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Abstract. Applying deductive verification to formally prove that a program respects its formal specification is a very
complex and time-consuming task due in particular to the lack of feedback in case of proof failures. Along with a
non-compliance between the code and its specification (due to an error in at least one of them), possible reasons of a
proof failure include a missing or too weak specification for a called function or a loop, and lack of time or simply
incapacity of the prover to finish a particular proof. This work proposes a methodology where test generation helps
to identify the reason of a proof failure and to exhibit a counterexample clearly illustrating the issue. We define the
categories of proof failures, introduce two subcategories of contract weaknesses (single and global ones), and examine
their properties. We describe how to transform a C program formally specified in an executable specification language
into C code suitable for testing, and illustrate the benefits of the method on comprehensive examples. The method
has been implemented in STADY, a plugin of the software analysis platform FRAMA-C. Initial experiments show that
detecting non-compliances and contract weaknesses allows to precisely diagnose most proof failures.

1. Introduction
Among formal verification techniques, deductive verification consists in establishing a rigorous mathematical proof
that a given program meets its specification. When no confusion is possible, one also says that deductive verification
consists in “proving a program”. It requires that the program comes with a formal specification, usually given in special
comments called annotations, including function contracts (with pre- and postconditions) and loop contracts (with
loop variants and invariants). The weakest precondition calculus proposed by Dijkstra [Dij76] reduces any deductive
verification problem to establishing the validity of first-order formulas called verification conditions.

In modular deductive verification of a function f calling another function g, the roles of the pre- and postconditions
of f and of the callee g are dual. The precondition of f is assumed and its postcondition must be proved, while at any
call to g in f , the precondition of g must be proved before the call and its postcondition is assumed after the call.
The situation for a function f with one call to g is presented in Fig. 1a. An arrow in this figure informally indicates
that its initial point provides a hypothesis for a proof of its final point. For instance, the precondition Pref of f and
the postcondition Postg of g provide hypotheses for a proof of the postcondition Postf of f . The called function g is
proved separately.

To reflect the fact that some contracts become hypotheses during deductive verification of f we use the term
subcontracts for f to designate contracts of loops and called functions in f .
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Motivation. One of the most important difficulties in deductive verification is the manual processing of proof failures
by the verification engineer since proof failures may have several causes. Indeed, a failure to prove Preg in Fig. 1a may
be due to a non-compliance of the code to the specification: either an error in the code code1, or a wrong formalization
of the requirements in the specification Pref or Preg itself. The verification can also remain inconclusive because of
a prover incapacity to finish a particular proof within allocated time. In many cases, it is extremely difficult for the
verification engineer to decide how to proceed: either suspect a non-compliance and look for an error in the code or
check the specification, or suspect a prover incapacity, give up automatic proof and try to achieve an interactive proof
with a proof assistant (like COQ [Coq18, BC04]).

// Pref assumed
f(<args>){
code1;

// Preg to be proved
g(<args>);

// Postg assumed
code2;

}
// Postf to be proved

(a) f contains a call to function g

// Pref assumed
f(<args>){
code1;

// I to be proved
while(b){

// I ∧ b assumed
code3;

// I to be proved
}

// I ∧ ¬b assumed
code2;

}
// Postf to be proved

(b) f contains a loop

Fig. 1: Verification of a function f
with a function call or a loop

A failure to prove the postcondition Postf (cf. Fig. 1a) is even more com-
plex to analyze: along with a prover incapacity or a non-compliance due to
errors in the pieces of code code1 and code2 or to an incorrect specifica-
tion Pref or Postf , the failure can also result from a too weak postcondition
Postg of g that does not fully express the intended behavior of g. Notice
that in this last case, the proof of g can still be successful. However, the
current automated tools for program proving do not provide a sufficiently
precise indication on the reason of the proof failure. Some advanced tools
produce a counterexample extracted from the underlying solver but such a
counterexample cannot precisely indicate if the verification engineer should
look for a non-compliance, or strengthen subcontracts (and which one of
them), or consider adding additional lemmas or using interactive proof. So
the verification engineer must basically consider all possible reasons one af-
ter another, and maybe initiate a very costly interactive proof. For a loop,
the situation is similar (cf. Fig. 1b), and offers an additional challenge: to
prove the invariant preservation, whose failure can be due to several reasons
as well.

The motivation of this work is twofold. First, we want to provide the
verification engineer with a more precise feedback indicating the reason of
each proof failure. Second, we look for a counterexample that either con-
firms the non-compliance and demonstrates that the unproven predicate can
indeed fail on a test datum, or confirms a subcontract weakness showing on
a test datum which subcontract is insufficient.

Approach and goals. The diagnosis of proof failures based on a counterex-
ample generated by a prover can be imprecise since from the prover’s point
of view, the code of callees and loops in f is replaced by the correspond-
ing subcontracts.1 To make this diagnosis more precise, one should take into
account their code as well as their contracts. A study [TFNM13] proposed
to use function inlining and loop unrolling (cf. Sec. 8). We propose an al-
ternative approach: to use test case generation techniques based on Dynamic
Symbolic Execution (DSE) in order to diagnose proof failures and produce counterexamples. Their usage requires code
transformation translating the annotated C program into an executable C code suitable for testing. The application of
test generation to the translated program in order to produce counterexamples will also be referred to as (testing-based)
counterexample synthesis. Previous work suggested several comprehensive debugging scenarios relying on counterex-
ample synthesis only in the case of non-compliances [PKGJ14], and proposed a rule-based formalization of annotation
translation for that purpose [PBJ+14]. The cases of subcontract weakness remained undetected and indistinguishable
from a prover incapacity.

The overall goal of the present work is to provide a methodology for a more precise diagnosis of proof failures in
all cases, to implement it and to evaluate it in practice. The proposed method is composed of two steps. The first step
looks for a non-compliance. If none is found, the second step looks for a subcontract weakness. We propose a new
classification of subcontract weaknesses into single (due to a single too weak subcontract) and global (possibly related
to several subcontracts), and investigate their relative properties. Another goal is to make this method automatic and
suitable for a non-expert verification engineer.

1 Some program provers like KEY [BHS07] can replace callees either by code or by contract. For loops, however, it can only be possible to unroll
a loop a finite number of times.
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The contributions of this paper include:

• a classification of proof failures into three categories: non-compliance (NC), subcontract weakness (SW) and
prover incapacity, illustrated by several program examples,

• a definition and comparative analysis of global and single subcontract weaknesses,
• a complete description of program transformation techniques for diagnosis of non-compliances and subcontract

weaknesses for all main kinds of specification clauses,
• a testing-based methodology for diagnosis of proof failures and generation of counterexamples, suggesting possi-

ble actions for each category, illustrated on several comprehensive examples,
• adaptive techniques for non-compliance and subcontract weakness detection,
• an implementation of the proposed solution in a tool called STADY2, and
• experiments showing its capability to diagnose proof failures.

This paper is an extended version of an earlier work [PKB+16] that has been enriched by an extension of the
method for support of yet unproven loop contracts, nested loops, loop variants and loop invariants. These extensions
have been implemented in the STADY tool and evaluated on a larger set of programs. The present paper also dis-
cusses adaptive detection strategies that have been partially implemented. It also includes several additional examples
illustrating various kinds of proof failures and gives a better informal view of them.

Paper outline. Sec. 2 presents the tools used in this work. Sec. 3 informally introduces the categories of proof failures
and illustrates them with examples. Sec. 4 and 5 present program transformations for the classification of proof failures
by category and the synthesis of counterexamples. The methodology for the diagnosis of proof failures is presented in
Sec. 6. Our implementation and experiments are described in Sec. 7. Finally, Sec. 8 and 9 present some related work
and a conclusion.

2. FRAMA-C Toolset
This work is realized in the context of FRAMA-C [KKP+15], a platform dedicated to analysis of C code that includes
various analyzers in separate plugins. The WP plugin performs deductive verification of C programs by means of a
weakest precondition calculus. Various automatic SMT solvers can be used to prove the verification conditions (VCs)
generated by WP. In this work we use FRAMA-C SILICON, ALT-ERGO 1.01 and CVC3 2.4.1. To express properties
over C programs, FRAMA-C offers the behavioral specification language ACSL [BCF+17, KKP+15]. Any analyzer
can both add ACSL annotations to be verified by other ones, and notify other plugins about its own analysis results by
changing an annotation status.

We use the general term of a contract to designate the set of ACSL annotations describing a loop or a function.
A function contract is composed of pre- and postconditions including E-ACSL clauses requires, assigns and
ensures (see lines 1–3 of Fig. 3 for an example). A loop contract is composed of loop invariant, loop
assigns and loop variant clauses (see lines 8–13 of Fig. 3 for an example).

For combinations with dynamic analysis, FRAMA-C also supports E-ACSL [DKS13, Sig12], a large executable
subset of ACSL suitable for Runtime Assertion Checking (RAC). The purpose of runtime assertion checking is to
evaluate each of the annotations encountered during the program execution for a given test datum (i.e. given values of
input variables). E-ACSL can express function contracts (pre/postconditions, guarded behaviors, completeness and dis-
jointness of behaviors), assertions and loop contracts (variants and invariants). It supports quantifications over bounded
intervals of integers, mathematical integers and memory-related constructs (e.g. on validity and initialization). E-ACSL
does not include ACSL features that cannot be evaluated at runtime, such as unbounded quantifications, lemmas (which
usually express non-executable mathematical properties) or axiomatics (non-executable by nature) [Sig12]. It comes
with an instrumentation-based translating plugin, called E-ACSL2C [KPS13, JKS15], that transforms annotations into
additional C code in order to evaluate them at runtime and report failures.

Since the purpose of this work is to combine static analysis (deductive verification) with dynamic analysis (testing-
based counterexample synthesis), it will be convenient to use E-ACSL to express program specifications. However, the
spec-to-code translation performed by the E-ACSL2C tool for runtime assertion checking (where the program is run
with concrete inputs) is not suitable for counterexample synthesis (where the program is executed symbolically for
unknown inputs). Indeed, the code produced by E-ACSL2C relies on complex external libraries (e.g. to handle memory-
related annotations and unbounded integer arithmetic of E-ACSL) and cannot assume the precondition of the function

2 See also https://github.com/gpetiot/Frama-C-StaDy.

https://github.com/gpetiot/Frama-C-StaDy
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under verification or another annotation, whereas the code produced for counterexample synthesis can efficiently rely
on the underlying symbolic execution engine and constraint solver for these purposes. This explains the need for a
dedicated spec-to-code translation mechanism.

For counterexample synthesis, this work relies on PATHCRAWLER [WMMR05, BDH+09, Kos15], a Dynamic
Symbolic Execution (DSE) testing tool. PATHCRAWLER is based on a specific constraint solver, called COLIBRI, that
implements advanced features such as floating-point and modular integer arithmetic. Symbolic execution makes it
possible to support several features essential to this work. PATHCRAWLER supports assumptions, that is, additional
hypotheses introduced into the code in the form of a builtin function call fassume(cond). Whenever symbolic
execution traverses such an assumption, the condition cond is added into the set of constraints. It results in generating
only test inputs that satisfy this condition at the corresponding program point. PATHCRAWLER also supports the
assignment of a non-deterministic value to some variable x, denoted in this paper by x=Nondet(). It can be seen
as assigning to x an additional symbolic input at the corresponding program point (possibly taking a different value
each time when this assignment is traversed). It is usually followed by an assumption of the form fassume(cond);
that can constrain x and other variables. In this case, the solver tries to generate a suitable new value for x satisfying
the required constraints. PATHCRAWLER also supports assertions of the form fassert(cond); which report a
failure and exit the program whenever the given condition cond is not satisfied. Notice that such an assertion adds
an additional conditional statement to evaluate cond. Finally, PATHCRAWLER offers dedicated builtin support for
unbounded integer arithmetic of ACSL annotations (thanks to their support in COLIBRI as well) so that test generation
does not need to handle the additional complexity of external libraries required by E-ACSL2C to treat unbounded
integers during runtime assertion checking (see [PBJ+14] for more detail).

PATHCRAWLER provides coverage strategies like all-paths (all feasible paths) and k-path (feasible paths with at
most k consecutive loop iterations). It is sound, meaning that each test case activates the test objective for which it
was generated. This is verified by concrete execution. On the class of programs it supports, PATHCRAWLER is also
relatively complete in the following sense: given a program with a finite number of paths and sufficient time, the tool
will exhaustively explore all feasible paths of the program. In this case, the absence of a test for some test objective
means that the test objective is infeasible (i.e. impossible to activate). This is due to the fact that the tool does not
approximate path constraints [BDH+09, Sec. 3.1]. Of course, given only a finite (bounded) time, the tool can time out
without generating a test for a given test objective.

3. Categories of Proof Failures Illustrated by Examples
In this section we describe various kinds of proof failures that can occur during the proof of an annotated program, and
illustrate them using several examples of C programs. We start by introducing the notions of modular and non-modular
vision of a program.

Modular and Non-modular Vision. Suppose a function under verification f contains one loop or one function call
(see Fig.1). In deductive verification, during the proof of the postcondition of f , the code of the loop or called function
is replaced by the corresponding contract. We say that the deductive verification tool has a modular vision of the
function under verification: the code of the loop or called function is ignored by the tool, while their contracts are
taken into account instead. The contracts of loops and called functions in f are referred to as subcontracts for f . The
proof that the loops and called functions respect the corresponding subcontracts leads to separate VCs and is conducted
separately.

On the other hand, for a given test datum, RAC checks every annotation reached by the program execution. RAC
has a non-modular vision of the program, where the code of loops and called functions is executed without replacing
them by the corresponding subcontracts.

Consider the C program of Fig. 2a where f is the function under verification. It calls another function g. The
postconditions of g and f on lines 2 and 5 state that the variable x is increased at least by 1 in g and at least by 2 in
f . Lines 3 and 6 specify that x is the only variable that can change its value after each call. For the input value x = 0,
in non-modular vision of the call to g, the value of x after this call is equal to 1. In modular vision of the call to g, the
new value satisfies x ≥ 1. Similarly, for the program of Fig. 2b where the only modified statement is the assignment
on line 4, the resulting value of x is equal to 2 in non-modular vision of the call to g. In modular vision, the resulting
value of x satisfies x ≥ 1 again. Notice that the property x ≥ 1 is the only information on x the program prover has
during the proof of f after the call to g. In both examples, the proof of f fails for the postcondition on line 5, while g
is successfully proved. (For simplicity, we ignore arithmetic overflows in this example.)
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1 int x;
2 /*@ ensures x ≥ \old(x)+1; // Proved
3 assigns x; */
4 void g() { x=x+1; }
5 /*@ ensures x ≥ \old(x)+2; // Proof failure
6 assigns x; */
7 void f() { // If x = 0 here, then after the call to g:
8 g(); // x ≥ 1 in modular vision of g,
9 } // x = 1 in non-modular vision of g

(a) Proof failure for line 5 caused by a non-compliance

1 int x;
2 /*@ ensures x ≥ \old(x)+1; // Proved
3 assigns x; */
4 void g() { x=x+2; }
5 /*@ ensures x ≥ \old(x)+2; // Proof failure
6 assigns x; */
7 void f() { // If x = 0 here, then after the call to g:
8 g(); // x ≥ 1 in modular vision of g,
9 } // x = 2 in non-modular vision of g

(b) Proof failure for line 5 caused by a subcontract weakness of g

Fig. 2. Toy examples of non-compliance and subconstract weakness (where for simplicity, overflows are ignored)

Deductive Verification and Counterexamples. A deductive verification tool (also referred to as a program prover)
usually transforms the verification problem into several Verification Conditions (VCs) and reports which ones are not
proved. As in other specification languages, for convenience of the users, an ACSL clause (such as pre- and postcon-
dition, loop invariant, assertion) containing a conjunction of several properties can be split into several clauses of the
same kind, written one after another. For instance, the postcondition ensures P1 ∧ P2; is equivalent to the se-
quence ensures P1; ensures P2; of two clauses. In such cases, the VCs are generated accordingly, that is, a
separate VC for each clause.

The WP plugin of FRAMA-C generates VCs of the following kinds3 (each of which can lead to a proof failure):

• a postcondition holds (for the function under verification),
• an assertion holds (at the corresponding program point),
• a loop invariant initially holds (i.e. the loop invariant of a loop is satisfied before the very first loop iteration),
• a loop invariant is preserved (i.e. if the loop invariant of a loop holds before a loop iteration, it also holds after it),
• a loop variant is non-negative before each iteration of the loop (that is, when execution enters the loop body),
• a loop variant decreases (i.e. the value of the variant after an iteration of the loop is strictly smaller than before this

iteration),
• a precondition of a callee holds just before the call.

We propose to use dynamic analysis to help the verification engineer to analyze and fix proof failures. As dynamic
analysis, we consider test generation on a transformed version of the initial program, aiming at generating a test
datum (called counterexample) that illustrates the failure of the annotated program. This counterexample synthesis is
implemented in two stages: a transformation of the annotated program into an instrumented program by translating
annotations into code, and an application of a Dynamic Symbolic Execution tool on this instrumented program to find
a counterexample. By nature, this method is in general incomplete since the set of program paths can be infinite or too
large, or too complex (for example, for the underlying solver to solve the path constraints within a reasonable time).

Categories of Proof Failures. We distinguish three categories of proof failures:

• a non-compliance (NC) between program code and specification,
• a subcontract weakness (SW),
• a prover incapacity.

A non-compliance occurs when (concrete) program execution of some test datum respecting the precondition of
the function under verification leads to a failure of some annotation. This failure can be detected by runtime assertion
checking that corresponds to non-modular vision of all callees and loops. Such a test datum is called a non-compliance
counterexample (NCCE). For example, for the program of Fig. 2a, the input x = 0 is a non-compliance counterex-
ample: its execution in non-modular vision leads to a resulting value x = 1 that does not satisfy the postcondition of
f (cf. line 5).

A subcontract weakness occcurs when the contracts of some loop(s) or called function(s) are too weak to deduce
an annotation, though this proof failure cannot be explained by a non-compliance. In other words, there is a coun-
terexample in modular vision of the corresponding function calls or loops that is not a counterexample in non-modular

3 Other deductive verification tools may structure these properties in a slightly different way.
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vision. This needs to be explained in more detail. In modular vision, several executions (possibly with different out-
puts) can be considered as valid executions of the same test datum. Indeed, in general a test datum cannot be executed
concretely in a deterministic way in modular vision since some subcontracts can be satisfied for several output val-
ues of variables they are allowed to modify. But it can be executed symbolically, and one value can be chosen for
each variable potentially modified by callees or loops considered in modular vision. We call such values subcontract
outputs. For a called function, the returned value is a subcontract output as well. Their choice makes it possible to
consider concrete execution of other parts of code that are not replaced by subcontracts. For instance, for the input
x = 0, any value satisfying x ≥ 1 after the call to g can be part of a valid execution in modular vision of f for Fig. 2b.
We denote by nondetix the subcontract output for x after the i-th subcontract (i ≥ 1) traversed by program execution
(in our example, after the call to g). If there is only one traversed subcontract, we omit the upper index and simply
write nondetx. To illustrate the proof failure of the postcondition of f , the subcontract output nondetx of x after the
call to g should be 1. Taking a greater value, say nondetx = 2, does not provoke a failure of the postcondition of f .
Thus the input value x = 0 with the subcontract output nondetx = 1 after the call to g illustrates the subcontract
weakness of g for the postcondition of f . Notice that this is not a non-compliance counterexample: in non-modular
vision, the test input x = 0 leads to an output x = 2 that respects the postcondition of f .

Strictly speaking, a complete counterexample in modular vision includes a test datum V and subcontract outputs
each time a subcontract is traversed by the execution, such that (i) the chosen execution of V in modular vision leads to
an annotation failure, and (ii) the execution of V in non-modular vision does not fail. We call it a subcontract weakness
counterexample (SWCE). For simplicity of definition of an SWCE, we sometimes give only the test datum V and
omit subcontract outputs in this paper4.

Remark 1. Notice that we do not consider the same counterexample as an NCCE and an SWCE. Indeed, even if it
is arguable that some counterexamples may illustrate both a subcontract weakness and a non-compliance, we consider
that non-compliances usually come from a direct conflict between the code and the specification and should be ad-
dressed first, while subcontract weaknesses are often more subtle and will be easier to address when non-compliances
are eliminated. For instance, the input value x = 0 with the subcontract output nondet1x = 1 after the call to g is
not considered as a subcontract weakness counterexample for function f for Fig. 2a since x = 0 is a non-compliance
counterexample.

Remark 2. To describe executions in non-modular vision and detect subcontract weakness counterexamples, it is
necessary to know subcontract outputs (i.e. which variables can be modified). For subcontract weakness detection, we
assume that every subcontract for f contains a (loop) assigns clause. Such a clause defines the list of variables
(surviving at the end of the subcontract) that can change their values after the corresponding function call or loop.
Requiring such clauses is not a strong limitation since such clauses are anyway necessary to prove any nontrivial code.

Finally, in some cases, the prover can be unable to deduce an annotation while it does follow mathematically from
the assumptions, and there exist neither non-compliance counterexamples nor subcontract weakness counterexamples.
We call this case a prover incapacity. It can happen for properties with non-linear arithmetics, requiring reasoning
by induction or additional lemmas, etc. Such cases were very frequent a few years ago and become less common for
many simple programs today thanks to a very significant progress made by the modern SMT solvers. Unfortunately,
they cannot be fully eliminated because of prover incompleteness.

The remainder of this section illustrates various proof failures with three simple examples of annotated C programs:
integer square root (Sec. 3.1), binary search (Sec. 3.2) and a longer and less classic example of restricted growth
functions (Sec. 3.3). The examples are presented in increasing order of complexity. The failures are shown for slightly
modified versions of the examples, where we tried to cover a wide range of errors and omissions (incorrect expressions,
wrong comparison operations, wrong or incomplete annotations, annotation omission, etc.). Non-compliances and
subcontract weaknesses are illustrated for all examples. An example of prover incapacity is given in Sec. 3.3. For
convenience of the reader, some ACSL notations are replaced by mathematical symbols (e.g. keywords \exists,
\forall and integer are respectively denoted by ∃, ∀ and Z).

3.1. Example 1: Multiplication-Free Integer Square Root
The program in Fig. 3. computes in the local variable r the integer square root of a given non-negative integer n, that
is, a non-negative integer value x such that x2 ≤ n < (x + 1)2. The variables y and z respectively store r2 and

4 of course, they are always reported by the STADY tool and are very useful for a detailed analysis of the proof failure.
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1 /*@ requires 0 ≤ n ≤ 10000; // (S1) With requires \true; "Invariant initially holds" fails
2 ensures \result*\result ≤ n < (\result+1)*(\result+1);
3 assigns \nothing; */
4 int sqrt(int n) {
5 int r = n;
6 int y = n*n;
7 int z = -2*n+1; // (S2) With z = 2*n+1; "Invariant initially holds" fails
8 /*@ loop invariant 0 ≤ r ≤ n ∧ // (S10) With r ≤ n "Variant non negative" fails
9 y == r*r ∧

10 n < (r+1)*(r+1) ∧ // (S7) Without line 10 "Postcond.holds" fails
11 z == -2*r+1; // (S3) With z == 2*r+1; "Inv.init.holds/Inv.preserved" fail
12 loop assigns r, y, z; // (S5) Without the condition on line 11 "Inv.preserved" fails
13 loop variant r; */ // (S9) With loop variant r-n; "Variant is non-negative" fails
14 while(y > n) { // (S6) With while(y>n+1) "Postcond.holds" fails
15 y = y+z; // (S4) With y = y-z; "Inv.preserved" fails
16 z = z+2;
17 r = r-1;
18 }
19 return r; // (S8) With return r-1; "Postcond.holds" fails
20 }

Fig. 3. Integer square root by decrementation

Line changes in Fig. 3 Proof status: Proved (3) or Category
Version Line Modified clause/statement Failure (?) with failing annot. of proof failure
S0 no changes 3 Proved
S1 1 requires \true; ? (inv. init. holds) nc
S2 7 int z = 2*n+1; ? (inv. init. holds) nc
S3 11 z == 2*r+1; ? (inv. init. holds, inv. preserved) nc
S4 15 y = y-z; ? (inv. preserved) nc
S5 11 \true; ? (inv. preserved) sw
S6 14 while(y > n+1) ? (postcond.) nc
S7 10 〈empty〉 ? (postcond.) sw
S8 19 return r-1; ? (postcond.) nc
S9 13 loop variant r-n; ? (variant non-negativity) nc
S10 8 loop invariant r≤n ∧ ? (variant non-negativity) sw

Fig. 4. Proof failures for different versions of the integer square root example given in Fig. 3

the difference (r − 1)2 − r2. This implementation uses them to avoid slower multiplications (other than those by 2
efficiently executed by bitshifts). The program initially over-approximates r with n. Then it decrements r until the
inequality y ≤ n becomes satisfied. Thus, the function returns the greatest integer r such that r2 ≤ n. Line 1 specifies
the precondition and line 2 its postcondition. Line 3 indicates that all (non local) variables should keep the same values
after the function call as before. Lines 8–11 define a loop invariant. Line 12 indicates which variables may be modified
by the loop, while line 13 defines a loop variant. A loop variant is an integer expression that must be non-negative
whenever a loop iteration starts, and must strictly decrease at each iteration, thus allowing the deductive verification
tool to deduce the termination of the loop after a finite number of steps.

To simplify this example, in addition to stating that input value n is non-negative, we limit it by 10 000 to avoid
arithmetic overflows. This is done to simplify the presentation and is not a limitation of the proposed method: the
absence of arithmetic overflows can be treated by STADY as any other assertions. Indeed, WP can automatically insert
assertions stating the absence of arithmetic overflows, and then tries to prove them. If the proof of such an assertion
fails, STADY can be used to diagnose the proof failure (as we illustrate for one assertion of this kind in Sec. 3.3).

Let us illustrate some cases of proof failures using modified versions of the annotated program of Fig. 3. Fig. 4
gives the considered versions with the modified lines, their proof status with some failing annotations and category of
proof failure (if any). The initial version S0 presented in Fig. 3 can be completely proved using FRAMA-C/WP. Each
of the other versions contains exactly one modification.
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3.1.1. Failure to prove that the loop invariant initially holds

If we

replace the precondition on line 1 of Fig. 3 by a trivial precondition requires \true; (S1)

then the loop invariant (in particular, the property 0 ≤ r) cannot be shown to hold before the first iteration of the
loop. Alternatively, suppose that

the assignment z = -2*n+1 on line 7 of Fig. 3 is replaced by the assignment z = 2*n+1. (S2)

Then the loop invariant z == -2*r+1 is not true before the loop, therefore, the proof that the loop invariant initially
holds fails. On the other hand, in these two cases the proof that the loop invariant is preserved succeeds. Last, suppose
that

the part z == -2*r+1 of the loop invariant on line 11 of Fig. 3 is replaced by z == 2*r+1. (S3)

Then the loop invariant is neither initially true, nor preserved.
In these cases the precondition, the code before the loop and the loop invariant are not compliant, so at least one

of them must be modified. The postcondition is still established in all three cases.
Since no function calls or other loops appear before the loop in this program, we cannot illustrate the case of their

contract weakness in this case, but such cases are of course possible in general.

3.1.2. Failure to prove that the loop invariant is preserved

Suppose that

the assignment y = y+z on line 15 of Fig. 3 is replaced by y = y-z. (S4)

Then the proof that the invariant is preserved fails, in particular, because the loop body does not preserve the property
y == r*r. This failure reveals a non-compliance between the loop body and the invariant. Suppose now that

the line 11 of Fig. 3 is empty, i.e. the part z ==-2*r+1 of the loop invariant is not provided. (S5)

Then the proof that the invariant is preserved fails as well. Here, the loop invariant 0 ≤ r ≤ n∧y = r2∧n < (r+1)2

is actually satisfied before the loop and after each loop iteration (and in particular, runtime assertion checking will not
detect a failure for any test data). This failure reveals a weakness of the loop invariant that is not sufficient to establish
the proof of its preservation. On the other hand, in both cases the proofs that the invariant initially holds and that the
postcondition is established succeed.

3.1.3. Failure to prove that the postcondition holds

Suppose that

the loop condition y > n on line 14 of Fig. 3 is replaced by y > n+1. (S6)

Then the proof that the postcondition holds fails because of a non-compliance between code and specification. Indeed,
in this case the loop can exit too early, as soon as r2 ≤ n + 1 becomes satisfied. For instance, for input value n = 3,
the value r = 2 will be returned instead of 1.

Suppose now that

the line 10 of Fig. 3 is empty, i.e. the part n <(r+1)*(r+1) of the loop invariant is not provided. (S7)

Then the postcondition is not proved because the loop invariant is too weak. It is satisfied before the loop and after
each loop iteration, but is not sufficient to establish the postcondition. Such a weakness of a loop invariant can be very
difficult to distinguish from other failures.

Let us now assume that

the return statement return r; on line 19 of Fig. 3 is replaced by return r-1; (S8)

Again, the proof of the postcondition of the function fails because after exiting the loop, the loop condition y ≤ n
with the invariant y = r2 imply r2 ≤ n, thus after return r-1; we have (\result+1)*(\result+1) ≤ n
instead of the expected postcondition n < (\result+1)*(\result+1).

The cases of weakness and non-compliance of a loop invariant can be very difficult to distinguish. Finally, an error
in the postcondition itself can also lead to a proof failure.
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1 /*@ requires 1 ≤ n ≤ 10000 ∧ \valid(t+(0..n-1));
2 requires ∀ Z i, j; 0 ≤ i < j < n ⇒ t[i] ≤ t[j]; // (B3) Without line 2 "Inv.preserved" fails
3 ensures -1 ≤ \result ≤ n-1;
4 ensures ∀ Z i; 0 ≤ i ≤ \result ⇒ t[i] ≤ x;
5 ensures ∀ Z i; \result < i < n ⇒ t[i] > x;
6 assigns \nothing; */
7 int binary_search(int t[], int n, int x) {
8 int L = -1, R = n-1; // L..R is the search range
9 /*@ loop invariant -1 ≤ L ≤ R ≤ n-1;

10 loop invariant ∀ Z i; 0 ≤ i ≤ L ⇒ t[i] ≤ x; // (B4) Without lines 10 and/or 11:
11 loop invariant ∀ Z i; R < i < n ⇒ t[i] > x; // ..."Postcond.holds" fails
12 loop assigns L, R; // (B6) With loop assigns L,R,t[0]; "Inv.pres./assigns" fail
13 loop variant R-L; */ // (B1) With loop variant n-R; "Variant decreases" fails
14 while(L < R) {
15 int m = (L+R+1)/2; // (B2) With m = (L+R)/2; "Variant decreases" fails
16 if(t[m] > x)
17 R = m-1;
18 else
19 L = m;
20 }
21 return L;
22 }

Fig. 5. Binary search of an element in a sorted array

Line changes in Fig. 5 Proof status: Proved (3) or Category
Version Line Modified clause/statement Failure (?) with failing annot. of proof failure
B0 no changes 3 Proved
B1 13 loop variant n-R; ? (variant decreases) nc
B2 15 int m = (L+R)/2; ? (variant decreases) nc
B3 2 〈empty〉 ? (inv.preserved) nc
B4 10–11 〈empty〉 ? (postcond. fails) sw
B5 12 loop assigns L; ? (loop assigns fails) nc
B6 12 loop assigns L,R,t[0]; ? (inv.pres.,assigns fail) sw

Fig. 6. Proof failures for different versions of the binary search example given in Fig. 5

3.1.4. Failure to prove that the loop variant is non-negative

It is possible that the expression given as a loop variant does not allow to prove loop termination even when all other
annotations (loop invariant, postcondition, etc.) are proved. For example, suppose we

replace the variant on line 13 of Fig. 3 by r − n. (S9)

Then the proof that the variant is non-negative each time the loop enters a new iteration fails because the loop invariant
becomes negative already at the second iteration. This proof failure is an example of non-compliance between code
and specification.

Now assume that

the condition 0 ≤ r ≤ n of the loop invariant on line 8 of Fig. 3 is replaced by r ≤ n. (S10)

In this case, the same proof failure occurs for a different reason: the loop invariant is too weak to deduce that the loop
variant is non negative. In this case, runtime assertion checking will not detect any failure. Notice that all other VCs
are proved in both cases.

Examples of failures to prove that the loop variant decreases are given in Sec. 3.2.

3.2. Example 2: Binary Search
The second example shown in Fig. 5 is a program that performs binary search of a given element x in a given array
t of size n. The array is supposed to be sorted in increasing order. This version returns a value k that gives the index
of the rightmost array element t[k] such that t[k] ≤ x, and k = −1 if x is strictly smaller than all elements of t. The
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program maintains the range L..R the searched index k can belong to, and reduces this range by half at every step
of the loop on lines 14–20. The middle index m is computed (line 15) and the value of t at index m is compared to
x to update the range (lines 16–19). As soon as the search range is reduced to one element (i.e. L = R), it contains
the required value that is returned. The precondition indicates that the input array t is a valid array of positive size
n (line 1) and that it is sorted (line 2). The ACSL predicate \valid(t+(0..n-1)), which is an equivalent form
for \valid(&t[0..n-1]), states that the array elements t[0], . . . , t[n-1] referred by the indicated range of
pointers can be safely read and written. To simplify the example and avoid considering overflows, we assume that
n ≤ 10 000. The postcondition is defined on lines 3–5. Line 6 specifies that the global memory state (that is, non local
variables) should keep the same values after the function execution as before it.

We will use this example to illustrate proof failures related to loop variants (some of which cannot be illustrated
by the example of Fig. 3) and (loop)assigns clauses. We also consider failures caused by two very common
errors, systematically done by the majority of students trying to specify and prove this example for the first time.
These modified versions are summarized in Fig. 6. The initial version (B0) presented in Fig. 5 is completely proved
by FRAMA-C/WP.

3.2.1. Failure to prove that the loop variant decreases

For a successful proof of termination of a loop, in addition to being non negative each time when the loop enters a new
iteration (cf. Sec. 3.1), the loop variant should strictly decrease. Let us suppose that

the loop variant R− L on line 13 of Fig. 5 is replaced with n−R. (B1)

This loop variant candidate does not necessarily decrease since a loop iteration modifies either L or R. Even if the
loop actually terminates in this case, the deductive verification tool cannot prove it.

Another example of a common programming error inducing a similar proof failure occurs if

the assignment m = (L+R+ 1)/2 on line 15 of Fig. 5 is replaced with m = (L+R)/2. (B2)

In this case the program does not necessarily terminate, and the variant R − L does not strictly decrease at each
iteration. Indeed, when R = L+1, the value of m becomes m = (L+L+1)/2 = L. If x ≥ t[L] then the assignment
L = m on line 19 does not change the value of L and the loop variant remains unchanged as well. This mistake is
revealed for example for n = 2, x = 1 and t[0] = t[1] = 0, because after the first iteration, we have L = 0 and R = 1,
so the loop variant expression is R− L = 1, and after the second iteration the values remain the same: L = 0, R = 1
and R− L = 1.

3.2.2. Failures related to two common errors

A common error often made by junior verification engineers is to omit the precondition that the array is sorted. Let us
suppose that

the precondition on line 2 of Fig. 5 is not provided. (B3)

In this case, the proof that the loop invariant (lines 10 and 11) is preserved fails. The analysis of the failure becomes
easier with a counterexample, for instance, for input data n = 2, x = 0, t[0] = 10 and t[1] = −10, we have after the
first loop iteration m = 0, L = −1 and R = 0 so the loop invariant of line 11 fails after this iteration since t[1] > x
does not hold.

Another common error is related to an incomplete loop invariant. Suppose

the loop invariants on lines 10–11 of Fig. 5 are omitted. (B4)

In this case, the proof that the postcondition holds fails. In this case, the loop invariant is too weak to prove the
postcondition.

3.2.3. Failures related to (loop) assigns clauses

The assigns clause (in a function contract) and the loop assigns clause (in a loop contract) define variables (or,
more precisely, left-values5) that are allowed to have different values after the corresponding function or loop. These

5 In C, left-values basically refer to objects whose address can be taken and, therefore, that have a location (e.g. variables, dereferenced pointers).
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clauses provide a concise way to express that all other variables remain unchanged without having to list them. For
a function contract, local variables should not be specified since only non local variables survive after the end of the
function. For a loop, all potentially modified global and local variables (except local variables whose scope is entirely
inside the loop body) should be specified since all variables that exist before and after the loop body can potentially
change their values after a loop iteration. Let us illustrate by two examples the issues related to loop assigns
clauses. (Similar issues occur for assigns clauses in functions contracts.)

The first issue is related to a too restrictive loop assigns clause. Suppose for instance that

the clause on line 12 of Fig. 5 is replaced with loop assigns L. (B5)

Since this clause is too restrictive (it does not allow modification of R) the deductive verification tool reports a proof
failure of the loop assigns clause. Indeed, this is a non-compliance between code and specification. Contrary to
other cases, this failure is very explicit: the failing annotation is too restrictive. That is why in this work we do not
seek to further diagnose the proof failures of (loop) assigns clauses as non-compliances since we consider that
such proof failures are sufficiently explicit.

The second issue is related to a too permissive loop assigns clause. Let us suppose that the loop assigns
clause is too general, for example, if

the clause on line 12 of Fig. 5 is replaced with loop assigns L,R,t[0]. (B6)

In this case, the loop assigns clause (line 12) itself is proved, but the proofs of the assigns clause (line 6)
and the invariant preservation fail. This is an example of a too weak subcontract: if the loop can modify t[0], these
properties cannot be proved any more. The first failure would not occur if some other parts of the function (and thus
the assigns clause) were allowed to modify t[0], that would make it even more difficult to understand the reason
of the failure to prove that the loop invariant is preserved. Notice that in this example, all annotations are still satisfied
in practice (and runtime assertion checking will not detect any failure). The feedback of the deductive verification tool
is not sufficiently precise in this case, so we do diagnose weaknesses of (loop) assigns clauses in this work
since they can lead to proof failures of various annotations. A counterexample illustrating that a value of t[0] can
change after the loop according to the loop contract and thus contradict the loop invariant preservation can be very
helpful to understand the issue.

3.3. Example 3: Restricted Growth Functions (RGF)
To illustrate various categories of proof failures on a more complex example, let us consider the C program in Fig. 7. It
includes function calls and a lemma requiring proof by induction. It illustrates new proof failure cases, among which
SW of a function contract and prover incapacity.

This example comes from a C library of generators of combinatorial structures specified with ACSL for deductive
verification [GGP15]. The main function f is similar to the successor function next rgf presented in the running
example of this previous work [GGP15, Section 2.2]. The main difference is that its last loop is implemented here by
the auxiliary function g, in order to illustrate modularity.

The successor function f modifies its input array a, whilst preserving an invariant on a (invariance property) and
turning a into a greater array in lexicographic order (progress property).

In Combinatorics, a function a : {0, . . . , n−1} → {0, ..., n−1} is a (particular case of) restricted growth function
(RGF) of size n > 0 if a(0) = 0 and 0 ≤ a(k) ≤ 1 + a(k − 1) for 1 ≤ k ≤ n − 1 (that is, the growth of a(k) w.r.t.
the previous value a(k− 1) is at most 1). The interested reader will find more detail in [MV13]. The invariant defined
by the ACSL predicate is_rgf on lines 1–2 of Fig. 7 states that the C array a stores the values of an RGF.

The first two preconditions of f (lines 23–24) state that a is a valid array of size n > 0. The third precondition
(line 25) states that a must be an RGF. The assigns clause (line 26) states that the function is only allowed to
modify the values of array a except the first one a[0]. The first postcondition (line 27) states that the generated array
a is still an RGF. Together with the precondition on line 25 it states the invariance property. The second postcondition
(lines 28–31) is a key argument to prove the progress property, when the function returns 1: it states that the leftmost
modified element of a has increased. Here \at(a[j],Pre) denotes the value of a[j] in the Pre state, i.e. before
the function is executed.

We focus now on the body of the function f in Fig. 7. The loop on lines 37–38 goes through the array from right
to left to find the rightmost non-increasing element, that is, the maximal array index i such that a[i] ≤ a[i− 1]. If such
an index i is found, the function increments a[i] (line 42) and fills out the rest of the array with zeros (call to g, line
43). The loop contract (lines 34–36) specifies the interval of values of the loop variable, the variable that the loop can
modify as well as a loop variant that is used to ensure the termination of the loop.
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1 /*@ predicate is_rgf(int *a, Z n) =
2 a[0] == 0 ∧ (∀ Z i; 1 ≤ i < n ⇒ 0 ≤ a[i] ≤ a[i-1]+1); */
3

4 /*@ lemma max_rgf: ∀ int* a; ∀ Z n;
5 is_rgf(a, n) ⇒ (∀ Z i; 0 ≤ i < n ⇒ a[i] ≤ i); */
6

7 /*@ requires n > 0;
8 requires \valid(a+(0..n-1));
9 requires 1 ≤ i ≤ n-1;

10 requires is_rgf(a,i+1);
11 assigns a[i+1..n-1];
12 ensures is_rgf(a,n); */
13 void g(int a[], int n, int i) {
14 int k;
15 /*@ loop invariant i+1 ≤ k ≤ n;
16 loop invariant is_rgf(a,k);
17 loop assigns k, a[i+1..n-1];
18 loop variant n-k; */
19 for (k = i+1; k < n; k++)
20 a[k] = 0;
21 }
22

23 /*@ requires n > 0;
24 requires \valid(a+(0..n-1));
25 requires is_rgf(a,n);
26 assigns a[1..n-1];
27 ensures is_rgf(a,n);
28 ensures \result == 1 ⇒
29 (∃ Z j; 0 ≤ j < n ∧
30 \at(a[j],Pre) < a[j] ∧
31 (∀ Z k; 0 ≤ k < j ⇒ \at(a[k],Pre) == a[k])); */
32 int f(int a[], int n) {
33 int i = n-1;
34 /*@ loop invariant 0 ≤ i ≤ n-1;
35 loop assigns i;
36 loop variant i; */
37 while (i ≥ 1 ∧ a[i] > a[i-1])
38 i--;
39 if (i == 0) // Last RGF.
40 return 0;
41 //@ assert a[i]+1 ≤ 2147483647;
42 a[i] = a[i] + 1;
43 g(a,n,i);
44 /*@ assert ∀ Z l; 0 ≤ l < i ⇒ \at(a[l],Pre) == a[l]; */
45 return 1;
46 }

Fig. 7. Successor function for restricted growth functions (RGF)

Line changes in Fig. 7 Proof status: Proved (3) or Category
Version Line Modified clause/statement Failure (?) with failing annot. of proof failure
R0 no changes 3 Proved
R1 25 requires is_rgf(a,n); deleted ? (precond. g fails) nc
R2 35 loop assigns i, a[1..n-1]; ? (postcond. fails) sw
R3 4-5 Lemma max_rgf deleted ? (assert fails) Prover incapacity
R4 42 a[i] = a[i]+2; ? (precond. g fails) nc

Fig. 8. Proof failures for different versions of the RGF example given in Fig. 7
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The function g is used to fill the array with zeros to the right of index i. In addition to size and validity constraints
(lines 7–8), its precondition requires that the elements of a up to index i form an RGF (line 10). The function is allowed
to modify the elements of a starting from the index i+1 (line 11) and generates an RGF (line 12). The loop invariants
indicate the value interval of the loop variable k (line 15), and state that the property is_rgf is satisfied up to k (line
16). This invariant allows a deductive verification tool to deduce the postcondition. The annotation loop assigns
(line 17) says that the only values the loop can change are k and the elements of a starting from the index i + 1. The
term n− k is a variant of the loop (line 18).

The code of Fig. 7 can be fully proven in WP. We illustrate the following proof failure cases with modified versions
of this example summarized in Fig. 8.

3.3.1. NC of a function contract

If we

remove the precondition on line 25 of Fig. 7, (R1)

the precondition of function g on line 10 fails at the call to g on line 43.

3.3.2. SW of a loop contract (loop assigns clause) to prove the postcondition

Suppose we

replace loop assigns on line 35 of Fig. 7 by loop assigns i,a[1..n-1]. (R2)

Then there is a subcontract weakness to prove the postcondition of the loop.

3.3.3. Prover incapacity

The ACSL lemma max_rgf on lines 4–5 of Fig. 7 states that if an array is an RGF, then each of its elements is at most
equal to its index. Its proof requires induction and cannot be performed automatically by WP that uses this lemma to
ensure the absence of overflow at line 42 (stated on line 41). If we

remove the lemma max_rgf on lines 4–5 in Fig. 7 (R3)

the proof of the assertion fails due to the incapacity of the prover to make the adequate inductive reasoning. With the
lemma on lines 4–5, the functions of Fig. 7 are completely proved using WP.

3.3.4. NC of the precondition of a called function

If we

replace the statement on line 42 of Fig. 7 by a[i] = a[i] + 2, (R4)

there is a non-compliance of the precondition of g on line 10 for the call on line 43.
The examples of Sec. 3.1, 3.2 and 3.3 clearly demonstrate that the same proof failures can come from very different

issues, and belong to different categories.

4. Non-Compliance
For the remainder of the paper, let P be a C program annotated in E-ACSL, and f the function under verification in
P . Function f is assumed to be recursion-free6. Function f may call other functions, let g denote any of them. A test
datum V for f is a vector of values for all input variables of f . The program path activated by a test datum V , denoted
πV , is the sequence of program statements executed by the program on the test datum V .

In this section we define non-compliance more formally and briefly recall the non-compliance detection technique
presented in [PBJ+14]. This technique first translates an annotated program P into another C program, denoted PNC,
and then applies test generation to produce test data violating some annotations at runtime. We present the intrumented
program PNC in Sec. 4.1, define non-compliance and non-compliance detection (denoted DNC) in Sec. 4.2, and
discuss its adaptive version in Sec. 4.3.

6 This assumption is not a theoretical limitation of the method: it is made for simplicity of presentation and because PATHCRAWLER currently
does not support recursive and mutually recursive functions.
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1 /*@ requires P1;
2 ensures Q1; */
3 Typeg g(...) {
4 code1;
5 return ...;
6 }
7 /*@ requires P2;
8 ensures Q2; */
9 Typef f(...) {

10 code2;
11 g(...);
12 /*@ loop invariant I;
13 loop assigns x1, ..., xN;
14 loop variant E; */
15 while(b) {
16 code3;
17 }
18 code4;
19 //@ assert P4;
20 code5;
21 return ...;
22 }

→

1 Typeg g(...) {
2 // Check that the precondition of g holds
3 int pre_g; Spec2Code(P1, pre_g);
4 fassert(pre_g);
5 code1;
6 // Check that the postcondition of g holds
7 int post_g; Spec2Code(Q1,post_g);
8 fassert(post_g);
9 return ...;

10 }
11 Typef f(...) {
12 // Assume the precondition of f
13 int pre_f; Spec2Code(P2, pre_f);
14 fassume(pre_f);
15 code2;
16 g(...);
17 // Check that the invariant initially holds
18 int inv1; Spec2Code(I, inv1);
19 fassert(inv1);
20 while(b) {
21 // Check that the variant is non-negative
22 int var1; Spec2Code(E ≥ 0, var1);
23 fassert(var1);
24 BegIter: code3;
25 // Check that the invariant is preserved
26 int inv2; Spec2Code(I, inv2);
27 fassert(inv2);
28 // Check that the variant decreases
29 int var2; Spec2Code(E <\at(E, BegIter), var2);
30 fassert(var2);
31 }
32 code4;
33 // Check that the assertion is true
34 int asrt; Spec2Code(P4, asrt);
35 fassert(asrt);
36 code5;
37 // Check that the postcondition of f holds
38 int post_f; Spec2Code(Q2,post_f);
39 fassert(post_f);
40 return ...;
41 }

Fig. 9. (a) An annotated code, (b) its translation in PNC for non-compliance detection (DNC)

4.1. Instrumented Program PNC

Fig. 9 illustrates the translation of an annotated C program P into an intrumented program PNC. It shows the transla-
tion for function contracts, loop contracts and assertions, where f is the function under verification and g is a called
function. For simplicity of presentation, we assume that the code in Fig. 9a does not contain control jump statements
such as break or continue, and each function can have a unique return statement (if any) at the very end of its
body7. As mentioned in Sec. 3.2, the (loop) assigns clauses are not considered during non-compliance detection
because provers usually give a sufficiently clear feedback about them.

For an E-ACSL predicate Q , we denote by Spec2Code(Q, b) the generated C code that evaluates the predicate
Q and assigns its validity status to the Boolean variable b (see [PBJ+14] for details). For instance, if Q is the predicate
∀ Z i; 0 ≤ i < n ⇒ t[i] 6= 0;

then the (simplified) translation produced by Spec2Code(Q, b) can be the following:

int i;
for(b = 1, i = 0; i < n && b == 1; i++)

if (t[i] == 0) b = 0;

7 These assumptions are made for clarity and do not represent limitations of the method. Notice that FRAMA-C performs a code normalization
step that facilitates the intrumentation in such cases in STADY.
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PNC checks all annotations of P in the corresponding program locations and reports any failure. For instance, the
postcondition Postf of f is evaluated by the following code inserted at the end of the function f in PNC:

int post_f; Spec2Code(Postf , post_f); fassert(post_f);

The function call fassert(b) checks the condition b and reports the failure and exits whenever b is false.
Similarly, preconditions and postconditions of a callee g are evaluated respectively before and after executing the
function g (cf. lines 3–4, 7–8 in Fig. 9b). A loop invariant is checked before the loop (for being initially true, cf. lines
18–19 in Fig. 9b) and after each loop iteration (for being preserved by the previous loop iteration, cf. lines 26–27 in
Fig. 9b). An assertion is checked at its location (see lines 34–35 in Fig. 9b). To generate only test data that respect the
precondition Pref of f , Pref is assumed at the beginning of f by the code (see an example lines 13–14 in Fig. 9b):

int pre_f; Spec2Code(Pref , pre_f); fassume(pre_f);

where fassume assumes the given condition (see lines 13–14 in Fig. 9b).
As in verification conditions, the translation for loop variants is aimed at detecting failures for two kinds of proper-

ties: loop variant is non-negative and strictly decreases. Lines 22–23 in Fig. 9b check that the variantE is non-negative
at the beginning of each execution of the loop body code3. Then lines 29–30 check that the variant strictly decreases
at each iteration of the loop by comparing its value at the beginning of the loop body (at label BegIter added on line
24) with its value at the end of the loop body.

4.2. Non-Compliance Detection DNC

Definition 1 (Non-compliance). We say that there is a non-compliance (NC) between code and specification in P
if there exists a test datum V for f respecting its precondition, such that the execution of PNC reports an annotation
failure on V . In this case, we say that V is a non-compliance counterexample (NCCE).

Test generation on the translated program PNC can be used to generate NCCEs. We call this technique Non-
Compliance Detection, denoted DNC. In this work we use the PATHCRAWLER test generator that will try to cover all
program paths. Since the translation step added a branch for the false value of each annotation, PATHCRAWLER will
try to cover at least one path where the annotation does not hold (an optimization in PATHCRAWLER avoids covering
the same failure many times). The DNC step may have three outcomes. If an NCCE V has been found, it returns
(nc,V , a) indicating the failing annotation a and recording the program path πV activated by V on PNC. Second, if
it has managed to perform a complete exploration of all program paths without finding any NCCE, it returns no (cf.
the discussion of relative completeness in Sec. 2). Otherwise, if only a partial exploration of program paths has been
performed (due to a timeout, partial coverage criterion or any other limitation), it returns ? (unknown).

4.3. Adaptive Non-Compliance Detection
To reduce the number of sessions of test generation, the instrumentation for non-compliance detection of all required
properties can be realized in the same instrumented program PNC. However, a systematic instrumentation of all checks
leads to a bigger number of program paths and is usually not necessary. We need to instrument and perform only those
checks for which the proof fails. We call this approach adaptive non-compliance detection.

For example, the adaptive instrumentation does not add lines 18–19 when the proof that the invariant on line 11
in Fig. 9a initially holds succeeds. Similarly, lines 26–27 are useless when the invariant preservation is proved, while
lines 34–35 can be omitted if the assertion on line 18 in Fig. 9a is proved.

For the called functions, the instrumentation for the postcondition is not necessary if the contract of the callee has
been proved. Indeed, if the precondition of a callee g is verified and its contract is proved, then the postcondition holds
after the call. For example, we can remove the lines 7–8 in Fig. 9b if g is proved because the precondition is guaranteed
by lines 3–4.

5. Subcontract Weakness and Prover Incapacity
In this section we formally define subcontract weakness and prover incapacity, and introduce the subcontract weakness
detection technique. This technique translates a given annotated program P into another C program, denoted P SW, and
then applies test generation to produce test data violating some annotations at runtime. We present the intrumented
program P SW in Sec. 5.1, define subcontract weaknesses and subcontract weakness detection (denoted DSW) in
Sec. 5.2, present the adaptive detection in Sec. 5.3, discuss the differences between global and single subcontract
weaknesses in Sec. 5.4, and define prover incapacity in Sec. 5.5.
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1 /*@ requires P1;
2 assigns y1,...,yN;
3 ensures Q1; */
4 Typeg g(...){
5 code1;
6 return ...;
7 }
8

9

10

11

12 Typef f(...){
13 code2;
14 g(Argsg);
15 code3;
16 return ...;
17 }

→

1 Typeg g_sw(...){
2 // Check that the precondition of g holds
3 int pre_g; Spec2Code(P1, pre_g);
4 fassert(pre_g);
5 // Simulate the body of g by contract
6 y1=Nondet(); ... yN=Nondet();
7 Typeg ret = Nondet(); // simulates returned value (if any)
8 int post; Spec2Code(Q1, post);
9 fassume(post); return ret;

10 }
11

12 Typef f(...){
13 code2;
14 g_sw(Argsg);
15 code3;
16 return ...;
17 }

Fig. 10. (a) A contract c ∈ C of callee g in f , vs. (b) its translation in P SW for subcontract weakness detection (DSW)

1 /*@ loop invariant I;
2 loop assigns x1,...,xN;
3 loop variant E; */
4 while(b) {
5 code4;
6 }

→

1 // Check that the invariant initially holds
2 int inv1; Spec2Code(I, inv1);
3 fassert(inv1);
4 // Simulate a few first iterations by contract
5 x1=Nondet(); ... xN=Nondet();
6 int inv2; Spec2Code(I, inv2);
7 fassume(inv2);
8 // Execute an arbitrary iteration of the loop
9 if(b){

10 // Check that the variant is non-negative
11 BegIter: fassert(E ≥ 0);
12 code4;
13 // Check that the invariant is preserved
14 int inv3; Spec2Code(I, inv3);
15 fassert(inv3);
16 // Check that the variant decreases
17 fassert(E < \at(E,BegIter));
18 // Do not continue the iteration if no issue found
19 exit(0);
20 } // Here, b is false, as required after the loop
21 // The loop is fully simulated by contract

Fig. 11. (a) A contract c ∈ C of a loop in f , vs. (b) its translation in P SW for subcontract weakness detection (DSW)

5.1. Instrumented Program P SW

Following the modular verification approach, we assume that the called functions have been verified before the caller
f . Unlike in [PKB+16], we do not assume here that the loop contracts are verified, and consider all (possibly nested)
loops without restricting ourselves to weaknesses of the outer loops.

Let cf denote the contract of f , C the set of subcontracts for f , andA the set of all annotations in f and annotations
of cf . In other words,A contains the annotations included in the set of contracts C∪{cf} as well as the assertions in f .
We also assume that every subcontract for f contains a (loop) assigns clause (cf. Remark 2). As in Sec. 4.1, it
will be convenient to assume that function f does not contain control jump statements such as break or continue,
and each function can have a unique return statement (if any) at the very end of its body.

To apply testing for the contracts of loops and called functions in C instead of their code, we use a new program
transformation of P producing another program P SW. The goal is to replace the code of such a function call or loop
by the most general code respecting the corresponding subcontract. Let us first illustrate the transformation for non-
imbricated (or non-nested) function calls and loops in f , that is, function calls and loops that are not inside another
loop in f .

Suppose that f contains a function call to g whose contract is cg ∈ C. The program transformation (illustrated
by Fig. 10) generates a new function g_sw with the same signature whose code simulates any possible behavior
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respecting the postcondition in cg , and replaces all calls to g by a call to g_sw. First, g_sw checks the precondition
of g (lines 3–4 in Fig. 10b). Then g_sw chooses values for subcontract outputs. It allows any of the variables (or,
more generally, left-values) listed in the assigns clause of cg to change its value (line 6 in Fig. 10b). It can be done
by assigning a non-deterministic value of the appropriate type that is denoted here for simplicity by the dedicated
function Nondet (cf. Sec. 2), or simply by adding an array of fresh input variables and reading a different value for
each use and each function invocation. If the return type of g is not void, another non-deterministic value is read for
the returned value ret (line 7 in Fig. 10b). Finally, the validity of the postcondition is evaluated (taking into account
these new non-deterministic values) and assumed in order to consider only executions respecting the postcondition,
and the function returns (lines 8–9 in Fig. 10b).

Suppose now that f contains a loop w whose contract is cw ∈ C (see Fig. 11). The instrumented code P SW should
allow test generation to detect:

(i) a weakness of cw to prove other annotations outside the considered loop w (and therefore reached after exiting w),
(ii) a weakness of cw to prove properties required by the loop contract cw at the end of an arbitrary loop iteration (that

is, loop invariant is preserved, loop variant is non-negative and decreases), and
(iii) a weakness of cw to prove other properties coming from the body code4 of w in case it contains assertions,

function calls or nested loops (i.e. an assertion in the body of loop w, precondition of a function called in the body
of loop w, and the fact that the loop invariant of an inner nested loop w′ inside loop w initially holds).

In the instrumented program presented in Fig. 11b, the detection of (i) is ensured by the program paths where lines
1–7 are followed by the empty else branch of the conditional statement on line 9 (i.e. the case b is not true). Indeed, in
this case the generated code simulates a complete execution of the loop by the loop contract cw. First, it checks that
the loop invariant initially holds (lines 2–3 in Fig. 11b). Then it chooses values for subcontract outputs and assumes
that the loop invariant is preserved (lines 5–7 in Fig. 11b). The paths going through the else branch of the conditional
statement on line 9 ensure additionally that b is not true. Thus the “loop postcondition” I ∧¬b after the loop is indeed
ensured on line 21.

The detection of (ii) and (iii) is achieved by the program paths where lines 1–7 are followed by the then branch of
the conditional statement on line 9 in Fig. 11b (i.e. the case b is true). In this case, lines 1–7 simulate a few iterations
by the loop contract cw, followed by an inlined iteration (on lines 10–17). The code of the iteration checks that the
loop invariant is preserved (lines 14–15), that the loop variant is non-negative (line 11) and decreases (line 17). The
label BegIter is added on line 11 to refer to the value of the variant E at the beginning of the iteration.

Notice that pieces of code code2, code3 and code4 in Fig. 10 and 11 are also transformed in P SW in the same
way: if they contain function calls or loops they are in turn replaced as shown in Fig. 10 and Fig. 11. In addition, the
transformation treats in the same way as in PNC all assertions in A (they are not shown in Fig. 10b and Fig. 11b but
an example is given on lines 34–35 in Fig. 9b). This recursive transformation ensures that the program paths where
lines 1–7 are followed by the then branch of the conditional statement on line 9 address (iii) and detect a weakness
of cw for other properties coming from the body of w. Since these paths are only used to detect weaknesses of cw
for annotations inside an arbitrary loop iteration, they are cut (line 19 in Fig. 11b) and do not continue to statements
outside the loop body (already addressed by (i)).

In this way, the intrumented program P SW creates a modular vision of f suitable for detection of weaknesses by
test generation.

5.2. Subcontract Weakness Detection DSW

As explained in Remark 1, we do not consider the same counterexample as a non-compliance and subcontract weak-
ness counterexample at the same time.

Definition 2 (Global subcontract weakness). We say that P has a global subcontract weakness for f if there exists
a test datum V for f respecting its precondition, such that the execution of PNC on V does not report any annotation
failure, while the execution of P SW on V for some suitable subcontract outputs reports an annotation failure. In
this case, we say that V (with suitable subcontract outputs) is a global subcontract weakness counterexample (global
SWCE) for the set of subcontracts C.

Test generation can be applied on P SW to generate global SWCE candidates. When it finds a test datum V (with
some suitable subcontract outputs) such that P SW fails on V , we use runtime assertion checking: if PNC fails on
V , then V is classified as an NCCE, otherwise V is a global SWCE (cf. Remark 1). We call this technique Global
Subcontract Weakness Detection for the set of all subcontracts, denoted DSW

global. In the method described below in
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Section 6, DSW
global will be applied after DNC (but since DNC could have timed out, DSW

global can still find a NCCE).
The DSW

global step may have four outcomes. It returns (nc,V , a) if an NCCE V has been found for the failing annotation
a, and (sw,V , a,C) if V has been finally classified as an SWCE, where a is the failing annotation and C is the set
of subcontracts. The program path πV activated by V and leading to the failure (on PNC or P SW) and subcontract
outputs (for a global SWCE) are recorded as well. If DSW

global has managed to perform a complete exploration of all
program paths without finding a global SWCE, it returns no. Otherwise, if only a partial exploration of program paths
has been performed it returns ? (unknown).

A global SWCE does not explicitly indicate which single subcontract c ∈ C is too weak (cf. Remark 3 below). To
do so, we propose another program transformation of P into an instrumented program P SW

c . It is done by replacing
only one function call or loop by the most general code respecting the postcondition of the corresponding subcontract
c (as indicated in Fig. 10 and 11). Other annotations in A are transformed in the same way as in PNC. We say that the
proof of an annotation a relies on a subcontract c of a function call or a loop if this subcontract becomes a hypothesis
during the proof of a, that is, c is an assumption in the corresponding verification condition. Typically, if annotation
a appears after a function call (or a loop), the proof of a assumes the contract of the called function (or the loop)
since the prover uses a modular vision, where the code of the function (or the loop) is replaced by the subcontract (cf.
Section 3).

Definition 3 (Single subcontract weakness). Let c be a subcontract for f , and a an annotation in f whose proof
relies on c. We say that c is a too weak subcontract (or has a single subcontract weakness) for a in f if there exists
a test datum V for f respecting its precondition, such that the execution of PNC on V does not report a failure of
annotation a, while the execution of P SW

c on V for some suitable subcontract outputs reports a failure of annotation a.
In this case, we say that V (with suitable subcontract outputs) is a single subcontract weakness counterexample (single
SWCE) for the subcontract c with respect to annotation a in f .

For any subcontract c ∈ C, test generation can be separately applied on P SW
c to generate single SWCE candidates.

If such a test datum V is generated, it is checked on PNC to classify it as an NCCE or a single SWCE (cf. Remark 1).
This technique, applied for all subcontracts one after another until a first counterexample V is found, is called Single
Contract Weakness Detection, and denoted DSW

single. The DSW
single step may have three outcomes. It returns (nc,V , a) if

an NCCE V has been found for a failing annotation a, and (sw,V , a, {c}) if V has been finally classified as a single
SWCE, where a is the failing annotation and c is the single too weak subcontract. The program path πV activated by
V and leading to the failure (on PNC or P SW

c ) and subcontract outputs (for a single SWCE) are recorded as well.
Otherwise, it returns ? (unknown).

5.3. Adaptive Subcontract Weakness Detection
As for DNC, to reduce the number of test generation sessions and the number of program paths in the instrumented
programs, we propose an adaptive subcontract weakness detection. Indeed, checking annotations whose proof was
successful is not necessary (in both DSW

global and DSW
single steps). Second, a subcontract c can obviously be too weak for

an annotation a only if the proof of a relies on c (cf. Def. 3). Thus, it is useful to look for a single subcontract weakness
of a subcontract c for an annotation a only if a is unproven and if the proof of a relies on c. We can therefore restrict
the DSW

single to subcontracts c that may have an impact on an unproven annotation.

5.4. Global vs. Single Subcontract Weaknesses
Even after an exhaustive path testing, the absence of a single SWCE for any subcontract c cannot ensure the absence
of a global SWCE, as detailed in the following remark.

Remark 3. A proof failure can be due to the weakness of several subcontracts, while no single one of them is too
weak. In other words, the absence of single SWCEs does not imply the absence of global SWCEs. When a single
SWCE exists, it can indicate a single too weak subcontract more precisely than a global SWCE.

Indeed, consider the example in Fig. 12a, where the proof of the postcondition of f fails. If we apply DSW
single

to any of the subcontracts, we always have x ≥ \old(x)+5 at the end of f (we add 1 to x by executing the
translated subcontract, and add 2 twice by executing the other two functions’ code), so the postcondition of f holds
and no weakness is detected. If we run DSW

global to consider all subcontracts at once, we only get x≥\old(x)+3 after
executing the three subcontracts, and can exhibit a global SWCE.
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1 int x;
2 /*@ ensures x ≥ \old(x)+1; assigns x;*/
3 void g1() { x=x+2; }
4 /*@ ensures x ≥ \old(x)+1; assigns x;*/
5 void g2() { x=x+2; }
6 /*@ ensures x ≥ \old(x)+1; assigns x;*/
7 void g3() { x=x+2; }
8 /*@ ensures x ≥ \old(x)+4; assigns x;*/
9 void f() { g1(); g2(); g3(); }

(a) Absence of single SWCEs for any subcontract does not imply ab-
sence of global SWCEs

1 int x;
2 /*@ ensures x ≥ \old(x)+1; assigns x;*/
3 void g1() { x=x+1; }
4 /*@ ensures x ≥ \old(x)+1; assigns x;*/
5 void g2() { x=x+1; }
6 /*@ ensures x ≥ \old(x)+1; assigns x;*/
7 void g3() { x=x+2; }
8 /*@ ensures x ≥ \old(x)+4; assigns x;*/
9 void f() { g1(); g2(); g3(); }

(b) Global SWCEs do not help to find precisely a too weak subcontract

Fig. 12. Two examples where the proof of f fails due to subcontract weaknesses

P DNC(P )

1 Non-compliance

(nc, V , a)

DSW(P )
no / ? DNC(P ) = no ∧

DSW(P ) = no
no / ?

5 Unknown
false

2 Subcontract weakness

(sw, V , a, S)(nc, V , a)

reduced input domain?
(typically present?)

true
4

Unknown,
Likely prover

incapacity
true

3 Prover
incapacityfalse

Fig. 13. Combined verification methodology in case of a proof failure on P

On the other hand, running DSW
global produces a global SWCE that does not indicate which of the subcontracts is

too weak, while DSW
single can sometimes be more precise. For Fig. 12b, since the three callees are replaced by their

subcontracts for DSW
global, it is impossible to find out which one is too weak. Counterexamples generated by a prover

suffer from the same precision issue: taking into account all subcontracts instead of the corresponding code prevents
from a precise identification of a single too weak subcontract. In this example DSW

single can be more precise, since only
the replacement of the subcontract of g3 also leads to a single SWCE: we can have x ≥\old(x)+3 by executing
g1, g2 and the subcontract of g3, exhibiting the contract weakness of g3. Thus, the proposed DSW

single technique can
provide the verification engineer with a more precise diagnosis than counterexamples extracted from a prover.

We define a combined subcontract weakness detection technique, denoted DSW, by applying DSW
single followed by

DSW
global until the first counterexample is found. In other words, DSW looks first for single, then for global subcontract

weaknesses. DSW may have the same four outcomes as DSW
global. It allows the subcontract weakness detection both to

precisely indicate, when possible, a single too weak subcontract, and to be able to find global subcontract weaknesses
even when there are no single ones.

5.5. Prover Incapacity

When neither a non-compliance nor a global subcontract weakness exists, we cannot demonstrate that it is impossible
to prove the property.

Definition 4 (Prover incapacity). We say that a proof failure in P is due to a prover incapacity if for every test datum
V for f respecting its precondition, neither the execution of PNC nor that of P SW report any annotation failure on V .
In other words, there is no NCCE and no global SWCE for P .

Notice that Definitions 1, 2, 3, 4 define theoretical notions of proof failure reasons. As program verification in
general, their sound and complete detection is undecidable. The next section proposes our method for diagnosis of
proof failures.
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Ver- Line changes Intermediate outcome
sion in the code in Fig. 7 Proof (failing annot.) DNC DSW Final outcome
R0 no changes 3 – – Proved
R1 Line 25 deleted ? (l. 27, 41 and 43) nc – 1 V1 is an NCCE
R2 loop assigns i, a[1..n-1]; ? (l. 41, 43, 44, ? sw on

on line 35 27 and 28–31) l. 37–38 2 V2 is an SWCE

R3 Lemma deleted (lines 4-5) ? (line 41) ? ? 5 Unknown
R′

3 Lemma deleted (lines 4-5), and ? (line 41) no no 4 Likely prover
typically n < 5; incapacity (analysis
added after line 25 with reduced domain)

R4 a[i] = a[i]+2; on line 42 ? (line 43) nc – 1 V4 is an NCCE
with V1 =〈n=1; a[0]=-214739〉, V2 =〈n=2; a[0]=a[1]=0; nondeta[1]=97157; nondeti=0 〉 and

V4 =〈n=2; a[0]=a[1]=0〉.

Fig. 14. Method results for different versions of the RGF illustrating example

6. Diagnosis of Proof Failures using Structural Testing
In Section 6.1 we present an overview of the proposed method for diagnosis of proof failures using the detection
techniques of Sections 4 and 5 and illustrate it on several examples. Section 6.2 provides a comprehensive list of
suggestions of actions for each category of proof failures.

6.1. Method
The proposed method is illustrated by Fig. 13. Suppose that the proof of the annotated program P fails for some
annotation a ∈ A. The first step tries to find a non-compliance using DNC. If such a non-compliance is found, it
generates an NCCE (case 1 in Fig. 13) and classifies the proof failure as a non-compliance. If the first step cannot
generate a counterexample, the DSW step combines DSW

single and DSW
global and tries to generate single SWCEs, then

global SWCEs, until the first counterexample is generated. It can be classified either as a non-compliance 1 (that is
possible if path testing in DNC was not exhaustive, cf. Remark 1 and Def. 2, 3) or a subcontract weakness (case 2 ).

If no counterexample has been found, the last step checks the outcomes. If both DNC and DSW have returned
no, that is, both DNC and DSW

global have performed a complete path exploration without finding a counterexample,
we have two situations. If both DNC and DSW steps were performed on the complete input domain (without using a
typically clause, which reduces the input domain for testing as detailed below), the proof failure is classified as a
prover incapacity (case 3 , cf. Def. 4). If the user reduced the input domain for testing to a smaller domain (using a
typically clause), the result is still unknown, but it is likely that there is a prover incapacity for the initial program
(case 4 ). This choice of suggestion is based on the fact that for many programs a counterexample can be found
already on a reduced input domain if the reduced domain is representative of the complete input domain. Otherwise,
if at least one of DNC and DSW was inconclusive and returned ?, the proof failure remains unclassified (case 5 ).

Fig. 14 illustrates the method on several versions, labeled by R0, . . . , R4, of the RGF example of Fig. 7 described
in Sec. 3.3. For each version, the second column details the lines modified in the intitial program (denoted R0) of
Fig. 7. Columns 3 to 5 report the intermediate results of deductive verification, non-compliance detection (DNC)
and specification weakness detection (DSW). Proof failure is depicted by ? in Column 3, followed by the lines of the
unproved annotations. The symbol ’–’ means that the corresponding detection is not necessary and thus not performed.
Column 6 reports the proof failure category and, if any, the generated counterexample V of the final outcome, which
also includes the recorded path πV , the reported failing annotation a, subcontract outputs and a set of too weak
subcontracts S (not shown in the figure).

For all versions that include the lemma max_rgf in Fig. 7, the deductive verification fails for the lemma because
its proof requires inductive reasoning. The symbol 3 in Column 3 for the version R0 means that all other verification
conditions of R0 are automatically proved. The other versions (summarized in Fig.14) illustrate the cases 1 to 4 of
the method and show how the final outcome can be helpful for the verification engineer.

In version R1 we try to prove with WP a modified version of the function f of Fig. 7 where the precondition on
line 25 is missing. There are three failing annotations: the postcondition of f on line 27, the assertion on line 41 and
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the precondition of g for its call on line 43. The DNC step generates the NCCE V1 (case 1 ) and indicates that the
postcondition of f on line 27 fails. This is clearly due to a[0] being non-zero. That helps the verification engineer to
understand and fix the issue.

In version R2 we suppose that the clause on line 35 has been erroneously written as follows: loop assigns
i, a[1..n-1]. The failing annotations are the postconditions of f on line 27 and 28–31, the assertions on lines
41 and 44 and the precondition of g for its call on line 43. DNC times out and reports no counter-example. Since
the array length n is not upper-bounded, the path exploration of the DNC step is not complete because of a too large
number of paths. The DSW

single step generates the SWCE V2 for the loop contract (case 2 ), with subcontract outputs
nondeta[1] = 97157 and nondeti = 0 after the loop on lines 37-38, leading to a failure of the precondition of g (on
line 10) for the call on line 43. It illustrates a subcontract weakness of the contract of this loop. The loop on lines
37–38 still preserves its invariant. With this indication, illustrated by an inconsistent new value of a[1], the verification
engineer will strengthen the loop contract.

In version R3 we suppose that the lemma on lines 4–5 is missing. The proof of the assertion on line 41 of Fig. 7
(stating the absence of overflow on line 42) fails without giving a precise reason, since the prover does not perform
the induction and cannot deduce the right bounds on a[i]. Neither DNC nor DSW produces a counterexample, and
as the initial program has too many paths, their outcomes are ? (unknown) (case 5 ).

For such situations, we introduce the possibility to reduce the input domain for test generation by using a new
ACSL clause typically. This clause is ignored by the proof. The verification engineer can insert the clause

typically n < 5;
at the end of line 25 to reduce the array size for test generation (version R′

3 in Fig. 14). Running STADY now allows
the tool to perform a complete exploration of all program paths (for n < 5) both for DNC and DSW without finding
a counterexample. STADY classifies the proof failure for the program with the reduced domain as unknown, likely
prover incapacity (case 4 ). If the verification engineer is convinced that the original program behaves similarly to
the program with input domain reduced by the typically clause, this diagnostic gives her more confidence that the
proof failure has the same reason on the initial program, here for bigger sizes n. She may now try an interactive proof
or add additional lemmas or assertions, and does not waste her time looking for a bug or a subcontract weakness.

In version R4 we suppose that the statement on line 42 is a[i] = a[i] + 2. Then the proof fails for the
precondition of g called on line 43 and DNC finds the NCCE V4 leading to a[0] = 0 and a[1] = 2 when calling
g. These values contradict the precondition is_rgf(a,n) on line 10.

For lack of space, we do not detail the outcomes of STADY for the examples of Sec. 3.1 and 3.2, but in all cases
STADY produces a diagnostic of the proof failure with a counterexample illustrating the issue.

6.2. Suggestions of actions
Based on the possible outcomes of the method (illustrated in Fig. 13), we are able to suggest the most suitable actions
with the verification task. A reported non-compliance (nc, V , a) means that there is an inconsistency between the
precondition, the annotation a and the code of the path πV leading to a. Thanks to the counterexample, the user
will understand the issue by tracing the values of variables along πV , or exploring them in a debugger [MR11].
In FRAMA-C, the execution on V can be conveniently explored using VALUE or PATHCRAWLER [KKP+15]. If an
NCCE is generated, there is no need to try an automatic or interactive proof, or look for a subcontract weakness — it
will not help.

A reported subcontract weakness (sw, V , a, S) for a set of subcontracts S means that at least one of them has to
be strengthened. By Def. 2 and 3, the non-compliance is excluded here, that is, the execution of PNC on V respects
the annotation a. Thus the suggested action is to strengthen the subcontract(s) of S. In the case of a single subcontract
weakness, S is a singleton so the suggestion is very precise and helpful to the user. Again, trying interactive proof or
writing additional assertions or lemmas will be useless here since the property can obviously not be proved.

For a prover incapacity, the verification engineer may add lemmas, assertions or hypotheses that can help the
theorem prover to succeed, or try another theorem prover, or use a proof assistant like COQ, even if it can be more
complex and time-consuming.

For an unknown, likely prover incapacity result, DNC and DSW steps were used on a reduced domain and detected
no counteraxamples on it. If the reduced domain is representative of the initial program domain, the verification
engineer can prioritize the prover incapacity reason of the failure and conduct the actions described above. She should
however use this result with care: the method only suggests to seriously consider the prover incapacity reason, but
cannot guarantee it. Counterexamples can still exist for a bigger domain if the reduced domain is too small or not
representative and the program can have a different behavior on a bigger domain.
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Proof DNC DSW DNC + DSW

#mut #3 %3 t3 t? #7 %7 t7 t? #7 %7 t7 t? %7 t #?

Total 2036 462 22.5 1347 85.6 157 69.1 95.5 70(/2036) (/1574) (/227)
Max 36.1 3.4 39.4 100 1.75 1.84 100.0 4.23 42.0 100.0 43.5

Mean 23.8 2.2 12.5 86.1 1.53 1.55 81.3 2.65 10.3 96.6 2.2

Fig. 15. Summarized experiments of proof failure diagnosis for mutants with STADY

Finally, when the verdict is unknown, i.e. test generation for DNC and/or DSW times out, the verification engineer
may strengthen the precondition for test generation to reduce the input domain, or extend the timeout to give STADY
more time to conclude.

7. Implementation and Experiments
Implementation. The proposed method for diagnosis of proof failures has been implemented as a FRAMA-C plugin,
named STADY. It relies on other plugins: WP [KKP+15] for deductive verification and PATHCRAWLER [BDH+09] for
structural test generation. STADY currently supports a significant subset of the E-ACSL specification language, includ-
ing requires, ensures, behavior, assumes, loop invariant, loop variant and assert clauses.
Quantified predicates \exists and \forall and builtin terms such as \sum or \numof are translated as loops
(recall that E-ACSL allows only finite intervals of quantification). Logic functions and named predicates are treated
by inlining. (Mutually) recursive functions and recursive logic definitions are currently not supported in STADY since
such functions are not yet supported in PATHCRAWLER, but the proposed method applies for them as well. The \old
and \at(-,Pre) constructs are treated by saving the initial values of formal parameters and global variables at
the beginning of the function. Other labels (different from Pre) in annotations and goto statements are not yet sup-
ported. Validity checks of pointers are partially supported due to the current limitation of the underlying test generator:
we can only check the validity of input pointers and global arrays. The assigns and loop assigns clauses are
considered only during the DSW phase: we do not try to diagnose a non-compliant (loop) assigns clause by
DNC because provers give a clear feedback about such a non-compliance, but we do try to identify a too weak (i.e.
too permissive) (loop) assigns clause since provers would report a failure elsewhere in this case (cf. examples
B5 and B6 in Sec. 3.2). Inductive predicates, recursive functions and real numbers are not yet supported. Adaptive
detection methods are currently supported for DNC and DSW

global. Adaptive target subcontract selection for DSW
single is

not yet automatic, but can be done manually by a dedicated option (for one subcontract or any set of subcontracts).
The investigation of other adaptive strategies for precisely identifying a minimal subset of too weak subcontracts and
their implementation are left as future work.

The Research Questions we address in our experiments are the following.
RQ1 Is STADY able to precisely diagnose most proof failures in C programs?
RQ2 What are the benefits of the DNC step and the DSW step?
RQ3 Is STADY able to generate NCCEs or SWCEs even with a partial testing coverage?
RQ4 Is STADY’s execution time comparable to the time of an automatic proof?

Experimental Protocol. The evaluation used 26 correct annotated programs whose size varies from 35 to 100 lines
of annotated C code. Among them, 20 originate from an independent benchmark [BG17], developed and maintained
by Fraunhofer FOKUS, independently from the authors of the paper and the developers of FRAMA-C. These programs
manipulate arrays, they are fully specified in ACSL and their specification expresses non-trivial properties of C arrays.
To evaluate the method presented in Sec. 6 and its implementation, we apply STADY on systematically generated
altered versions8 (or mutants) obtained from the 26 correct program examples. Each mutant is obtained by performing
a single modification (or mutation) on the initial program. The mutations include: a binary operator modification
in the code or in the specification, a condition negation in the code, a relation modification in the specification, a
predicate negation in the specification, a partial loop invariant or postcondition deletion in the specification. Such
mutations model frequent errors in the code and specification (e.g. confusions between + and −, ≤ and <, ≤ and ≥,
a missing loop invariant, pre- or postcondition, etc.) that can lead to proof failures. In this study, we do not mutate the

8 Available at: https://github.com/gpetiot/StaDy/tree/master/FAC_2017/benchmark

https://github.com/gpetiot/StaDy/tree/master/FAC_2017/benchmark
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precondition of the function under verification, and restrict possible mutations on binary operators to avoid creating
absurd expressions, in particular for pointer arithmetic.

Compared to an earlier experiment campaign [PKB+16], in order to evaluate the most recent extensions of the
method and its implementation in STADY, the present experiments are applied on 6 additional programs (those given
in the paper as well as several examples with nested loops) and use several additional mutation operators (such as
mutations in nested loops, partial omission of parts of a conjunctive annotation, mutations focused on the loop variant)
resulting in a much richer set of mutants. We have also performed a manual validation of the results of STADY on
several dozens of selected examples, paying particular attention to programs with nested loops, whose support is a
new contribution of this paper.

The first step tries to prove each mutant using WP. In our experiments, each prover tries to prove each verification
condition during at most 40 seconds. The proved mutants respect the specification and are classified as correct. Second,
we apply the DNC method on the remaining mutants. It classifies proof failures for some mutants as non-compliances
and indicates a failing annotation. The third step applies the DSW method on remaining mutants, classifies some
of them as subcontract weaknesses and indicates a weak subcontract. If no counterexample has been found by the
DSW, the mutant remains unclassified. The mutants proved by WP are denoted by 3, and the mutants for which a
counterexample is generated by DNC or DSW are indicated by 7. The results are summarized in Fig. 15. The columns
present the number of generated mutants, and the results of each of the three steps: the number (#) and ratio (%) of
classified mutants, maximal and average execution time (in sec.) of the step over classified mutants (t3 or t7) and over
non-classified mutants (t?) at this step. The ratios are computed with respect to the number of unclassified mutants
remaining after the previous step. The DNC +DSW columns sum up selected results after both DNC and DSW steps:
the average and maximal time (t) are shown globally over all unproven mutants. The time is computed until the proof
is finished or until the first counterexample is generated. The final number of remaining unclassified mutants (#?) is
given in the last column.

Experimental Results. For the 26 considered programs, 2036 mutants have been generated. 462 of them have been
proved by WP. Among the 1574 unproven mutants, DNC has detected a non-compliance induced by the mutation in
1347 mutants (85.6%), leaving 227 unclassified. Among them, DSW has been able to exhibit a counterexample (either
an NCCE or an SWCE) for 157 of them (69.1%), finally leaving 70 programs unclassified.

Regarding RQ1, STADY has found a precise reason of the proof failures and produced a counterexample in 1504
of the 1574 unproven mutants, i.e. classifying 95.5% of them. Exploring the benefits of detecting a prover incapacity
requires to manually reduce the input domain, to try additional lemmas or an interactive proof, so it was not sufficiently
investigated in this study (and probably requires another, non mutational approach).

Regarding RQ2, DNC alone diagnosed 1347 of 1574 unproven mutants (85.6%). DSW diagnosed 157 of the 227
remaining mutants (69.1%) bringing a significant complementary contribution to a better understanding of reasons of
many proof failures.

To address RQ3, we set a timeout for any test generation session to 5 seconds (including one session for the DNC

step, and possibly several sessions for DSW steps), and limit the number of explored program paths using the k-path
criterion (cf. Sec. 2) with k = 4. Both the session timeout and k-path heavily limit the testing coverage but STADY
still detects 95.5% of faults in the generated programs. That demonstrates that the proposed method can efficiently
classify proof failures and generate counterexamples even with a partial testing coverage and can therefore be used for
programs where the total number of paths cannot be easily limited (e.g. by the typically clause).

Concerning RQ4, on the considered programs WP needs on average 2.2 sec. per mutant (at most 3.4 sec.) to prove
a program, and spends 12.5 sec. on average (at most 39.4 sec.) when the proof fails. The total execution time of STADY
is comparable: it needs on average 2.2 sec. per unproven mutant (at most 43.5 sec.). Most of this time is used by test
generation performed by PATHCRAWLER. The time required for the specification-to-code translation performed by
STADY is negligible.

Summary. The experiments show that the proposed method can automatically classify a significant number of proof
failures within an analysis time comparable to the time of an automatic proof and for programs for which only a partial
test coverage is possible. The DSW technique offers an efficient complement to DNC for a more complete and more
precise diagnosis of proof failures.

Other Case Studies. One particularly interesting example is the TimSort algorithm (in Java) studied using KeY
in [dGRdB+15]. Applying STADY on a partial C/ACSL implementation of the algorithm containing the erroneous
function mergeCollapse, we were able to produce a concrete counterexample illustrating that two unproven post-
conditions of mergeCollapse are due to non-compliances. In another project, STADY was successfully applied to
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generate counterexamples for automatically generated annotated programs that model relational properties over sev-
eral function calls using self-composition [BKLG+18]. Despite a relative complexity of the generated (self-composed)
programs, STADY was able to produce counterexamples for almost all considered programs.

Threats to Validity. As it is often the case in software verification studies, one major threat is related to the repre-
sentativeness of results, i.e. their external validity. In our case, due to the nature of the problem, we are restricted to
realistic annotated programs that cannot be generated automatically or extracted from existing databases of unspeci-
fied code. Therefore, to reduce this threat, we mainly used programs from an independent benchmark [BG17] created
in order to illustrate on different examples the usage of the ACSL specification language for deductive verification
with FRAMA-C. This benchmark is developed precisely to illustrate various aspects of specification and deductive
verification with FRAMA-C. It has been maintained for several years by the Formal Methods group of the Fraunhofer
FOKUS institute in Berlin, independently from the authors of the paper and the authors of FRAMA-C. It should be
noted that different results can be obtained on a different set of programs.

Scalability of the results is another threat since we do not demonstrate their validity for functions of larger pro-
grams. Because of the modular approach of deductive verification, it can be argued that the proposed technique should
only be applied on a unit level, separately for each function, since the verification engineer proves a program in this
way. Indeed, in the current practice of deductive verification, it does not make sense to analyze proof failures for the
whole module or application at the same time. For complex programs, the proposed method can therefore suffer from
the same scalability issues as deductive verification in general.

Another scalability concern is related to the usage of structural test generation that can often time out without
achieving a full coverage. To address this issue, we have specifically investigated the impact of a partial test coverage
on the effectiveness of the method (cf. RQ3 above) and proposed a convenient way to reduce the input domain (using
a typically clause, an extension of ACSL).

Other threats can be due to the used measurements, i.e. construct validity. To reduce this threat, we used a careful
measurement of results (including analysis time for each step and each mutant, their mean and maximal values, sepa-
rately computed for classified and unclassified proof failures). One concern is producing realistic situations in which
the verification engineer can need help in the analysis of proof failures. While the first users of STADY have appreci-
ated its feedback, we have not yet had the opportunity to organize a fair evaluation with a representative group of users.
Thus we have performed an extended set of experiments using simulation of errors by mutations as an alternative in
the meanwhile. We have chosen a large subset of mutation operators (mutation in the code, mutation in an annota-
tion, deletion of an annotation) that model frequent erroneous situations (incorrect code or annotations, incomplete
specification) leading to proof failures. This approach is suitable for non-compliances and subcontract weaknesses,
and certainly less suitable for the more subtle prover incapacity cases. The results should be confirmed later by a
representative user study.

8. Related Work
Assisting program verification and generation of counterexamples have been addressed in different research work
(e.g. [AAPW15, BN04, CDKM11, CTZ11, CEM14, CCFL13, DF12, DHT03, GKW+15, HMM16, KV09, Owr06,
PW10]). We detail below a few projects most closely related to the present work.

Understanding proof failures. When SMT solvers fail on some verification conditions and provide a counter-
model to explain that failure, the counter-model can be turned into a counterexample for the program under verification.
This non-trivial task is designed in [HMM16] and implemented for SPARK, a subset of Ada targeted for formal
verification. This static analysis does not require to restrict the specification language, as we do, but it is not guaranteed
that the provided models are real counterexamples and when they are, it does not allow the user to distinguish non-
compliances from specification weaknesses. It is complementary to our combination of static and dynamic analyses
and it would be useful to adapt it to C/ACSL programs. For C programs, SMT models are already exploited, for
instance by the CBMC model checker [GKL04].

A two-step verification in [TFNM13] compares the proof failures of an Eiffel program with those of its variant
where called functions are inlined and loops are unrolled. It reports code and contract revision suggestions from this
comparison. This approach allows to detect specification weaknesses. The difference to our approach is that after a
proof failure, they need to be able to prove a program variant (for example, replacing by the unrolled loop a loop
contract that may be too weak). In our case, we need to be able to find a counter-example for a different variant (in
the case of a loop contract weakness, replacing all other subcontracts except this loop contract by the real code). In
the two-step verification approach, inlining and unrolling are respectively limited to a given number of nested calls
and explicit iterations. If that number is too small the semantics is lost and a warning of unsoundness is reported. A



How Testing Helps to Diagnose Proof Failures 25

bigger number of inlinings can overpass the capacity of the prover, while DSE, focusing on one path at a time, can be
expected to be more efficient, but can suffer from a combinatorial explosion of the number of paths. Another benefit
of DSE is the possibility to use concrete values (e.g. discovered in a previous execution) even when the constraints
become very complex and the solver cannot generate a counterexample.

DAFNY has also been recently extended with tools for diagnosing proof failures [CLMW16]. When the proof times
out, an algorithm decomposes it and tries to diagnose on which part the user has to focus to prevent the timeout. Then,
if the proof fails, following the approach we proposed in our previous work [PBJ+14], a DSE tool is used to try to find
counterexamples demonstrating non-compliance between program and specification. But, when no counterexample
is found, the user must manually try to find the reason of the proof failure (with the Boogie Verification Debugger),
whereas we extend the approach by further exploiting DSE to automatically identify subcontract weaknesses. The
notions of global and single SW and their comparison are also new.

Notice that our method assumes that the program (or its part over which the proposed method should be applied to
diagnose a proof failure) is annotated in an executable specification language. While this assumption is not a limitation
for most C programs, it can make the proposed method unsuitable for object-oriented programs if the properties to be
verified use a (non-executable) quantification over all objects.

Proof tree analysis. More precision can be statically obtained by analyzing the unclosed branches of a proof tree.
The work [Gla09] is performed in the context of KEY and its verification calculus that applies deduction rules to a
dynamic formula mixing a program and its specification. It proposes falsifiability preservation checking that helps to
distinguish whether the branch failure comes from a programming error or from a contract weakness. However this
technique can detect bugs only if contracts are strong enough. Moreover it is automatic only if a prover (typically,
an SMT solver) can decide the non-satisfiability of the first-order formula expressing the falsifiability preservation
condition. The test generation proposed in [EH07] exploits the proof trees built by the KEY prover during a proof
attempt. The relevance of generated tests depends on the quality of the provided specification, and it does not allow to
distinguish non-compliances from specification weaknesses.

Combination of static and dynamic analysis. Static and dynamic analysis work better when used together,
as in SYNERGY [GHK+06], its interprocedural and compositional extension in SMASH [GNRT10], the method
SANTE [CKGJ12] and the present method. Static analysis maintains an over-approximation that aims at verifying
the correctness of the system, while dynamic analysis maintains an under-approximation trying to detect an error.
Both abstractions help each other in a way similar to the counterexample guided abstraction refinement method
(CEGAR) [CGJ+03]. The work [CTZ11] combines symbolic execution, testing and automatic debugging, through the
identification of counterexamples violating metamorphic relations for the program under test. The debugging builds a
cause-effect chain to a failure, by analysis of some path conditions. Comparatively, our method focuses on deductive
verification rather than on symbolic execution, and aims at verifying behavioral pre-post specifications rather than
metamorphic relations.

Counterexamples for non-inductive invariants. Counterexamples can be generated to show that invariants pro-
posed for transition systems are too strong or too weak [CS08]. Differences with our work are the focus on invariants,
the formalism of transition systems, and the use of random testing (with QUICKCHECK).

Other verification feedbacks. Our goal was to find input data to illustrate proof failures. A complementary work
[MR11] proposed to extend a runtime assertion checker to use it as a debugger to help the user understand complex
counterexamples. For NC errors in the code, [CESW13] proposed to analyze a trace formula to identify the fragments
of code that can cause them. Our approach is complementary on two points. First, we detect either NC or SW errors.
Second, we consider that the origin of an NC can be either in the code or in the specifications. Combining our method
with such a localization of causes of NC errors, extended to specifications, would be another contribution.

Checking prover assumptions. Axioms are logic properties used as hypotheses by provers and thus usually not
checked. Model-based testing applied to a computational model of an axiom can permit to detect errors in axioms and
thus to maintain the soundness of the axiomatization [AD10]. This work is complementary to ours because it tackles
the case of deductive verification trivially succeeding due to an invalid axiomatization, whereas we tackle the case
of inconclusive deductive verification. [CMW12] proposed to complete the results of static checkers with dynamic
symbolic execution using PEX. The explicit assumptions used by the verifier (absence of overflows, non-aliasing,
etc.) create new branches in the program’s control flow graph which PEX tries to explore. This approach permits to
detect errors out of the scope of the considered static checkers, but does not provide counterexamples in case of a
specification weakness.

The present work continues previous efforts to simplify deductive verification by generating counterexamples.
We propose an original detection technique of three categories of proof failure that gives a more precise diagnosis
than in the previous work using testing. That is due to dedicated detection methods for non-compliances and subcon-
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tract weaknesses, as well as the definition and detection of single and global subcontract weaknesses. To the best of
our knowledge, such a testing-based methodology, automatically providing the verification engineer with a precise
feedback on proof failures was not studied, implemented and evaluated before.

The different techniques of assisting deductive verification (in particular, by generating counterexamples using test
generation or using counter-models produced by solvers) being relatively recent and intrinsically incomplete, further
work is still required to better compare them and understand in which cases which technique is more practical.

9. Conclusion and Future Work
We proposed a new approach to improve the user feedback in case of a proof failure. Our method relies on test gener-
ation and helps to decide whether the proof has failed or timed out due to a non-compliance (NC) between the code
and the specification, a subcontract weakness (SW), or a prover weakness. This approach is based on a spec-to-code
program transformation that produces an input program for the test generation tool. Our experiments show that our
implementation – in a FRAMA-C plugin, STADY– was able to diagnose over 95% of unproven programs. In partic-
ular, the non-compliance detection (DNC) was able to diagnose 85% of the unproven programs and the subcontract
weakness detection (DSW) was able to diagnose 67.4% of the remaining proof failures.

We are convinced that the proposed methodology facilitates the verification task and lowers the level of expertise
required to conduct deductive verification, removing one of the major obstacles for its wider use in industry. One
benefit of the proposed approach is the ability to provide the verification engineer with a precise reason and a coun-
terexample that facilitate the processing of proof failures. Generated counterexamples illustrate the issue on concrete
values and help to find out more easily why the proof fails. The method is fully automatic, relies on the existing
specification and does not require any additional manual specification or instrumentation task. As a consequence, this
method can be adopted by less experienced verification engineers and software developers.

While the whole method requires to have the source code of called functions, the global subcontract weakness
detection (DSW

global) remains applicable even without their source code. Another limitation is related to a potentially
big number of program paths, which cannot be explored. However, our initial experiments show that in practice most
proof failures can be automatically classified even after test generation with a partial test coverage, within a testing
time comparable to the time of the proof attempt.

Future work includes further evaluation of the proposed technique, experiments on a larger class of programs, as
well as a better support of E-ACSL constructs and of the adaptive subcontract weakness detection in our implementa-
tion. An interesting direction is to study other optimized combinations of DNC and DSW for subsets of annotations
and subcontracts. For instance, for unproven properties depending on several subcontracts, it can be useful to precisely
identify a minimal set of too weak subcontracts. In this paper we have proposed a strategy that first tries to detect a
subcontract weakness for a single subcontract (DSW

single), considering them one after another, then for the set of all sub-
contracts (DSW

global). Other strategies could try to identify a minimal set of too weak subcontracts, e.g., by considering
smaller and smaller subsets of subcontracts when a global subcontract weakness counterexample is found.

An experimental comparison of STADY with a prover-based inlining technique (like in [TFNM13] or in the KEY
tool [BHS07]) is another perspective that will require the implementation of that technique in FRAMA-C. The ongoing
effort to support recursive functions in PATHCRAWLER will allow their support in STADY. A rigorous formalization
of the proposed categories of proof failures and diagnosis techniques is also a future work direction, that can require
to formalize both the deductive verification and test generation tools. Finally, organizing a user study in a real-life
setting would be desirable to precisely evaluate the benefits of the proposed technniques for the users. Acknowledgment.
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Loı̈c Correnson, Julien Signoles, Vincent Vajnovszki and Nicky Williams for many fruitful discussions, suggestions and advice. Many thanks to the
anonymous referees for their very helpful comments.

References

[AAPW15] Stephan Arlt, Sergio Feo Arenis, Andreas Podelski, and Martin Wehrle. System testing and program verification. In Softw. Eng. &
Management, volume 239 of LNI, pages 71–72. GI, 2015.

[AD10] Ki Yung Ahn and Ewen Denney. Testing first-order logic axioms in program verification. In TAP, volume 6143 of LNCS, pages
22–37. Springer, 2010.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development; Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
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