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Abstract 

 

Clustering of acoustic emission signals aims at interpreting the dynamical materials 

behaviour through solicitations. It is usually posed as problem of finding clusters with 

good shape and well separated in the feature space, where features are extracted from 

AE signals. We here propose an alternative which does not use such features. The 

methodology relies on anomaly detection and includes a criterion that optimises the 

spread of onsets of clusters in place of shape.  

 

1.  Introduction 
 

The Acoustic Emission (AE) technique is widely used for material characterization and 

structural health monitoring. Once collected, the standard approach to process and 

interpret the potentially large amount of AE streaming data is generally based on four 

main phases: 1) wave picking, 2) feature extraction, 3) clustering, 4) evaluation of 

clusters with, if possible, correlation with AE sources.  

 

The first phase, wave picking, isolates relevant AE signals from noise within the 

streaming. It is generally based on a set of thresholds to ensure that AE signals have a 

sufficiently high amplitude during a certain amount of time. Several wave picking 

methods have been proposed in the past. A general methodology have been proposed by 

Unnþórsson (10) using peak picking of a detection function. The detection function may 

be based on frequency content analysis using Fourier transform or wavelets (9).  

 

In the second phase, features are extracted from AE signals. The use of features is 

principally motivated by representing AE signals in the same dimensional space. 

Indeed, AE signals have generally different lengths which cannot be managed by 

standard clustering methods. Numerous features have been proposed in the past, a 

compilation has been for example made in (6). 

 

The potentially high number of features and the unknowns concerning the correct 

features to use for given damage families, justify, in some way, the use of data reduction 

methods, such as the principal component analysis (4). 

 

Clustering then aims at finding out the data structure to infer the behavior of the 

material during solicitations. A “good” set of clusters has to optimize some predefined 
criterion which is used in the evaluation step. Features, clustering and evaluation steps 

are thus closely related and all require to select properly the good set of parameters: 
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which features to be extracted? which clustering algorithm (and its parameters)? and 

which evaluation criterion? (3). 

 

Being used as inputs of clustering and of evaluation criterion, as well as highly 

influenced by the wave picking method, features are thus of key importance. Finding a 

consensus for their interpretation is also a critical issue (9).  

 

In this paper, we propose to work at the AE signal level, without feature extraction in 

the usual sense, and in an unsupervised manner. While the supervised case has already 

been tackled in the past, unsupervised learning at the signal (or streaming) level for AE 

interpretation is a novel approach. 

 

The proposed method has three main advantages:  

1) it can be used for supervised or unsupervised learning;  

2) it can work directly on streaming without wave picking. This particularly 

simplifies the processing by reducing the number of algorithms and parameters 

to be used;  

3) if wave picking is used to extract AE hits, then the method does not require 

feature extraction from AE signals. It simplifies the processing by avoiding the 

heavy task of feature selection. 

 

In the sequel, we first describe the methodology. We then show a practical example.  

 

2.  Methodology 
 

The proposed method relies on a statistical model of the temporal evolution of the 

streaming data or of an AE signal. The generalization of the proposed methodology to 

AE streaming is simple, however we restrict the description to AE signals in the sequel 

for the sake of convenience.  

 

The idea relies on novelty detection. Novelty detection has been widely used in various 

applications and implemented in many publications dedicated to SHM using vibration 

data (2). The principle is to build a mathematical model representing how “normal” data 

are distributed. This model is then applied online, during test, and generates a similarity 

between the current data compared to the normal ones. If a drift occurs a modification in 

the data is likely to occur. Exploiting those modifications for AE signal clustering is the 

main purpose of this work.  

 

In (2), an Autoregressive model (AR) is used to represent vibration data collected by 

accelerometers for SHM purposes in real-world situations. In this paper, the 

methodology relies on a new probabilistic model called Autoregressive Weakly-Hidden 

Markov Model. We have developed the theoretical part for prognostics (not for AE) in a 

previous conference paper (5) where details can be found on the model.  

 

The main idea to keep in mind is that an AE signal called reference is used as an input 

of this model which estimates a set of parameters to fit the signal. The parameters are 

then used in inference during test: for each AE signal tested (not used during the 
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learning phase), a set of novelty indicators are computed. Those indicators reflect how 

similar is the tested signal compared to the model.  

 

We finally obtained a matrix of novelty indicators, with as many lines as the number of 

AE signals (or pieces of streaming) and as many columns as the number of indicators. 

We then apply a clustering method to find the structure of the indicators. For that we 

have used the method proposed in (9) which has the following specificities: 

 It uses the Gustafson-Kessel algorithm in place of Kmeans for clustering the 

indicators by considering general hyper-ellipsoids to define clusters shape.  

 It uses multiple subsets of indicators to perform clustering: in place of using one 

unique subset, the algorithm makes all combinations of n among all indicators 

and perform clustering. It then selects a subset of subsets according to an 

information theoretic criterion onsets or clusters proportions. This specificity 

allows representing multimodal clusters. 

 It uses an unsupervised fusion method to combine the partitions obtained by 

considering multiple subsets. The fusion relies on reordering the clusters 

according to their order of occurrence: This specificity allow to consider the 

sequence of clusters as a criterion while previous methods, though plotting 

sequences, actually optimizes clusters according to their shape in the feature 

space and not according to sequences or onsets. 

 It estimates in an unsupervised manner the uncertainty around clusters estimated 

after fusion.  

 It estimates the robustness of the results and optimizes the number of clusters by 

maximizing robustness. This optimization does not rely on features, only on 

partitions, and makes use of an information theoretic criterion. 

 

The only critical parameter of this methodology is the reference AE signal, as for most 

anomaly detection methods. We propose to perform bootstrapping to solve this issue: 

Sample AE signals randomly, learn a model for each, apply the models on the 

remaining AE signals, and repeat this process several times. Then we apply the previous 

clustering methodology using all obtained novelty indicators. By doing so, uncertainty 

due to the reference is quantified and robustness maximized against its selection. 

 

3.  Results 
 

The proposed method can be applied on any existing datasets, provided AE waveforms 

have been recorded (for example in DTA files of Mistras’ AEwin software). We 

propose below an illustration on a unidirectional flax-epoxy composite coupon. 

 

2.1 Materials  

 

Specimen preparation: Unidirectional flax-epoxy composite plates were fabricated by 

thermo-compression of the Flaxpreg T-UD material provided by LINEO®. It is a range 

of pre-impregnated material based on an epoxy resin system and a unidirectional flax 

fibres reinforcement. The flax fabric has an areal weight of 110 g/m2. The resin that is 

used is the Huntsman XB3515® and the hardener is the Aradur5021®. The fibre 

fraction is approximately 50% in weight before curing.  
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Composite fabrication: Plates were fabricated using a thermo-compression machine 

(AGILA Presse 100KN). These plates consist in 8 elementary unidirectional plies. The 

layers are compressed in a Teflon coated aluminium mould and cured for one hour at 

the cure temperature of 120 °C. A pressure equal to 3 bars is applied for a period of 1 h 

after the temperature of the sample has reached 60°C. The mould was under vacuum 

during the fabrication. 

 

Sample preparation: Specimens were cut in the plates using a Trotec Speed300® laser 

device in the fibre direction at the following dimensions: 240mm x 15mm x 1mm. Each 

specimen was characterized in terms of fibre content as proposed in (1). The fibre 

volume fraction was measured to be equal to 61 ±2%. 

 

Environmental conditioning: After fabrication, samples were stored in a climatic 

chamber at 23°C and 50% RH during at least 20 days before mechanical testing. During 

this period, relative weight uptake and dimensions were monitored. A Kern 770 balance 

was used for weight monitoring (precision of 0.001 g), a calliper with a precision of 10-2 

mm was used to evaluate the swelling. 

 

2.2 Estimation of damage kinetics 

 

The tensile properties were determined using an Instron Electropuls E10000 machine 

equipped with a 10 kN load sensor. The sample was subjected to a displacement control 

(2 mm.min-1) up to failure. A total of about 33000 AE signals was recorded in the test, 

using a similar configuration of the acquisition and signal processing as in (7) using 

streaming data.  

 

The aforementioned methodology was applied using 4 reference AE signals randomly 

selected in the first 2000 AE signals recorded. Six indicators were computed for each 

AE signal and all combinations of 2 indicators have been considered for a number of 

clusters ranging from 3 to 8.  

 

Damage onsets with sequence of clusters (also called cumulated number of hits per 

cluster, chronology or time-dependent behaviour) are represented in Figure 1. In figure 

2 we represent the total number of times a particular novelty indicator has been used by 

the consensus fusion method to estimate the damage sequence.  

 

From figure 1 we can observe that the sequence of AE signals has been decomposed 

into 5 steps by the algorithm:  

1. a first onset at the beginning of the test 

2. a second onset around 24 s. 

3. a third onset around 42 s. 

4. a fourth onset around 72 s. 

5. and the fifth onset around 95 s.  

The uncertainty envelop is the largest for cluster 3. It means that varying the inputs (the 

indicators) leads to different results. For the other clusters, results are accompanied with 

small uncertainty. This chronology can easily be used for prognostics since it 

decomposes the behaviour into useful steps.  
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As already observed in (9), the proportions of AE hits in each cluster is quite different 

and the sooner the onset, the higher the proportion. For fibre reinforced composites, this 

behaviour was observed multiple times in our tests. However, this observation is 

material-dependent.  

 

Figure 2 shows how many times indicators have been used to estimate the sequence. 6 

indicators were computed for each of the 4 reference AE signal leading to 24 possible 

inputs of the clustering method. All combinations of 2 indicators were considered 

during clustering. About 20 combinations were kept at the end in order to perform the 

fusion of the partitions. This figure shows for example that the reference AE signal 

number 4 has been considered as the most relevant to estimate the sequence. For this 

reference, the indicator number 5 has been considered as the most relevant.  

 

  
 

 

 

 

 

 

4.  Conclusions 
 

A new methodology has been proposed for the clustering of AE signals. It makes use of 

anomaly detection and optimises spread of onsets. It is a novel methodology in the 

sense that it does not require feature extraction as done in common approaches. It also 

quantifies uncertainty and includes robustness to select the best parameterization. 

Results show the interest of this approach for prognostics.  
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Figure 1. Estimation of the damage 

sequence and its uncertainty. 

 

Figure 2. Number of times a particular 

indicator has been used for estimating the 

sequence. 
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