the objective stress rate and increment
needed in the equilibrium iterations can differ from (80). One generally used
measure is the Jaumann rate, σ∇J, Stein and Sagar (2008). Based on (80), its
incremental representation is defined by

dσ∇J := dtσ∇J = Jve−1dτ∇ + dǫσ + σdǫ− trace(dǫ)σ = c
σJ : dǫ (84)

where
c
σJ = Jve−1

c+ i⊙ σ + σ ⊙ i− σ ⊗ i.

An implicit Euler scheme is also used for updating unknown fatigue variables.
Integration of the internal rate variables (53) and (56) results in the nonlinear
residual functions for fatigue, i.e.

Rf,1 : = α−αn − dtα∇,

Rf,2 : = D −Dn − dtḊ
(85)

where n refers to the quantities from the last state of equilibrium.
The proposed algorithm for a solution of the systems (67) and (85) is based

on the assumption that those two systems are considered uncoupled, i.e. they
are solved in succession, and the fatigue damage does not influence the global
tangent stiffness given by (81). This assumption, as discussed in Introduction,
is based on the experimental observations that fatigue damage represents solely
the formation of micro-cracks that has not a marked influence on macroscopic
stresses and deformations. Moreover, the formation of micro-cracks and initial
crazing typically cover most of (over 90%) the total fatigue life of amorphous
polymers, Janssen et al. (2008).

3. Model evaluation

3.1. Calibration of the model

The model parameters were determined from cold drawing experiments on
injection-molded dogbone-shaped PC-specimens (Lexanr 223R). The test method
and specimen geometry are defined by ASTM D638-IV, Foster (2015). The spec-
imen is also termed a uniaxial tensile bar since the stress state in the specimen’s
web is virtually uniaxial. During loadings, the elongation u against the applied
force f was monitored. Due to the inhomogeneous deformations of the speci-
men, the tests were simulated and therefore, the model was implemented in a
finite-element program with the mesh consisting of linear solid elements.

The elastic Young’s modulus E was first determined from the initial lin-
ear region of the f − u curve. Value of the Poisson’s ratio was taken from
Dreistadt et al. (2009). The plasticity model parameters were found from the
least squares fitting to monotonic tension experiments with the presence of
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Figure 4: Fatigue amplitudes of a PC polymer subjected to accelerated tests with the mean
stress of σm = σa + 2.2 MPa (left). The thick line implies the model response, and the
symbol N denotes the data points extracted from Janssen et al. (2008). The two dashed lines
demonstrate the static tensile yield strength σy (upper) and an approximated endurance limit
(lower). The endurance limit at different mean stresses, i.e. the Haigh-diagram (solid line)
according to the model (right). The material parameter a assigns the slope, and the dashed
curve means the supposed experimental response. The tangent line at the ultimate stress
point σmax = σy at σm = 35 MPa is also shown.

strain softening and subsequent hardening in large strains. The remaining pa-
rameters for viscoelasticity (Ev, η) were extracted from the tension tests for
creep and recovery. The tests encompassed serial unloadings to not equal stress
levels followed by different dwell periods at a constant stress levels. Details of
the experiment can be found in the study by Holopainen (2013). The model
parameters are given in Table 1.

Once finding of the constitutive model parameters, the fatigue model pa-
rameters were extracted from in situ measurements taken from Janssen et al.
(2008) (Lexanr 101R and 161R). Isothermal test conditions at room tempera-
ture included a uniaxial stress submitted to load control and measured at the
crosshead of the applied uniaxial test specimens. Since the formation of micro-
cracks governs the majority (up to more than 95%) of the entire fatigue life,
Marissen et al. (2001); Janssen et al. (2008), fatigue damage solely under this
period is investigated.

An accelerated life experiment based on a high mean stress has been followed,
Maxwell et al. (2005); Janssen et al. (2008); Kim and Lu (2008). In accordance
with the experiments conducted by Janssen et al. (2008), the applied waveform
is sinusoidal, and the maximum stress is enabled to alter, whereas the mini-
mum stress is kept at a constant of 2.2 MPa. Isothermal testing conditions are
guaranteed by using a low frequency of 2 Hz. The procedure for the calibra-
tion of the fatigue parameters is discussed in more detail in (Holopainen et al.,
2017, Section 3.2). The calibrated model parameters and responses are shown
in Table 2 and Fig. 4, respectively.
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3.2. Validation - uniaxial stress

Considering first the static creep loadings (σ = σm), cf. Fig. 5(left). Aging
kinetics has no importance in lifetimes in this stress regime at room temperature,
where the experimental results suggest virtually a linear response. The model
pursues to overestimate life spans, which feature is owing to an increase in
the endurance surface at mean stresses far grater than the ones used in the
calibration. Obviously, the model result could be improved by exploiting a
larger set of data in calibration, cf. Engqvist et al. (2016).

Anand and Ames (2006) conducted cyclic compression tests on polymethyl
methacrylate (PMMA) wherein the specimen was first pre-strained up until the
logarithmic strain level of 20% was reached and then cyclically strained between
this and zero strain. The proposed model was also calibrated to this test, and
Fig. 5 shows that the model without the viscoelastic constitutive treatment
cannot predict well the experimental response. Due to the proposed viscoelastic
model, the backstress smoothly varies during the loading loops, when the model
is able to predict a nonlinear response during both loading and unloading and,
in contrast to a purely elastic deformation, a suitable loss of mechanical energy,
equal to the area of experimentally observed hysteresis loops. After few cycles,
the model response stabilizes and shows a saturated state of hardening similar to
the experimental response, Anand and Ames (2006); Holopainen et al. (2017).

Fig. 6 also shows that an exaggerated creep is predicted by the model
without viscoelasticity. However, neither the original nor the extended model
can reproduce the stress peaks during reloading but tend directly towards the
monotonic loading path, cf. Dreistadt et al. (2009). This behavior refers to an
unexpected isotropic hardening, i.e. the model should be enhanced for this part.

Owing to the linear relationship between the effective stress and the hydro-
static stress in the expression of the endurance surface (51), the model cannot
predict fatigue under a notable negative mean stress using a single value of the
slope parameter a, see Fig. 4. Probably the simplest modification is to use dif-

Table 1: Constitutive model parameters for a PC polymer fitted to cold drawing ex-
periments. The rest of the parameters for the viscoelastic model are Ee := E = 2300
MPa, Ev = 1050 MPa, η = 0.5 · 105 MPas, and νe = νv := ν = 0.37.

Parameter s0 sss h1 γ̇0 CR N A α

Unit ......... MPa MPa MPa 1/s MPa K/MPa
Value ......... 97 77 715 5.6 · 1015 14 2.2 240 0.08

Table 2: Parameters of the fatigue model for a PC polymer.

Parameter σ0 a C K · 106 L1 L2 ϑ

Unit ......... MPa
Value ......... 33.8 0.46 0.05 8.6 7.7 3.8 2.65
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Figure 5: The lifetime underneath static creep loading, σa = 0 (left). The thin line and
the markers △ are the model response and data points taken from Janssen et al. (2008).
Lifetimes under a uniaxial compression when σmax = 2.2 MPa is also shown. The model
response and data points taken from Janssen et al. (2008) are signified by the thick solid
curve and black symbols. Comparison of the proposed (extended Boyce-Park-Argon model,
EBPA-model) and the original (BPA) model curves against the experimental data for PMMA
(right). Experimental data is taken from Anand and Ames (2006) and the model responses
are calculated using the calibrated parameters given in Holopainen (2013).

ferent values for high compression, high tension, and their intermediate region,
Fig. 4. Here, a negative value a = −0.17 is used for the high compression ap-
plied. In spite of calibration being applied solely for high tension, this proposed
elementary upgrade results in a model response that complies rather well the
available data points under a high compression, cf. Fig. 5(left). Both the model
and experimental results indicate that the fatigue strengths under tension are
significantly lower than that under compression.

The given approach also produces time-to-failure predictions with reasonable
accuracy under different stress ratios R (the ratio between the smallest and
largest stresses). The model predicts the data for the low stress ratio R = 0.1
rather well, but underestimates a little the fatigue lives at higher stress ratios,
see Fig. 7. The difference stems from the calibration being applied solely to
low stress ratio loadings as well as to a slightly different PC applied in the
experiments. It appears that both the model and experimental response point
out an asymptotic demeanor at the extremes of the lifetime and virtually equal
endurance limits, cf. (Kanters et al., 2016, Fig. 8a). Fig. 7 also demonstrates
the idea of the approach. It emerges from data that the service life is practically
governed by a ductile fatigue damage development prior to a rapid damage
growth caused by crack propagation that ultimately leads to the component’s
brittle failure.

Fig. 7 further shows a fatigue life plot and an endurance limit under fully
reversed strain-controlled loadings (no ratcheting). In this strain regime, hys-
teresis loops possess a minimal hysteresis loop area, see (Hughes et al., 2017,
Fig. 6). Data for the applied PC-polymer indicates a low endurance limit. In
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Figure 6: Uniaxial compression responses for Bisphenol A (BPA) polymer according
to the BPA and the EBPA model. The repeated unloadings are performed to 59 MPa
(in terms of the first Piola-Kirchhoff stress) and then kept at this level for 12,000
seconds. Experimental data is taken from Dreistadt et al. (2009). Responses for PBA
are calculated using the calibrated parameters given in Holopainen (2013).

Nf

ǫ a

Figure 7: Time to failure of PC (Lexanr 143R) for R-values of 0.1, 0.4, and 0.7 (left).
Black dotted curve, and black dashed and solid curves (overlapping) represent the
model results, respectively, while the green, red, and black curves with markers are
the corresponding data points extracted from Kanters et al. (2016). The waveform
is sinusoidal with a frequency 1 Hz. Predicted and experimental (markers �, taken
from Hughes et al. (2017)) strain amplitude vs fatigue life plots under fully reversed
uniaxial strain-controlled loadings with the frequency of 10 Hz (right).

calculations, the strength limit σ0 = 27 MPa and the reduced slope a = 0.2
have been applied, see Fig. 4. Before the endurance limit and a plateau at
lower strain amplitudes, a quasi-linear section can be observed both in data and
the model response. The difference between the data and model response is
first due to the calibration being applied solely to tension loadings and secondly
due to a slightly different PC applied in the experiments causing a temperature
increase under the applied load frequency.

The endurance surface (51) predicted under a cyclic tension is illustrated in
Fig. 8. The endurance surface rapidly tracks the periodic stress state since the
combined backstressα+βdev invariably moves in the direction of τdev−βdev−α
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Figure 8: The stress (solid line) and the development of the endurance surface (non-
solid lines) during the first few cycles (left). Development of damage during the first
cycles is highlighted by the double curve. The corresponding responses when a periodic
state of the endurance surface has been reached (right).
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Figure 9: Strain development under the cyclic tension loading shown in Fig. 8 (left).
Development of damage variable according to (56) (right).

according to the equation (53) and the plots in Fig. 3. Also, according to
Proposition 2.4, damage only grows as the upper endurance limit in Fig. 8 shows
an increase and the stress is greater than this limit, i.e. the stress state recedes
from the endurance surface. Compared to elastic metals, see Ottosen et al.
(2008), reaching of the periodic state requires more cycles, which characteristic
is due to ratcheting phenomenon under the applied stress-controlled loading,
Lu et al. (2016); Holopainen et al. (2017)

Figure 9 further indicates a periodic development of the logarithmic strain
that shows ratcheting or cyclic creep, i.e. strain constantly increases as the fluc-
tuating loading advances, cf. Lemaitre and Desmorat (2005); Lu et al. (2016);
Holopainen et al. (2017). A strong initial growth of damage at this phase is ow-
ing to the high mean stress applied, cf. Fig. 9(right). During continued loading,
an increase in the viscoelastic and plastic strains, especially the latter, leads to
a significant elongation of the tensile test specimen that can induce a plastic
instability termed necking, which is ultimately followed by a brittle rupture, as
depicted in Janssen et al. (2008). Section 3.3 returns to this topic.
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Figure 10: Clip of the mean stress and the maximum shear stress history of a 3D-random
loading. Based on the parameters given in Table 2 fatigue damage development up to
failure.

3.3. Multiaxial stresses

Complex loading

It is interesting to investigate three dimensional complex cyclic loads in order
to take advantage of the incremental formulation of the proposed approach. The
time history for all six stress components is randomly generated assuming the
stresses vary between the limits -34 MPa and 58 MPa, i.e. the stresses remain
below the yield peak stress (over 60 MPa), which can also be concluded from
the clip of the maximum shear stress history shown in Fig. 10. In accordance
with the calibration for fatigue, the approach was implemented in a Fortran
program using the Euler backward integration scheme. Computations were
performed using an Intel Haswell processor running at 2.6 GHz. The advantage
of adaptive concepts cannot be benefited under fatigue loadings, and a constant
time step of 0.1 s was applied to capture the damage evolution under the given
complex load spectrum sufficiently accurately.

Due to the small time step employed, typically only two Newtons corrector
iterations per time step were needed to converge within the absolute tolerance
of 10E-8 for the Euclidean norm of the residual vector5. The computation up
to the final failure (D = 1) took about 20 s of CPU time. A significant interest
is that the proposed evolution equation-based fatigue model readily results in
the damage development under multiaxial complex loading without the need of
cycle counting techniques frequently applied in fatigue analyses, see Fig. 10.
Computations confirm the expected fatigue damage development and verify the
model’s capability under multiaxial loading conditions.

5Considering monotonic loading for strain softening and subsequent hardening in large
strains, 2 - 4 Newton’s iterations were needed to satisfy the tolerance.
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Fatigue of a test specimen

Fatigue in the entire test specimen is investigated using a finite-element
method. The same finite-element mesh and test specimen geometry as used
in the model calibration are applied, see Section 3.1. The displacement at the
specimen’s top, y = 0, is secured by a bracket while the signal for uniformly dis-
tributed sinusoidal load at y = L (L is the length of the specimen) is allowed to
vary between 28.0 MPa and 1.1 MPa at the frequency of 2 Hz. The undeformed
area of the specimen within the clamps is twofold of that of the web. Thus,
in accordance with the applied effective stresses (not reduced by damage), the
stress state in the specimen’s web is virtually twofold.

The finite element computations were performed based on the Jaumann
rate given by (84). A constant time step value 0.015 s was applied to capture
the sinusoidal fatigue loading sufficiently accurately. The number of global
iterations have been extracted from a finite element package based on a direct
linear equation solver and its default values of tolerances, Abaqus (2012). For
instance, the tolerance for residual force has been 5E-3. Owing to the small
time step employed, typically only two local Newtons corrector iterations per
a global iteration were needed in the integration points to converge within the
absolute tolerance of 1E-8 for the Euclidean norm of the local residual vector,
see Table 3.

Since a real material suffers from imperfections or inhomogeneities, experi-
ments show final failure outside the specimen’s middle, which is expected to be
the most stressed location due to the reduction in the cross section (necking),
cf. Janssen et al. (2008). To simulate this characteristic, a weakened narrow
section was included and it was modeled by increasing the Young’s modulus (10
%) and reducing the fatigue parameters K and L1 (4 %) in other parts of the
specimen. This section widens with elongation of the specimen as shown in Fig.
11.

Since damage does not affect stresses, the stress field in the section and
anywhere else in the web is homogeneous. Thus, a single point shown in Fig.
11(right) is representative for the entire specimen and its stress field is usable for
the evaluation of fatigue life. Moreover, it appeared that the axial (longitudinal)
stress component in the specimen’s web was orders of magnitude larger com-

Table 3: Global iterations per step and local Newton iterations per a single global
iteration. Direct sparse method (by Abaqus software) has been used as a solver for the
global system of equations, Abaqus (2012). The local iterations have been calculated in
a single integration point (using the user material subroutine), closest to the specimen’s
middle.

Step No. 1− 4 5− 11 12 1173 − 1176 1177 − 1182 3311 − 3316 3317 − 3334

Global ....... 3 2 2 2 3 3 2
Local ......... 1 - 2 1 - 2 2 1− 2 1 - 2 1 - 2 1 - 2
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Figure 11: Damage distribution in a tension member instantly after 100 cycles (left). Max-
imum damage evolution in the specimen’s web and elongation u in the specimen’s middle
(right). The overall lateral strain components in the web are about 2νu/L where L is the
length of the specimen. Distribution of assumed impurities (black color) in the matrix material
is shown in the grey inset.

pared to others, i.e., as was presumed, uniaxial stress state is accurate enough
for calibration. Due to this reason, prediction of fatigue life based on the three-
dimensional stress state (in a single point) shown in Fig. 11 corresponds well
to that demonstrated in Fig. 4 under uniaxial loadings.

Although not shown, damaged fields closely resemble the fields of increasing
localized plastic deformation and imply that the plastic deformation is a precur-
sor for providing crazing initiation sites that then control propagation of fatigue,
cf. Li et al. (1995); Murakami (2012); Lugo et al. (2014). During continued
cyclic loading, microscopic cracks extend to wide cracks, which cause com-
ponent’s ultimate failure, Lemaitre and Desmorat (2005); Ding et al. (2017);
Lawrimore et al. (2016). Depending on the intensity of loading, the specimen
exhibits an instantaneous rupture after necking (low-cycle fatigue) or a brittle
fracture after at least several of thousands of cycles, (Janssen et al., 2008, Fig.
4). The fatigue life and attenuated elongation of the specimen without a clear
necking implicate the latter case, see Fig. 11. The predicted elongation refers to
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Figure 12: Micrographs of assumed inhomogeneities, cf. Lugo et al. (2014) for ABS
polymer (reused with permission from John Wiley and Sons license) (left). The
presence of inhomogeneities is demonstrated by the black color. Predicted damage
distribution instantaneously after 100 cycles (right). The maximum value of 0.18 is
highlighted by the black color. Inhomogeneities were considered linear elastic (Young’s
modulus was 75 % of the PC-matrix).

one kind of ratcheting, i.e. the elongation u (up to 10 %) shows a stabilized in-
crease concurrently with the progress of the recurring load, cf. Lu et al. (2016);
Holopainen et al. (2017).

Fatigue in RVE

Fatigue damage in amorphous polymers is closely interconnected to the mi-
crostructure and is typically owing to the nucleation of micro-defects or inho-
mogeneities within a disordered microstructure, thus producing sites for stress
intensification, Marissen et al. (2001); Lesser (2002). A distribution of such in-
homogeneities is shown in Figs 11 and 12. Once a repeated loading is applied,
the said defects can grow and deform and affect fatigue at stress levels far be-
low the nominal yield stress, Marissen et al. (2001); Lesser (2002); Lugo et al.
(2014); Kanters et al. (2016).

A microscopic rectangular region representing a representative volume ele-
ment (RVE) in the most damaged zone of the specimen’s web was investigated,
see Fig. 11 and 12. The finite-element simulations were conducted based on
plane strain assumption (thick element), and the mesh consisted of linear el-
ements. Due to the micro-scale, cyclic loadings of the test specimen in this
minute region were considered far-field loadings while the boundaries of the re-
gion were considered straight, cf. Steenbrink and Van der Giessen (1998), i.e.
displacement-control was applied. The sinusoidal waveforms applied along the
top region and the right lateral side were taken from the analysis of the entire
specimen, see Fig. 11. Interest was focused on the PC -matrix, i.e. fatigue of
inhomogeneities was not taken into consideration in the subsequent study.

The result of the finite-element simulation in Fig. 12 demonstrates that
damage starts with the formation of small zones around the inhomogeneities
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Figure 13: Maximum damage development in a single point of RVE (black solid line)
using the stabilized stress components of the last cycle shown right (left). The black
dashed curve represents the maximum damage development in RVE based on finite-
element simulation, and the red dashed line with a constant slope is used to estimate
the fatigue life, about 1000 cycles. The local stresses, σ11 (green dash-and-dot line),
σ12 (black solid line), σ22 (blue solid line, longitudinal), and σ33 (dashed red line)
(right).

and develops rapidly therein while the rest of the material appears not as much
damaged and is virtually homogeneous. This result favors the assumption that
the damage is highly localized and thus does not have a marked effect on the
macroscopic structural response.

Since the stress field is not affected by fatigue damage, it is possible to eval-
uate the fatigue life by exploiting the initial, three-dimensional stress spectrum
observed in a single, most damaged point at an inclusion’s top, see Fig. 12.
The most representative cycle is the one observed at the end of the simulation
when the stress state had stabilized, see Fig. 13. The applied stress field results
in a build-up of notable pressure, and this triaxiality promotes local damage
development and significantly reduces the fatigue lifetime with respect to that
observed in the test, see Figs. 13 and 11, respectively. However, since this
damage development represents a single material point, it has no impact on the
fatigue life of the entire test specimen.

4. Concluding remarks

The article introduces an approach suitable for predicting isothermal fatigue
intrinsic to amorphous solids and discusses experimental observations through
theory. To ensure practical importance, the proposed approach, based on evo-
lution equations, requires a single set of material parameters and is suited for
numerical implementations. The fatigue damage evolution is formulated by
exploiting an endurance surface that moves in an effective, damage-free stress
space, thus avoiding a complex relationship between the deformation and dam-
age as well as challenges in numerical implementation. The idea is suitable for
amorphous solids in which the fatigue behavior is ductile, i.e. damage during
the formation of micro-cracks, which inevitably governs the bulk of the entire fa-
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tigue life (over 90%), is highly localized and thus does not affect the macroscopic
stress.

Thermodynamic and numerical treatments of the approach have been dis-
cussed in detail. While damage does not explicitly affect a governing constitutive
model, coupling between the fatigue and constitutive model has been treated
by introducing a backstress that is an internal variable of the Helmholtz free
energy and influences directly both the fatigue damage and the plastic flow.

The capability of the approach under uni- and multi-axial loadings was
demonstrated in light of experimental observations for a technologically impor-
tant PC polymer. Since damage does not affect macroscopic stress reduction,
the proposed approach makes it possible to predict the fatigue life of an entire
structural element by solely using the single points wherein the damage intensely
evolves under the recurrent load spectrum. To demonstrate this, the approach
was implemented in a finite-element setting, and the first part of the fatigue
experiment of a uniaxial tensile bar was simulated. A microscopic, rectangu-
lar region incorporating a packing of inhomogeneities was then exploited as a
RVE of the most damaged location. Simulations, in accordance with the model
assumption, indicated that damage develops in limited zones around involved
inhomogeneities while majority of the material shows considerably less damage
and remains virtually homogeneous. The results also showed that fatigue dam-
age development in the polymer matrix occurs at the sites closely following the
localization of the plastic deformation and is also influenced by a build-up of
hydrostatic stress.

The proposed approach could be developed further. For instance, solely
uniaxial, accelerated fatigue experiments are not sufficient to account for direc-
tional fatigue damage inherent to amorphous solids when macroscopic cracking
initiates (D = 1) and results in directional damage fields finally in large strains.
Also, the proposed endurance surface needs to be refined so as to govern better
the fatigue development under compression. Considering low-cycle fatigue, the
impact of temperature rice on energy dissipation increases and should also be
included in the modeling. Moreover, several factors, quite ambiguous at the
moment, control fatigue via the morphological and microstructural changes and
need to be investigated further. Examples of such important supplements are
particle size, particle number density, matrix-particle adhesion strength, and
disentanglement of a polymer chain network around particles.
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As an example, considering a potential function,

φd =
B1B2

b + 1

(

Y

B2

)b+1

(A.1)

where Y is given by (43) and B1 (s
−1), B2 (MPa), and b are positive parameters,

see Ayoub et al. (2011). For the sake of simplicity, B1 = 1 s−1 can be chosen.
Substitution of (A.1) into (40) yields

Ḋ = B1

(

Y

B2

)b

(A.2)

and using (43) in (A.2) gives

Y := −∂ϕd

∂D
= B2

(

Ḋ

B1

)
1

b

≥ 0 (A.3)

which result is thermodynamically consistent for all positive Y and for all de-
creasing functions ϕd (damage never decreases), see Theorem 2.3.

What follows is that one is free to select the expression (56), i.e.

Ḋ = K exp(f(β;L1, L2, ϑ))β̇ ≥ 0

for damage evolution in the dissipation inequality (50).
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