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Abstract. This paper describes the automated generation of test se-
quences derived from a JML specification and a safety property written
in an ad hoc language, named JTPL. The functional JML model is ani-
mated to build the test sequences w.r.t. the safety properties, which rep-
resent the test targets. From these properties, we derive strategies that
are used to guide the symbolic animation. Moreover, additional JML
annotations reinforce the oracle in order to guarantee that the safety
properties are not violated during the execution of the test suite. Fi-
nally, we illustrate this approach on an industrial JavaCard case study.
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1 Motivations

Annotation languages provide an interesting approach for the verification and
validation of programs, allowing to describe, using annotations, the expected
behavior of a class. Their advantage is to share a common level of abstraction
with the considered programming language, which is useful in program verifica-
tion/validation activities such as testing [11]. In this latter category, the Java
Modeling Language [12] (JML) makes it possible to use lightweight annotations
as well as heavyweight annotations to specify the behaviors of the methods. JML
is well tool-supported and has shown is usefulness in industrial case studies, es-
pecially in the domain of JavaCard verification [6].

We propose an automated model-based testing approach for the validation
of safety properties on a JavaCard application. A previous work [3], introducing
JML-TESTING-TooLs! (JML-TT), has presented our ability to generate func-
tional test sequences from a JML model, by performing the symbolic animation
of the JML specification in order to reach a pertinent test target. We present in
this paper the extension of this technology destined to the generation of test se-
quences that cover a user-defined safety property. This latter is expressed using
the Java Temporal Pattern Language (JTPL) [19]. The JAG tool? [9] has been

! http:/ /lifc.univ-fcomte.fr/~jmltt/
% http://lifc.univ-fcomte.fr/~groslambert/JAG/
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Fig. 1. General Approach

designed to use the JTPL in order to express and to check safety properties on
a model or on an implementation, by generating extra JML annotations ensur-
ing the satisfaction of the JTPL property. Our proposal is to combine JAG and
JML-TT in order to generate test cases that are complementary of the functional
ones and relevant w.r.t. the safety property.

For example, suppose that after the invocation of a method m, a property
P must be established in all the states of the program. This property can be
written with a JTPL pattern as follows:

after m called always P (1)

Then, only executions where the method m is invoked are relevant for this prop-
erty. Therefore, we would like to generate only these kinds of executions.

Our approach is summarized in Fig. 1. First, we analyze the safety prop-
erty ¢ and generate a strategy of test sequences generation Sy. This strategy is
built by combining test patterns according to the safety property schema. Sec-
ond, from the JML interface M and Sy, JIML-TT computes a test suite, relevant
w.r.t. ¢ and covering the functional behavior of the application. Then, these test
sequences are executed on the annotated implementation I, generated by the
JAG tool from the annotated implementation I enriched by annotations speci-
fying the temporal property ¢. These JML annotations provides the oracle that
concludes on the verdict of the test. In addition, the extra annotations provide
an oracle that concludes on the satisfaction of the property ¢. If the annotations
derived from this latter fail to be checked at run-time, and thanks to the JAG
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traceability, we are able to retrieve the original temporal property that is not
satisfied on the implementation, and furthermore, to retrieve the requirements
of the security policies that have not been correctly implemented.

This paper is organized as follows. Section 2 presents the Java Modeling Lan-
guage and its on-the-fly verification capacities, using the JML Runtime Assertion
Checker (JML-RAC). Section 3 presents the JTPL temporal logic language, used
to express the requirements of an application in terms of a temporal property.
The generation of annotations for these properties is also described. Section 4
explains how the JML-TT framework computes test sequences driven by a safety
property. Section 5 presents the result of an experiment made on a case study,
and draws a comparison between our approach and a combinatorial test genera-
tion tool. Section 6 compares our approach with related works and discusses its
originality. Finally, Section 7 concludes and presents the future work.

2 JML and Runtime Assertion Checking

The Java Modeling Language [12] is a behavioral interface specification language
for Java programs, designed by G.T. Leavens et al. The specification consists in
decorating a Java code or an interface in a comment-like syntax (//@ for single-
line annotations, /*@ ...@*/ for multiple-line annotations). JML is based on the
Design By Contract principles, stating that the system has to fulfill the methods
requirements (i.e., their precondition) to invoke them. As a counterpart, the
methods establish their postcondition.

JML considers different clauses to express the specifications. They involve
the use of predicates in a Java-based syntax, enriched with specific JML key-
words. Figure 2 presents an example of a JML specification. This specification
describes a simplified electronic purse, specified by a balance (bal), to which
money can be credited or withdrawn, using methods init(byte,short) and
complete () to respectively initialize and complete the transaction. This specifi-
cation illustrates the different clauses that can be used to design the JML model.
The invariant clause describes the class invariant that applies on the class
attributes. The method specifications are described using by specifying the pre-
condition (requires clause), the normal postcondition (ensures clause) which
gives the postcondition established when the method terminates normally, the
exceptional postcondition (signals clause) which gives the postcondition that is
established when the method throws an exception, and the list of the attributes
which are modified by the invocation of the method (assignable clause).

The Runtime Assertion Checker is a compiler that enriches the Java byte-
code with the checking of the different JML clauses. The execution of the RAC-
compiled Java classes makes it possible to automatically check the specification
predicates when running the program. If an execution violates one of the JML
assertions, a specific exception is raised indicating which assertion has not been
satisfied. Therefore, this feature is used as an oracle.
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class Purse {
private short transVal;
//Q invariant max >= 0;
protected short max; final static byte CREDIT_MODE = O;
final static byte DEBIT_MODE = 1;
/*Q@ invariant bal >= O && bal <= max; */

protected short bal; /*@ behavior
Q@ requires a > 0 && transVal == 0;

/*@ public normal_behavior Q {1

Q assignable bal, max, transVal; Q requires P1 == CREDIT_MODE &&

Q ensures Q bal + a <= max;

[¢] (m >0 ==> max == m) && Q assignable transVal;

Q (m <= 0 ==> max == 1) && Q ensures transVal == a;

Q bal == 0 && transVal == 0; Q also

@x/ Q requires P1 == DEBIT_MODE &&
public Purse(short m) {...} Q bal - a >= 0;

Q assignable transVal;

/*@ behavior Q ensures transVal == (short) (- a);

Q requires transVal != 0; e |}

Q assignable bal, transVal; Q@ also

Q ensures bal == Q requires (P1 !'= CREDIT_MODE &&

Q (short) (\old(bal)+transVal); Q P1 !'= DEBIT_MODE) ||

@ ensures transVal == 0; Q a <= 0 || transVal != 0;

Q@ also Q assignable \nothing;

Q requires transVal == 0O; Q signals (IllegalUseException) true;

Q@ assignable \nothing; Qx/

Q signals (IllegalUseException) true; public void init(byte P1, short a)

Qx/ throws IllegalUseException {...}
public void complete()

throws IllegalUseException { ... } |

Fig. 2. Example of a JML specification

JML has two main uses, it can be used to reinforce the code and to help the
proof of the code (e.g. using JACK [7]). Our philosophy is to consider JML as an
entire specification language that does not require Java code to be employed. If
the hypothesis may seem strong for all Java programs, we believe that it is worth
doing the effort of writing a complete JML specification, with strong pre- and
postconditions, in the domain of embedded programs, such as JavaCard [17].
In our approach, we use JML as a source for test target definition and model-
based test cases computation. A recent evolution has been proposed to express
temporal properties in JML, involving the use of the RAC. It is now described.

3 A Temporal Logic Extension for JML-like Language

We present an extension of JML with temporal specifications, first defined in [19].
This language, called Java Temporal Pattern Language (JTLP) is inspired by
Dwyer’s specification patterns [8]. Dwyer shows through a study of 500 specifi-
cation examples, that 80 % of the temporal specification requirements can be
covered by a finite number of formulae. This high-level temporal logic language
for Java follows this philosophy, providing to the user structures to express com-
mon temporal requirements on Java classes. Moreover, the language can deal
with both normal and exceptional terminations of methods. This language can
be used to express safety or liveness properties. In this paper, we only focus
on safety properties, for which we give the corresponding syntax and semantics.
Readers can refer to [19] for a formal definition of the whole language semantics.
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<Temp> ::= after <Events> <Temp>
| before <Events> <TraceProp>
| <TraceProp> unless <Events>
| <TraceProp>

<TraceProp> ::= always <StateProp>

never <StateProp>

<TraceProp> and <TraceProp>
<TraceProp> or <TraceProp>

<JMLProp>

<Method> enabled [ with <JMLPr0p>]
<Method> not enabled|[ with <JMLProp>]
<Event>,<Events>

<Method> called [ with <JMLProp>]
<Method> normal [ with <JMLProp>]|
<Method> exceptional [ with <JMLProp>]
<Method> terminates [with <JMLProp> ]

<StateProp> ::

<Events> ::
<Event> ::

Fig. 3. Syntax of the safety patterns

3.1 Syntax and Semantics of the Language

The syntax of the subset of the JTPL language expressing safety properties is
displayed given in Fig. 3. This language is based of the notions of events and
state properties.

Events can be either: (i) m called, meaning that the method m has been
called, without considering the method terminasion; (i) m normal, meaning
that the method m has terminated normally; (i44) m exceptional, meaning that
the method m has terminated exceptionally (by throwing an exception); (iv)
m terminates, meaning that the method m has terminated (either normally
or by throwing an exception). The events can be enriched with a predicate P
introduced by the keyword with. Thus, m called with P means that m has
been called within a state satisfying P and m terminates (resp. normal and
exceptional) with P means that m terminates (resp. terminates normally and
terminates by throwing an exception) in a state satisfying the predicate P.

A state property P can be either: (i) a JML predicate; (i) m enabled,
meaning that if the method m is called and if the method m terminates, then
it terminates normally; (ii¢) m not enabled, meaning that if the method m is
called and if the method m terminates, then it terminates exceptionally, i.e., by
throwing an exception.

The state properties m enabled and m not enabled are especially designed
to express properties on JavaCard applets, since JavaCard commands can be
called from any state. Thus, once a method is called, either the call is licit
w.r.t. the expected state variable values and the parameters values and thus
the method terminates normally, or the call is illicit and the method terminates
exceptionally. Notice that these two state properties are true if the method is
not called or if the method is called but does not terminate (i.e., the method
diverges). This clause can also be enriched with a predicate P introduced by the
keyword with.

Finally, events and state properties can be combined with the keywords of the
language: (1) always P, which is true on an execution o if the state properties
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class Purse { /*@ behavior
Q
//@ ghost boolean inProgress = false; Q ensures inProgress == true;
Q ensures \old(inProgress) ==> false;
Q@ also
/%@ behavior Q
Q e Qx/
Q ensures inProgress == false; public void init(byte P1, short a)
@ also throws IllegalUseException {
Q . ca.
Qx/ }
public void complete() finally {
throws IllegalUseException { //@ set inProgress = true;
//@ set inProgress = false; }
. }
} }

Fig. 4. Example of annotations produced by the JAG tool.

P holds on every state of o; (ii) never P, which is true on an execution ¢ if
the state properties P never holds on any state of o. It is equivalent to always
—P; (ii1) C unless E, which is true on an execution o if the trace property C' is
satisfied on the segment of o ending with an event in E, or if the trace property
C is satisfied on the whole of ¢ and no event in E happens; (iv) before E C,
which is true on an execution ¢ if any occurrences of an event in E is preceded
by a prefix of o satisfying the trace property C; or (v) after E T, which is
true on an execution o if the suffix of o starting with any event in E satisfies
the temporal formula T'. Notice that conjunctions and disjunctions, respectively
denoted by and and or, have a standard meaning.

This specification language is an input of the JAG tool, presented in the next
subsection.

3.2 Translation of JTPL into JML with JAG

The JAG tool [9] generates JML annotations ensuring a given temporal property.
As an illustration, we present a safety property that has to hold on the example
of Fig. 2, specifying that after a successful init, one can invoke init once again
only if the transaction has been validated by invoking complete:

after init normal
always init not enabled unless complete called

(So)

The additional annotations, automatically generated and related to this prop-
erty, are given in Fig. 4. This property is expressed by:

— a ghost boolean variable inProgress, initialized to false. This variable is
set to true when the event init normal occurs and set to false again
when complete called occurs.

— a postcondition ensuring that init cannot terminate normally when variable
inProgress is equal to true. This predicate reinforces the normal postcon-
dition by preventing it from being evaluated to true if inProgress is false,
stating, as a consequence, that the method can not terminate normally in
this particular case.
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The interested reader will find in [19] the details of the translation, for all
structures of the language.

4 Test Generation from Temporal Properties

We describe in this section the definition of the principles which consist in an-
imating the specification according to a given temporal logic property. Then,
we present the coverage criteria that we apply on the specification. Finally, we
explain the test sequence computation.

4.1 Principles

Our approach is an extension of the previous work about functional test genera-
tion that is presented in [4] on the symbolic animation of JML specifications. The
principle of our approach is to associate a test suite to each safety property we
consider. Thus, we perform the symbolic animation of the specification in order
to build a test sequence that exercises the property, by activating the behaviors
of the JML specification.

The computation of the test sequences is driven by a strategy derived from
the temporal formula, to guide the animation of the specification. A strategy
is composed of a sequence of steps in which our aim is to activate a particular
behavior of the specification or to cover all the behaviors. When the last step
is done, the test generation stops. In addition, we consider a bound that limits
the test sequences length, and guarantees the termination for each step of the
research.

In addition, we rely on the JML annotations describing the safety property,
and produced by the JAG tool, to complete the oracle. Thus, if one of these
annotations fails to be checked at run-time, we are able to provide to the user
an indication concerning the original temporal property and the original require-
ment that have been violated.

4.2 Coverage Criteria

Our approach considers the classical coverage of the specification, at three levels:
the specification coverage, the decision coverage, and the data coverage.

Specification coverage The specification coverage is achieved by activating the
different behaviors that we extract from the JML method specifications. Figure 5
describes the extraction of behaviors from a JML method specification. A be-
havior is represented by a path leading from node 1 to node 0. According to this
figure, we assume that the method may deterministically terminate (expressed
by T') either normally (T' = no_exception) or by throwing one of its M spec-
ified exceptions (T' = E; for 1 < i < M). We also assume that the exceptional
behaviors are deterministic, which means that their guards are mutually exclu-
sive. De facto, the behaviors of the methods only depend on the current state
variables values, and the parameter values.
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/*@ behavior

( requires Pi;
assignable A;
ensures (J1;

1
Normal azso

behavior )
also

Q
Q
Q
Q
Q
Q
Q requires Py ;

Q assignable A;
@ ensures Qn;

@ also

Q requires Pyi1;
Q assignable A;
Q signals (E; el) Si;
Q
Q
Q
Q
Q
Q

. 1
FExceptional azso

behaviors R
also

requires Pnyn;
assignable A;
signals (Ep eM) Su;

\
Qx/
Type meth(T1 p1,...) throws E1,...,Em { ...}

Fig. 5. Extraction of the behaviors from a JML method specification

Decision coverage We achieve the decision coverage by rewriting the disjunctions
within the preconditions of the JML specifications. We consider four rewritings
of the disjunctions, described by a V b. Rewriting 1 consists in leaving the dis-
junction unmodified. Rewriting 2 consists in creating a choice between the two
predicates (a [] b). Thus, the first branch and the second branch independently
have to succeed when being evaluated. Rewriting 3 consists in creating an ex-
clusive choice between the two predicates (a A =b [ =a A b). Only one of the
sub-predicates of the disjunction is checked at one time. Rewriting 4 consists in
testing all the possible values for the two sub-predicates to satisfy the disjunc-
tion (a A=b [] maAb[] a Ab). Each one of these rewritings guarantees at least
one decision coverage.

Data coverage When performing the symbolic animation of the specification, the
input parameters of the methods that are invoked are left unspecified, and their
symbolic values are managed by constraint solvers. When the symbolic sequence
computation is over, we select the boundary values for the unspecified param-
eters. More details about the application of this work to JML can be found in [3].

In addition to these classical coverage criteria, we are especially interested in
exercising the temporal property. This is achieved by defining different strategies
that are in charge of activating the JML method behaviors w.r.t. the temporal
property. We now describe these strategies, which represent the main contribu-
tion of the paper.
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Strategy(after Events Temp) = Research(Events); Strategy(Temp)

Strategy(before Events TraceProp) = Cover; Strategy(TraceProp); Research(Event)
Strategy(TraceProp unless Events) = CoverStop(Events); Strategy(TraceProp)
Strategy(always StateProp) = Cover;Strategy(StateProp)

Strategy(StateProp; and StateProps) = Strategy(StatePropi) [| Strategy(StateProps2)
Strategy(StatePropi or StatePropz) = Strategy(StateProp1) [] Strategy(StateProps)
Strategy( <JMLProp>) = ¢

Strategy(m enabled [ with <JMLProp>] ) = Active(m exceptional [ with <JMLProp>])
Strategy(m not enabled [ with <JMLProp>] ) = Active(m normal [ with <JMLProp>] )

Fig. 6. Strategies for the JTPL language

4.3 Test Sequence Computation

The test sequence computation strategy depends on the safety property that has
been defined. According to the pattern that matches the temporal property, a
specific strategy is employed.
The translation from JTPL into JML-TT strategies is described by the func-
tion Strategy given in Fig. 6, in which € denotes that no strategy is applied. A
“.n

strategy consist of sequences (denoted by “”) or choices (denoted by “[]”) of
steps among the four following patterns:

— Research of E (Research(E)). This strategy performs a best-first algorithm
that aims at activating an event in E. This principle has been already de-
scribed in [3].

— Coverage of behaviors (Cover). This strategy performs the symbolic ani-
mation of the specification in order to cover all the behaviors. This is done
by a depth-first algorithm that activates the normal behaviors of the model.
The main advantage of using the specification is that it delays the combina-
torial explosion occurring during the exploration of the reachability graph
by filtering the sequence of methods, so as to comply with the methods con-
tracts. When a behavior is newly activated, the current execution sequence
is returned to provide a test case. A “backtracking” mechanism makes it
possible to resume the depth-first research.

— Coverage of behaviors with stop on E (CoverStop(E)). This strategy
is similar to the previous one, but the depth-first algorithm stops when an
event in F is activated. As in the previous case, a backtracking occurs to
resume the computation.

— Activation of E (Active(E)). This consists in a systematic activation of the
events in E. This step is crucial since it will be used to activate the expected
or unexpected events, expressed in the property. For example, if the state
property is of type m [not] enabled, the method m is tried to be activated.
This step is also performed using a depth-first algorithm. (Un)Expected be-
haviors are detected by considering the specification and performed in a try-
catch mecanism that is in charge of either catching a unexpected exception,
or throwing a specific exception when the expected exceptional behavior has
not been thrown.
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Notice that the sequences Cover;CoverStop(E) and CoverStop(E);Cover are
reduced to CoverStop(E).

Ezample 1 (Strategy for Sp). The strategy associated to Sy, given by the func-
tion Strategy of Fig. 6 is the following:

Research(init normal); CoverStop(complete called); Active(init normal)

It corresponds to the following steps: (i) we research a sequence that ends with
the activation of the normal behavior of init; (i¢) we cover all the behaviors
of the class, the research is stopped when the event complete called occurs;
(#41) we try to activate the normal behavior of method init to test if init is
effectively not enabled.

This automatic test generation approach, using the strategies explained above,
has been applied to a case study. The results of this experiment are exposed in
the next Section.

5 Experiment of a Case Study

We now present an experiment that we have done on a case study. We start
by describing the specification, before expressing the temporal properties from
which we want to generate test cases, and finally we compare our approach with
a similar tool.

5.1 Presentation of the Demoney Specification

Demoney is an electronic purse developed by Trusted Logic [15]. This JavaCard
application makes it possible to pay a purchase in a store using a terminal and
can be credited from cash or from a bank account in an ATM. Demoney is not
an industrial application but is complex enough to handle typical features and
security problems related to banking systems.

Similarly to the other JavaCard applications, the life cycle of the card starts
with a personalization phase, where particular variables, such as maximum bal-
ance amount, are fixed using the PUT_DATA command. Then, a STORE_DATA com-
mand stores the personalization variables. The application can only be per-
sonalized once. There are four access levels (public, debit, credit and admin),
which restrict the activation of the commands. For example, the STORE DATA
command can only be invoked with the admin access level. Access levels can
be selected using the INITIALIZE UPDATE and EXTERNAL_AUTHENTICATE com-
mands. For a successful change, the methods have to be atomically invoked,
e.g. INITIALIZE UPDATE must immediately be followed by EXTERNAL_AUTHENTI-
CATE. INITIALIZE TRANSACTION and COMPLETE_TRANSACTION are used to per-
form transactions, whose types (debit or credit from cash or from bank) are
expressed using parameter P1 of the first command. These two commands also
have to be atomically invoked for a successful transaction. For a credit from
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a bank account, the PIN code of the card must have been checked using the
VERIFY_PIN command. The number of tries is limited and chosen at the person-
alization time. Finally, when the pin is blocked after unsuccessful VERIFY PIN
invocations, it is possible to unblock the card using the PIN_CHANGE_UNBLOCK
command.

For the test generation, we use a JML model of Demoney designed from the
informal public specification. This model represents over 500 lines of JML and
has been validated with the JML-TT Symbolic Animator [4].

5.2 Temporal Properties

We illustrate the test generation on two safety properties. In addition, in order
to pilot the test generation and to have interesting test sequences, we add some
requirements on the state in which the considered commands terminate. These
requirements are used to force the first part of the test cases to configure the
card with interesting values for the maximal balance on the card (maxBalance),
the maximal debit amount (maxDebit) and the pin code (pin.code). These
requirements are expressed using the with clause of the JTPL expressions, by a
context predicate C':

maxBalance == 10000 & maxDebit == 5000 & pin.code == 1234
We address the verification of the two following safety properties.
1. The personalization is unique:
after STORE_DATA normal with C' always STORE_DATA not enabled (S1)

2. When the pin is blocked, it is impossible to credit the card from a bank
unless a successful call to the PIN.CHANGE_UNBLOCK method in the
unblocking mode (expressed by value UNBLOCK for parameter P1).

after VERIFY PIN terminates with pin.tries==0& C
always INITIALIZE TRANSACTION not enabled
with P1 == CREDIT_FROM_BANK
unless PIN_CHANGE UNBLOCK normal with P1 == UNBLOCK;

(S2)

Using the JAG tool, we generate the JML annotations that ensures the satis-
faction of these properties. The challenge is to validate the implementation w.r.t.
these temporal properties. According to Sect. 4.3, the JAG tool computes the
following strategies for Sy and Ss:

Research(STORE_DATA normal with C); Cover; Active(STORE_DATA normal) (S1)

Research(VERIFY_PIN terminates with pin.tries == 0 & C);
CoverStop(PIN_CHANGE_UNBLOCK normal with p1l == UNBLOCK); (S2)
Active(INITIALIZE TRANSACTION with P1 == CREDIT_FROM_BANK)

These strategies are used in JML-TT to drive the automated test generation
previously explained. Results of the generation for these two properties are now
presented, and a comparison with a combinatorial test generation tool is exposed.

11
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5.3 Results, Comparison, and Discussion

Tests have been generated for different values n of the depth search. An ex-
ample of test generated for the property S; is displayed in Fig. 7. The test is
composed as follows: (a) a prelude reaches a state where STORE_DATA is acti-
vated under the C' condition; (b) we try to cover a particular behavior (here
COMPLETE _TRANSACTION); (¢) the method STORE_DATA is activated once again;
(d) a try...catch statement observes if a exception has been thrown by the
execution of STORE DATA. Table 2 displays the general results of the test genera-
tion. We remark that the number of test cases is twice the number of behaviors
covered. This is explained by the boundary values selection which both mini-
mizes and maximizes data values. For each property we cover all the reachable
behaviors (13 for Sp, 8 for Sy) for a reasonable depth, with a minimal number
of test cases.

The test suites driven by temporal properties complement the test suites we
obtained using the functional techniques presented in [3], as it was expected.
Moreover, these two approaches do not generate the same test cases, since the
functional test cases try to activate each behavior by reaching the shortest path
leading to a state that makes it possible to activate it. For example, the test
case, displayed in Fig. 7, is not produced in the functional approach. Since these
two approaches can not be compared, i.e., they do not aim at the same purpose,
we wanted to draw a comparison with a tool that has a similar approach to ours:
Tobias [13].

Tobias is a combinatorial test generation tool that uses user-defined regular
expressions to build test sequences consisting of Java method calls. This ap-
proach then relies on the JML-RAC to provide an oracle that gives the test
verdict. Since this approach does not consider the JML specification for the gen-
eration, it may produce inconclusive tests, when the precondition of a method is
not satisfied. Both Tobias and our approach consist in semi-automatic testing,
since a user is asked to respectively provide a test schema or a safety property.

|Safety Property| n |# of tests|# of behaviors covered|
Sy 1 10 4/17
S1 2 12 5/17
S1 3 18 9/17
Sy 4,56/ 22 11/17
S 7 24 12/17
S1 >8 26 13/17
S, 1 8 4/17
S5 2 12 6/17
So 3,4 14 7/17
So >5 16 8/17

Table 2. Results of experiments with JML-TT
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We tried to cover the property S; using the following Tobias test schema:
prelude; STORE_DATA; (other methods)®"; STORE_DATA

This test schema’s automaton recognizes the test cases that we have produced.
With n = 4, this schema produces roughly 45436 test cases, of which 10% are
relevant, and covering 11 behaviors, as we also do. The prelude part consists in
configuring the card before the personalization. This part had to be manually
generated.

The second property gave similar results, asking much more effort to manu-
ally define the prelude and describe the remainder of the test schema.

This experiment shown the advan- pemoney v = new Demoney();
tages of our approach, since: (i) we INITIALIZE_UPDATE((byte) 3, (byte) 1);

; . . EXTERNAL_AUTHENTICATE ((byte) 11, (byte) 0);
achieved a higher level of automation PUT_DATA((byte) 3, (byte) 15, (short) 1234);
both in the test case generation; (”) PUT_DATA((byte) 2, (byte) 0, (short) 5000) ;

5 ) PUT_DATA((byte) 1, (byte) 0, (short) 20000) ;

we mastered the combinatorial explo- STORE_DATA( (byte) 80, (byte) 0);
sion and created less test cases which INITIALIZE_UPDATE((byte) 2, (byte) 1);

. EXTERNAL_AUTHENTICATE((byte) 1, (byte) 0);
are all relevant (since they are based
on the symbolic animation of the mo- (short) 20000);

) v.COMPLETE_TRANSACTION((byte) 0, (byte) 0);

del), and which cover all the reachable . INITIALIZE_UPDATE((byte) 3, (byte) 1);

444444444

behaViOrS for a given depth’ (,”7/) the v.EXTERNAL_AUTHENTICATE ((byte) 1, (byte) 0); c

. L. try {
effort asked to the user is minimal and v.STORE_DATA( (byte) 80, (byte) 0);

requires less expertise from the vali- throw new JMLTTUnraisedException
. . . ("IllegalUseException");
dation engineer, since he only has to
describe a temporal property (and its catch (IllegalUseException e) {
. . - // Nothing to do in this case.
optional context) instead of providing
subsets of the test sequences; (iv) the
expressiveness of our approach, and
especially the possibility of expressing an optional context, allows to subtly drive
the test generation.

Fig. 7. A test case generated by JML-TT

6 Related Work

Testing Java programs using JML annotations has already been well studied
and other tools are available. Korat [5] aims at providing an exhaustive set
of structures satisfying a Java predicate, using SAT solving technologies. This
approach has been adapted to JML, and relies on the method preconditions to
build satisfying test data. Whereas Korat only considers an object creation and
a method invocation, our approach proposes to build complex test sequences
of method invocations. Jartege [16] produces stochastic test cases based on a
Java program. The Runtime Assertion Checker is used when the test sequence
is being built, in order to filter the irrelevant method invocations. The major
advantage of Jartege is its full automation, but its main problem is the absence of
startegy in the test generation which prevents it from being used in the domain
of JavaCard.

INITIALIZE_TRANSACTION((byte) 1,(byte) 0, |b

13
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Most of LTL based testing approaches use model-checkers such as Spin [10]
to generate test cases. By fully exploring the state space of a model of the ap-
plication, a model checker verifies that every configuration of the model satisfies
a given property. When the property is not satisfied, the model checker exhibits
a counter-example, i.e., a run of the model that does not satisfy the property.
Approaches based on model checking use this counter-example mechanism to
produce traces that can be transformed in test sequences. Sokolsky and al. [18§],
for a given LTL formula ¢, compute a set of LTL formulae that covers every
subformulae of ¢. In [2], Ammann and al. propose the mutation of the model or
of the property to generate the counter-examples and then, the test suite. Both
approaches need to use a finite abstraction of the model to generate the tests.

Our approach, based on symbolic animation and constraint solving that re-
duces the state place explosion, can handle potentially huge or infinite models.
Although the JML-TT framework does not provide a complete exploration of the
state space, it shows its effectiveness in practice.

The coverage metrics of the temporal property is an important and well-
studied criteria for selecting relevant test cases. The approach of Sokolsky in [18§],
relies on the concept of non-vacuity in model-checking, capturing traces of the
model that satisfy a property non-trivially. Implicitly, we have use this notion
on our approach, since for each pattern of the language, we only generates tests
relevant for the property.

7 Conclusion and Future Work

In this paper, we proposed an extension of the JML-TT framework, for the gen-
eration of test suites driven by safety properties. Based on the experimentation
on a case study, this approach has shown its complementarity with the existing
techniques of test for Java/JML and has led to effective results.

Our next task is to establish the coverage of the test suites in terms of
coverage criteria of the safety property. Intuitively, it requires to consider the
Biichi automaton extracted from the property and to define coverage in terms
of states, transitions, or paths.

Our approach can be easily adapted to other specification languages such as
SPECH [14] or B [1]. One of the future challenge is to generalize the methodol-
ogy presented in this paper to other temporal specification languages supported
by the JAG tool. In particular, we are interested in LTL.Model-checking tech-
niques, such as presented in Section 6, based on mutation of the formula or the
model, can also be adapted to our automatic test generation framework, since
our approach is close to bounded model-checking.

Another interesting future work is using property-driven generation for a
collaboration between proof and test techniques. Using the JAG tools, one can
generate the JML annotations on the implementation of an application and trying
to prove it with proof obligation generator such as Jack [7]. If the proof of a
generated annotation fails, and using the JAG traceability, we are able to retrieve
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the temporal annotations and generate, via JML-TT, intensive test sets related
to this particular property.
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