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Abstract

The Lugiato-Lefever equation arises as a model in nonlinear optics. Using
tools from bifurcation theory, we study the existence and the stability of peri-
odic steady waves which bifurcate from spatially constant solutions. For the
stability problem, we focus on subharmonic perturbations, i.e., spatially peri-
odic perturbations with periods equal to an integer multiple of the period of the
steady wave.
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1 Introduction

The Lugiato-Lefever equation

∂ψ

∂t
= −iβ ∂

2ψ

∂x2
− (1 + iα)ψ + iψ|ψ|2 + F, (1.1)

is a nonlinear Schrödinger type equation with damping, detuning and driving, which
has been derived in nonlinear optics by Lugiato and Lefever [7]. More recently,
it has been used as a model for frequency combs, i.e., optical signals consisting of a
superposition of modes with equally spaced frequencies, in whispering-gallery-mode
resonators with Kerr nonlinearity [2]. In this context, the complex-valued unknown
ψ, which depends upon the temporal variable t and the spatial variable x, represents
the overall intracavity field, the real parameters α and β are the frequency detuning
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and the overall dispersion parameters, respectively, and the positive constant F is the
dimensionless external pump field intensity. Upon rescaling x, we may take |β| = 1,
and we distinguish between normal dispersion, β = 1, and anomalous dispersion,
β = −1.

The important questions for the physical problem concern the dynamics of non-
linear waves, and in particular the existence and the stability of steady periodic and
localized waves. These questions have been intensively studied in the physics lit-
erature (e.g., see [1] and the references therein), but much less in the mathematics
literature. The first rigorous mathematical results have been obtained in the case of
anomalous dispersion in [9], where tools from local bifurcation theory have been
used to study the existence of steady periodic and localized waves at the onset of
Turing instability, where a stable constant solution becomes unstable with respect
to periodic perturbations with nonzero wavenumbers. A systematic study of local
bifurcations for steady bounded solutions, including steady periodic and localized
solutions, have been done in [4, 5], whereas a study of global bifurcations of steady
periodic solutions have been done in [8]. The stability problem is widely open, sta-
bility results have been obtained so far only for the steady periodic waves bifurcating
at the onset of Turing instability, for co-periodic perturbations, i.e., periodic pertur-
bations with period equal to the period of the steady wave, in [10], and for general
bounded perturbations in [3].

The purpose of this paper is to study the existence and the stability of all steady
periodic solutions bifurcating from constant solutions, without restricting to the on-
set of instability. The starting point of our analysis is the spectral stability analysis
of constant solutions from [3], which allows us to precisely identify the parameter
regions where steady periodic solutions bifurcate from constant solutions. It turns
out that steady periodic solutions bifurcate at the onset of instability of constant solu-
tions, on the one hand, and when these instabilities are fully developped, on the other
hand. The solutions bifurcating at the onset of instability have been analyzed in [3].
Here, we discuss the solutions bifurcating when instabilities are fully developped.

In [3], two types of instabilities have been found for the constant solutions: the
Turing instability mentioned above and a zero-mode instability, in which the insta-
bility of the constant solution is due to constant perturbations. For parameter values
in the Turing instability region, we prove the existence of two families of steady pe-
riodic solutions with wavelengths kmin < kmax, whereas for parameter values in the
zero-mode instability region we show the existence of one family of steady periodic
solutions with wavelengths kmax. The values kmax and kmin are precisely deter-
mined in terms of the physical parameters α, β, and F from the Lugiato-Lefever
equation (1.1).

The existence proofs rely upon a formulation of the equation (1.1) as an infinite-
dimensional dynamical system and a center manifold reduction. In this approach, the
dynamics close to the bifurcation points is described by a two-dimensional reduced
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system of ordinary differential equations, and the periodic steady solutions of the
equation (1.1) are found as equilibria of this reduced system. We identify a steady
bifurcation which, depending upon the values of the parameters, may be supercritical
or subcritical. Besides the existence of periodic solutions, we can also conclude
on their stability with respect to co-periodic perturbations: the periodic solutions
are stable when the bifurcation is supercritical and unstable when the bifurcation
is subcritical. For general bounded perturbations, all these solutions are unstable,
due to the instability of the background constant solution which is fully developped,
but they may be stable for particular classes of perturbations. Here, we focus on
subharmonic perturbations, i.e., periodic perturbations with periods which are equal
to an integer multiple of the period of the wave, which are of particular importance
for the physical problem. We distinguish between background instabilities, which
are due to instabilities of the background constant solution, and shape instabilities,
which are induced by the periodic wave itself.

In our presentation, we focus on the case of anomalous dispersion which is ana-
lyzed in detail in Sections 2-4, and only summarize the results found in the case of
normal dispersion in Section 5. We recall the stability results for constant solutions
in Section 2, analyze the bifurcation problem in Section 3, and discuss the stability
of the bifurcating steady periodic solutions in Section 4.

2 Stability of constant solutions

In this section, we summarize the stability properties of the constant solutions of the
Lugiato-Lefever equation (1.1) in the case of anomalous dispersion, β = −1 (see [3]
for more details).

Constant solutions ψ ∈ C of the equation (1.1) satisfy the algebraic equation

(1 + iα)ψ − iψ|ψ|2 = F,

and upon setting ψ = ψr + iψi and ρ = |ψ|2 = ψ2
r + ψ2

i , a direct calculation gives

ψr =
ρ

F
, ψi =

ρ(ρ− α)

F
, ρ

(
(ρ− α)2 + 1

)
= F 2. (2.1)

The monotonicity properties of the cubic polynomial in the left hand side of the last
equation above determine the number of constant solutions: for any α 6

√
3 and

F > 0 there is precisely one constant solution, whereas for α >
√

3, there exist
F−(α) < F+(α),

F 2
±(α) = ρ±(α)

(
(ρ±(α)− α)2 + 1

)
, ρ±(α) =

1

3

(
2α∓

√
α2 − 3

)
,

such that the equation possesses three constant solutions with ρ = ρj , j = 1, 2, 3,

ρ1 < ρ+(α) < ρ2 < ρ−(α) < ρ3,
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Figure 2.1: Number of constant solutions of the Lugiato-Lefever equation (1.1): three solu-
tions in the region between the curves F 2 = F 2

±(α), two solutions along the curves, and one
solution otherwise.

when F−(α) < F < F+(α), two distinct constant solutions when F = F±(α), and
one constant solution when F < F−(α) or F+(α) < F (see Figure 2.1).

The linear stability of a constant solution ψ∗ = ψ∗r + iψ∗i is determined by the
spectrum of the 2× 2 matrix operator A∗ in the linear equation

dV

dt
= A∗V,

obtained by setting ψ = ψ∗+ (u+ iv) in (1.1), V = (u, v)T , and taking the real and
imaginary parts of the resulting linearized equation. We find

A∗ = −I + JL∗, (2.2)

in which

I =

(
1 0

0 1

)
, J =

(
0 −1

1 0

)
, (2.3)

and

L∗ =

(
∂2x − α+ 3ψ∗r

2 + ψ∗i
2 2ψ∗rψ

∗
i

2ψ∗rψ
∗
i ∂2x − α+ ψ∗r

2 + 3ψ∗i
2

)
.

A standard Fourier analysis shows that the spectrum σ(A∗) ofA∗, in both the Hilbert
space L2(R)× L2(R) of square integrable functions and the Banach space Cb(R)×
Cb(R) of uniformly continuous functions, is given by

σ(A∗) =
{
λ ∈ C ; λ2 + 2λ+ a(k) = 0, k ∈ R

}
, (2.4)

in which

a(k) = k4 + 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1, ρ∗ = |ψ∗|2 = ψ∗r
2 + ψ∗i

2.
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Figure 2.2: Stability of constant solutions in the case of anomalous dispersion. In the (α, ρ∗)-
plane, the shaded regions represent the values for which a constant solution with ρ∗ = |ψ∗|2
is Turing unstable (left plot) and zero-mode unstable (right plot). The insets show a typical
shape of the largest eigenvalue λ1(k) in these instability regions.

The constant solution ψ∗ is unstable if one of the two roots λ1,2(k) of the quadratic
polynomial in (2.4) has positive real part, for some wavelength k ∈ R, and stable
otherwise. Since the sum of these two roots is−2, we may take λ2(k) = −2−λ1(k)

such that Re(λ2(k)) 6 −1 and Re(λ1(k)) > −1, for any k ∈ R. Furthermore
Re(λ1(k)) > −1 if and only if λ1(k) is real, and it is straightforward to check that
λ1(k) > 0 if and only if a(k) < 0. Consequently, instabilities are found when
λ1(k) > 0, or equivalently a(k) < 0, for some k ∈ R.

According to the analysis in [3], two types of instabilities occur: a Turing insta-
bility when λ1(0) < 0 and λ1(k) > 0 for some k 6= 0, and a zero-mode instability
when λ1(0) > 0. The corresponding parameter values are found from the condition
a(k) < 0 and are represented in Figure 2.2. The instability regions are determined
by the values of α and ρ∗, only, the values of the parameter F and of the constant
solution ψ∗ being obtained from the equalities (2.1). The curves Γ1, Γ+, and Γ−,
which form the boundaries of these two regions, are defined through

Γ1 = {α < 2, ρ∗ = 1}, Γ+ = {α > 2, ρ∗ = ρ+(α)}, (2.5)

and
Γ− = {

√
3 < α < 2, ρ∗ = ρ+(α)} ∪ {α >

√
3, ρ∗ = ρ−(α)}. (2.6)

A constant solution looses its stability upon increasing ρ∗ and becomes Turing or
zero-mode unstable when crossing the curves Γ1 or Γ+, respectively. The instability
is fully developed in the open sets situated between the curves Γ1 and Γ− (Turing
instability region) and the curves Γ− and Γ+ (zero-mode instability region).

Remark 2.1 The three curves Γ1, Γ+, and Γ− above are precisely the bifurcation
curves found in the local bifurcation analysis of the steady Lugiato-Lefever equation
in [5]. In the spatial dynamics approach from [5], the bifurcation points are the
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parameter values where the number of purely imaginary eigenvalues of a certain 4×4

matrix changes. It turns out that these purely imaginary eigenvalues are precisely the
values ik with k such that λ1(k) = 0. This property implies that the curves Γ1,
Γ+, and Γ− correspond to the local bifurcations (iω)2, 02, and 02(iω), respectively,
studied [5].

3 Bifurcation analysis

In this section, we study the bifurcations of steady periodic solutions which occur in
the Turing and zero-mode instability regions defined in Section 2. We assume that the
instabilities are fully developed, so that the boundaries Γ1, Γ+, and Γ− are excluded
from the analysis. We follow the approach used in [3] for the analysis of the onset of
Turing instability, i.e., for parameter values (α, ρ∗) ∈ Γ1.

3.1 Dynamical system and choice of parameters

We fix (α, ρ∗) in either the Turing instability region, or the zero-mode instability
region, denote by F∗ the corresponding value of the parameter F given by (2.1), and
take F as bifurcation parameter by setting F 2 = F 2

∗ + µ, with small µ.

For the Lugiato-Lefever equation (1.1), we look for spatially periodic solutions
with wavelength k∗ > 0 of the form

ψ(x, t) = ψ∗µ + (u+ iv)(y, t), y = k∗x, (3.1)

where ψ∗µ = ψ∗rµ + iψ∗iµ is the constant solution given by (2.1) for F 2 = F 2
∗ +µ, and

the functions u and v are real-valued and 2π-periodic in y. Inserting (3.1) into (1.1)
we obtain a system of the form

dU

dt
= A∗µU + F(U, µ), (3.2)

for U = (u, v)T , in which A∗µ is the linear operator

A∗µ = −I + JL∗µ,

with I and J the matrices defined by (2.3),

L∗µ =

(
k2∗∂

2
y − α+ 3ψ∗rµ

2 + ψ∗iµ
2 2ψ∗rµψ

∗
iµ

2ψ∗rµψ
∗
iµ k2∗∂

2
y − α+ ψ∗rµ

2 + 3ψ∗iµ
2

)
,

and F(U, µ) is a nonlinear map,

F(U, µ) = J (R2(U,U, µ) +R3(U,U, U)) ,
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whereR2(·, ·, µ) andR3 are bilinear and trilinear maps, respectively, such that

R2(U1, U2, µ) =

(
ψ∗rµ(3u1u2 + v1v2) + ψ∗iµ(u1v2 + u2v1)

ψ∗iµ(u1u2 + 3v1v2) + ψ∗rµ(u1v2 + u2v1)

)
, (3.3)

for Uj = (uj , vj)
T , j = 1, 2, and

R3(U,U, U) =

(
u(u2 + v2)

v(u2 + v2)

)
, (3.4)

for Uj = (u, v)T .

We choose as phase-space for the dynamical system (3.2) the Hilbert space of
2π-periodic, square-integrable functions X = L2(0, 2π) × L2(0, 2π). In this space,
A∗µ is a closed linear operator with domain Y = H2(0, 2π) × H2(0, 2π), J and
L∗µ are skew- and self-adjoint operators, respectively, and F(·, µ) : Y → Y is a
smooth map. Furthermore, as a consequence of the invariance of the Lugiato-Lefever
equation (1.1) under the reflection x 7→ −x and under spatial translations x 7→ x+a,
a ∈ R, the dynamical system (3.2) is equivariant under the actions of the reflection
operator T and the translation operators Ta defined through

(T U)(y) = U(−y), (TaU)(y) = U(y + a), y ∈ R, (3.5)

i.e., both A∗µ and F(·, µ) commute with T and Ta, for any µ.

In this setting, we look for wavelengths k∗ such that µ = 0 is a bifurcation point
for the dynamical system (3.2). These bifurcation points are determined by the spec-
trum of the linear operator A∗µ at µ = 0. Since the domain Y of A∗µ is compactly
embedded in X , the operator has compact resolvent and therefore purely point spec-
trum consisting of isolated eigenvalues. Consequently, µ = 0 is a bifurcation point if
the operator A∗0 possesses purely imaginary eigenvalues. Upon comparing A∗0 with
the operator A∗ given by (2.2) in Section 2, and taking into account the fact that the
phase-space X consists of 2π-periodic functions, we find that the eigenvalues of A∗0
can be computed from the formula (2.4) by taking k = nk∗, n ∈ Z, so that

σ(A∗0) = {λ1(nk∗), λ2(nk∗), n ∈ Z},

where λ1(nk∗) and λ2(nk∗) are the two roots of the quadratic polynomial

λ2 + 2λ+ a(nk∗) = 0.

With the notations from Section 2, Re(λ1(k)) > −1 if and only if λ1(k) is real, so
that µ = 0 is a bifurcation point when λ1(nk∗) = 0, for some n ∈ Z. Without
loss of generality we may assume n = 1, otherwise we may replace k∗ by nk∗.
Taking into account the shape of λ1(k) (see the insets in Figure 2.2), for (α, ρ∗) in
the Turing instability region there are precisely two positive values kmin < kmax such
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that λ1(kmin) = λ1(kmax) = 0, whereas in the zero-mode instability region there is
only one positive value kmax such that λ1(kmax) = 0. We can compute these values
from the condition a(k) = 0, which is equivalent to λ1(k) = 0, and find

k2max = 2ρ∗ − α+
√
ρ∗2 − 1 (3.6)

and
k2min = 2ρ∗ − α−

√
ρ∗2 − 1. (3.7)

Notice that k2max vanishes precisely along the curve Γ+, whereas k2min vanishes along
the curve Γ−. In the next two subsections we study separately the bifurcations ob-
tained for wavelengths k∗ = kmax and k∗ = kmin.

3.2 Periodic solutions with wavelengths kmax

For (α, ρ∗) fixed in either the Turing instability region, or the zero-mode instability
region, we take k∗ = kmax. Then λ1(kmax) = 0, so that 0 is an eigenvalue of A∗0,
and the results in Section 2 imply that all other eigenvalues in the spectrum σ(A∗0) are
either negative, or have negative real part equal to−1, in the Turing instability region,
and that there exist an additional positive eigenvalue, with Fourier mode n = 0, in
the zero-mode instability region. Consequently, we have the spectral decomposition

σ(A∗0) = σs(A∗0) ∪ σc(A∗0) ∪ σu(A∗0), (3.8)

with
σc(A∗0) = {0}, σs(A∗0) ∪ σu(A∗0) ⊂ {λ ∈ C ; |Reλ| > δ},

for some δ > 0, and σu(A∗0) = ∅ in the Turing instability region. A direct computa-
tion shows that 0 is a double semi-simple eigenvalue with associated eigenvectors ζ
and ζ,

ζ =

(
(ρ∗ −

√
ρ∗2 − 1)(α+

√
ρ∗2 − 1)

2ρ∗ − α−
√
ρ∗2 − 1

)
eiy. (3.9)

Following the approach in [3], we rewrite the system (3.2) in the form

dU

dt
= A∗0U + G(U, µ), (3.10)

in which

G(U, µ) = J (R1(U, µ) +R2(U,U, µ) +R3(U,U, U)) ,

whereR1(·, µ) = L∗µ − L∗0 and J ,R2,R3 are defined as before. Upon checking the
hypotheses of the center manifold theorem [6, Chapter 2, Theorem 3.3], we conclude
that the dynamical system (3.10) possesses a two-dimensional center manifold,

Mc(µ) = {U ∈ Y ; U = Aζ +Aζ + Ψ(A,A, µ), A ∈ C},
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which contains all sufficiently small bounded solutions of (3.10), for any µ suffi-
ciently small. Here Ψ is a map of class Ck, for any arbitrary but fixed k > 3, defined
in a neighborhood of 0 in C×C×R, where C×C = {(A,A) ; A ∈ C}, and taking
values in the spectral subspace Xh associated to the union σs(A∗0) ∪ σu(A∗0) of the
stable and unstable spectra of the operator A∗0.

The dynamics on the center manifoldMc(µ) is described by the reduced equa-
tion

dA

dt
= f(A,A, µ), (3.11)

in which f is a complex-valued map obtained by inserting the Ansatz

U = Aζ +Aζ + Ψ(A,A, µ),

into the dynamical system (3.10) and then projecting on the eigenvector ζ. The sym-
metries (3.5) of the dynamical system (3.2) are inherited by the reduced system (3.11)
which is O(2)-equivariant (see [3] for more details). As a consequence, the vector
field f in (3.11) is of the form

f(A,A, µ) = Ag(|A|2, µ),

where g is a real-valued map of class Ck−1 defined in a neighborhood of 0 in R2, and
has the Taylor expansion

f(A,A, µ) = c11µA+ c30A|A|2 +O(|A|(|µ|2 + |A|4)). (3.12)

The signs of the two real coefficients c11 and c30 determine the dynamics on the
center manifold.

Assuming that both coefficients c11 and c30 are nonzero, the reduced system
(3.11) undergoes a steady bifurcation with O(2) symmetry at µ = 0, which is su-
percritical when c30 < 0 and subcritical when c30 > 0. More precisely, we have the
following properties (see also [6, Section 1.2.4]):

(i) If c30c11µ > 0, then the reduced equation possesses a unique equilibrium
A = 0 which is stable when c30 < 0, and unstable when c30 > 0.

(ii) If c30c11µ < 0, then the reduced equation possesses the equilibrium A = 0

which is unstable when c30 < 0, and stable when c30 > 0, and a circle of
nontrivial equilibria with opposite stability, Aµ(φ) = rµe

iφ, for φ ∈ R/2πZ.

In contrast to [3], the computation of these coefficients is much more involved here.
We summarize these computations in Appendix A. From the formulas (A.2) and (A.4)
we conclude that both coefficients change sign when crossing the boundary Γ− be-
tween the two instability regions, where k2min vanishes, and in addition c30 changes
sign when crossing the curve Γ30 with cartesian equation c̃30 = 0, where c̃30 is given
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Figure 3.1: Bifurcations of steady periodic solutions in the case of anomalous dispersion. In
the (α, ρ∗)-plane, the bifurcation is supercritical (c30 < 0) in the lighter shaded regions (light
blue online) and subcritical (c30 > 0) in the darker shaded regions (navy blue online). In the
case k∗ = kmin, we also represent the curves Γn, for n = 2, 3, 4, along which resonances
occur, and the line ρ∗ = 2/

√
3 along which c11 changes sign.

by (A.5). The curve Γ30 lies inside the Turing instability region, starting at the point
(α, ρ∗) = (41/30, 1) and being asymptotic to Γ−, as α→∞ (see Figure 3.1a). Tak-
ing into account the signs of the coefficients c11 and c30 in the different parameter
regions, from the properties (i) and (ii) above we obtain the following result.

Theorem 1 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of
anomalous dispersion. Assume that ψ∗ is a constant solution of (1.1) with square
modulus ρ∗, for parameter values α and F∗. If (α, ρ∗) belongs to either the Turing
instability region, or the zero-mode instability region, as defined in Section 2, and
does not belong to the curve Γ30, then for F 2 = F 2

∗ +µ and k∗ = kmax the dynamical
system (3.2) undergoes a steady bifurcation with O(2) symmetry at µ = 0, and the
following properties hold.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve Γ30 in the
Turing instability region, then the coefficients of the reduced equation (3.11)
satisfy c11 > 0 and c30 < 0, so that the bifurcation is supercritical and the
reduced equation possesses a circle of stable nontrivial equilibria, Aµ(φ) =

rµe
iφ, φ ∈ R/2πZ, for any sufficiently small µ > 0.

(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve Γ30 in the
Turing instability region, then the coefficients of the reduced equation (3.11)
satisfy c11 > 0 and c30 > 0, so that the bifurcation is subcritical and the
reduced equation possesses a circle of unstable nontrivial equilibria, Aµ(φ) =

rµe
iφ, φ ∈ R/2πZ, for any sufficiently small µ < 0.

(iii) If (α, ρ∗) belongs to the zero-mode instability region, then the coefficients of
the reduced equation (3.11) satisfy c11 < 0 and c30 < 0, so that the bifurcation
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is supercritical and the reduced equation possesses a circle of stable nontrivial
equilibria, Aµ(φ) = rµe

iφ, φ ∈ R/2πZ, for any sufficiently small µ < 0.

Going back to the Lugiato-Lefever equation (1.1), the circle of nontrivial equi-
libria Aµ(φ) = rµe

iφ corresponds to a family of steady periodic solutions in x with
wavelengths kmax. The positive equilibrium Aµ(0) = rµ gives an even periodic
solution of the Lugiato-Lefever equation (1.1), with Taylor expansion

ψµ(x) = ψ∗ + ψ1 cos(kmax x) |µ|1/2 +O(|µ|), (3.13)

in which

ψ1 =
(

(ρ∗ −
√
ρ∗2 − 1)(α+

√
ρ∗2 − 1) + i(2ρ∗ − α−

√
ρ∗2 − 1)

) ∣∣∣∣c11c30
∣∣∣∣1/2,

whereas the other equilibria on the circle correspond to translations in x of this even
periodic solution. This latter property is a consequence of the translation invariance
of the Lugiato-Lefever equation (1.1).

3.3 Periodic solutions with wavelengths kmin

We consider now (α, ρ∗) in the Turing instability region and take k∗ = kmin. Then
0 is an eigenvalue of A∗0, but in contrast to the case k∗ = kmax above, its algebraic
multiplicity is not always two. In this case, resonances occur for parameter values
for which the two values kmin < kmax are such that kmax = nkmin, for some n ∈ N,
n > 2. Then λ1(nkmin) = 0 and 0 is a quadruple eigenvalue of A∗0, with two
additional eigenvectors in the Fourier mode n. We exclude these resonances from
our analysis, since they lead to a four-dimensional, instead of a two-dimensional,
reduced system which requires a different bifurcation analysis.

A direct calculation shows that a resonance kmax = nkmin, n > 2, occurs when

α = 2ρ∗ − n2 + 1

n2 − 1

√
ρ∗2 − 1. (3.14)

This equality is the cartesian equation of a curve Γn in the (α, ρ∗)-plane, which starts
at (α, ρ∗) = (2, 1) and lies in the Turing instability region. The curves Γ2, Γ3, and
Γ4 are represented in Figure 3.1b. As n increases, the curves Γn move to the right
in the (α, ρ∗)-plane and accumulate at Γ−, as n → ∞. Assuming that (α, ρ∗) does
not belong to any of the curves Γn, n > 2, the eigenvalue 0 of A∗0 is double and
semi-simple with associated eigenvectors ζ and ζ given by

ζ =

(
(ρ∗ +

√
ρ∗2 − 1)(α−

√
ρ∗2 − 1)

2ρ∗ − α+
√
ρ∗2 − 1

)
eiy. (3.15)
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Furthermore, the spectral decomposition (3.8) holds, and σu(A∗0) is empty for (α, ρ∗)

in the open set situated to the left of the curve Γ2, and above Γ1, and contains pre-
cisely n − 1 positive eigenvalues, λ1(jkmin), j = 2, . . . , n, for (α, ρ∗) in the open
set between two consecutive curves Γn and Γn+1, n > 2.

Following the arguments used in the case k∗ = kmax, we obtain a reduced system
of the same form (3.11), in which the coefficients c11 and c30 in the Taylor expansion
(3.12) of f are given by the equalities (A.3) and (A.6), respectively, in Appendix A.
In this case, the coefficient c11 vanishes when ρ∗ = 2/

√
3, the coefficient c30 is not

defined along the curve Γ2 and vanishes along the curve Γ30 with cartesian equation
c̃30 = 0, where c̃30 is given by (A.7), and both coefficients change sign when crossing
one of the curves where they vanish or are not defined. It is now straightforward to
obtain the following result, similar to the one in Theorem 1.

Theorem 2 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of
anomalous dispersion. Assume that ψ∗ is a constant solution of (1.1) with square
modulus ρ∗, for parameter values α and F∗. If (α, ρ∗) belongs to the Turing instabil-
ity region and does not belong to any of the curves Γn, n > 2, Γ30, and ρ∗ = 2/

√
3,

then for F 2 = F 2
∗ +µ and k∗ = kmin the dynamical system (3.2) undergoes a steady

bifurcation with O(2) symmetry at µ = 0, and the following properties hold.

(i) If (α, ρ∗) belongs to the lighter shaded regions in Figure 3.1b and ρ∗ < 2/
√

3,
then c11 > 0 and c30 < 0, so that the bifurcation is supercritical and the
reduced equation possesses a circle of stable nontrivial equilibria, Aµ(φ) =

rµe
iφ, φ ∈ R/2πZ, for any sufficiently small µ > 0.

(ii) If (α, ρ∗) belongs to the lighter shaded regions in Figure 3.1b and ρ∗ > 2/
√

3,
then c11 < 0 and c30 < 0, so that the bifurcation is supercritical and the
reduced equation possesses a circle of stable nontrivial equilibria, Aµ(φ) =

rµe
iφ, φ ∈ R/2πZ, for any sufficiently small µ < 0.

(iii) If (α, ρ∗) belongs to the darker shaded regions in Figure 3.1b and ρ∗ < 2/
√

3,
then c11 > 0 and c30 > 0, so that the bifurcation is subcritical and the reduced
equation possesses a circle of unstable nontrivial equilibria, Aµ(φ) = rµe

iφ,
φ ∈ R/2πZ, for any sufficiently small µ < 0.

(iv) If (α, ρ∗) belongs to the darker shaded regions in Figure 3.1b and ρ∗ > 2/
√

3,
then c11 < 0 and c30 > 0, so that the bifurcation is subcritical and the reduced
equation possesses a circle of unstable nontrivial equilibria, Aµ(φ) = rµe

iφ,
φ ∈ R/2πZ, for any sufficiently small µ > 0.

Going back to the Lugiato-Lefever equation (1.1), the positive equilibriumAµ(0) =

rµ gives an even periodic solution of the Lugiato-Lefever equation (1.1), with Taylor
expansion

ψµ(x) = ψ∗ + ψ1 cos(kmin x) |µ|1/2 +O(|µ|), (3.16)
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in which

ψ1 =
(

(ρ∗ +
√
ρ∗2 − 1)(α−

√
ρ∗2 − 1) + i(2ρ∗ − α+

√
ρ∗2 − 1)

) ∣∣∣∣c11c30
∣∣∣∣1/2,

whereas the other equilibria on the circle correspond to translations in x of this even
periodic solution.

4 Instabilities of periodic waves

In this section, we study the stability of the steady periodic solutions found in Sec-
tion 3 in the two cases, k∗ = kmax and k∗ = kmin. We focus on co-periodic and
subharmonic perturbations, i.e., periodic perturbations with periods 2πN/k∗, where
N = 1 for co-periodic perturbations and N > 2 for subharmonic perturbations.

4.1 Background and shape instabilities

The bifurcation results in Section 3 also allow to conclude on the nonlinear stability
of the bifurcating steady periodic solutions for perturbations which belong to the
phase space X = L2(0, 2π) × L2(0, 2π) of the dynamical system (3.2), i.e., for co-
periodic perturbations which have the same period as the stationary solution. In this
approach, the stability of a bifurcating solution ψµ(x) is determined by the location in
the complex plane of the spectrum σ(A∗0) of the operatorA∗0, on the one hand, and by
the stability of the corresponding equilibrium Aµ(φ) of the reduced equation (3.11),
on the other hand. More precisely, a bifurcating periodic solution ψµ(x) is stable
if the spectrum σ(A∗0) is stable, i.e., it does not contain eigenvalues with positive
real part, and if the corresponding equilibrium Aµ(φ) of the reduced equation is
stable, as well. Then for initial data ψ(x, 0) = ψµ(x) + φ0(x), sufficiently close to a
periodic wave ψµ(x), the solution ψ(x, t) of the Lugiato-Lefever equation converges
to a translated periodic wave ψµ(x+ a), for some a ∈ R,

‖ψ(·, t)− ψµ(·+ a)‖H2
per
→ 0, as t→∞. (4.1)

The decay rate is given by the convergence rate towards equilibria on the center man-
ifold, hence it is slowly exponential, O(e−dµ), for some d > 0. If one of the two
properties above does not hold then the bifurcating periodic solution ψµ(x) is unsta-
ble. We distinguish between two types of instabilities: background instabilities, when
σ(A∗0) contains eigenvalues with positive real part, and shape instabilities, when the
equilibrium Aµ(φ) of the reduced equation is unstable.

Upon replacing the phase space X = L2(0, 2π)×L2(0, 2π) of 2π-periodic func-
tions by the phase space XN = L2(0, 2πN) × L2(0, 2πN) of 2πN -periodic func-
tions, for some arbitrary, but fixed N , we can extend the class of perturbations from
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co-periodic to subharmonic perturbations. The key difference is that now the spec-
trum of the operator A∗0 possesses additional eigenvalues,

σ(A∗0) = {λ1(nk∗/N), λ2(nk∗/N), n ∈ Z} , (4.2)

where λ1(nk∗/N) and λ2(nk∗/N) are the two roots of the quadratic polynomial

λ2 + 2λ+ a(nk∗/N) = 0.

As a consequence, the operator A∗0 may have additional unstable eigenvalues, hence
leading to additional background instabilities, and more resonances may occur, as the
ones found for k∗ = kmin in Section 3, where the eigenvalue 0 is quadruple, instead
of double. In the next two subsections we study separately the cases k∗ = kmax and
k∗ = kmin.

4.2 Periodic solutions with wavelengths kmax

Consider the family of steady periodic solutions ψµ(x) with wavelengths k∗ = kmax

constructed in Theorem 1. For co-periodic perturbations, N = 1, their stability
follows from the results in Section 3. The spectral decomposition (3.8) implies that
the spectrum σ(A∗0) is stable in the Turing instability region, whereas it contains one
positive eigenvalue in the zero-mode instability region, and according to Theorem 1
the equilibria Aµ(φ) are stable when the bifurcation is supercritical and unstable
when the bifurcation is subcritical. Consequently, in the three cases in Theorem 1 the
periodic solutions are stable in the case (i), background stable and shape unstable in
the case (ii), and background unstable and shape stable in the case (iii).

For subharmonic perturbations, N > 2, we consider the dynamical system (3.2)
in the phase space XN = L2(0, 2πN)× L2(0, 2πN). In contrast to the case N = 1,
for N > 2 resonances occur for certain parameter values, due to the presence of
additional eigenvalues in the spectrum of A∗0. Indeed, the equality (4.2) implies that
the eigenvalue 0 of the operatorA∗0 is quadruple instead of double, hence a resonance
occur, when kmin = nkmax/N , for n = 1, . . . , N − 1. From the formulas (3.6) and
(3.7) we obtain that kmin = nkmax/N when the equalities

α = 2ρ∗ − N2 + n2

N2 − n2
√
ρ∗2 − 1 (4.3)

hold, for n = 1, . . . , N − 1. Each of these equalities defines a curve Γn,N in
the (α, ρ∗)-plane which lies in the Turing instability region. For increasing n =

1, . . . , N − 1, these curves are ordered from right to the left between the curves Γ−
and Γ1 in the (α, ρ∗)-plane. Notice that the values n = 0 and n = N correspond to
the curves Γ− and Γ1, respectively, and that Γ1,N is the curve ΓN defined by (3.14)
in Section 3.
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Assuming that (α, ρ∗) does not belong to any of the curves Γn,N , n = 1, . . . , N−
1, the spectral decomposition (3.8) holds, with 0 a double semi-simple eigenvalue.
The unstable spectrum σu(A∗0) is empty for (α, ρ∗) in the open set between the curves
Γ1 and ΓN−1,N , it consists ofN−n positive eigenvalues in the open set between two
consecutive curves Γn,N and Γn−1,N , for any n = 2, . . . , N − 1, of N − 1 positive
eigenvalues in the open set between Γ1,N and Γ−, and of N positive eigenvalues for
(α, ρ∗) in the zero-mode instability region. In particular, this shows that the peri-
odic solution is background stable with respect to 2πN/kmax-periodic perturbations
when (α, ρ∗) belongs to the open set between the curves Γ1 and ΓN−1,N , and it is
background unstable otherwise.

Next, we find the shape instabilities by applying the center manifold reduction, as
in Section 3. Since the eigenvalue 0 is double, the center manifold is two-dimensional,
and it turns out that the reduced dynamics is governed by the same reduced system
(3.11). Consequently, the result in Theorem 1 holds in XN , for any N , implying that
shape instabilities occur only for the periodic solutions obtained in the subcritical
bifurcation.

Along the resonance curves Γn,N , n = 1, . . . , N − 1, the eigenvalue 0 of A∗0 is
quadruple, and the center manifold reduction leads to a four-dimensional, instead of
a two-dimensional system, just as in the case k∗ = kmin in Section 3. The present
bifurcation analysis does not allow to detect shape instabilities along these curves, but
we can conclude that background instabilities occur along Γn,N , n = 1, . . . , N − 2.

We summarize the main stability results above in the following theorem (see also
Figure 4.1a).

Theorem 3 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of
anomalous dispersion, and the steady periodic solutions ψµ(x) given by (3.13), with
wavelengths kmax and the properties in Theorem 1. For any N > 2, consider the
curve ΓN−1,N defined through (4.3), and set Γ0,1 = Γ−. Then the following stability
properties hold for periodic perturbations with periods 2πN/kmax, for any N > 1.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve ΓN−1,N in the
Turing instability region, then the steady periodic solutions found in the super-
critical bifurcation are stable, whereas the steady periodic solutions found in
the subcritical bifurcation are unstable and the instability is a shape instability.

(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve ΓN−1,N in
the Turing instability region, then the steady periodic solutions are unstable;
the instability is a background instability for the solutions found in the super-
critical bifurcation, whereas the solutions found in the subcritical bifurcation
are both background and shape unstable.

(iii) If (α, ρ∗) belongs to the zero-mode instability region, then the steady periodic
solutions are unstable and the instability is a background instability.
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Figure 4.1: Stability of steady periodic solutions in the case of anomalous dispersion. In the
(α, ρ∗)-plane, the steady periodic solutions are background stable for subharmonic perturba-
tions with periods 2πN/k∗ for the values of N as indicated, and unstable otherwise. In the
lighter shaded regions (light blue online) they are shape stable, whereas in the darker shaded
regions (navy blue online) they are shape unstable. The curves Γn,N are defined by (4.3) in
the case k∗ = kmax and by (4.4) in the case k∗ = kmin.

4.3 Periodic solutions with wavelengths kmin

The stability of the family of steady periodic solutions with wavelengths k∗ = kmin

found in Theorem 2 is studied in the same way. In this case resonances occur when
kmax = nkmin/N , for n > N + 1, and using the formulas (3.6) and (3.7) we obtain a
sequence of curves Γn,N , n > N + 1, in the (α, ρ∗)-plane with parametric equations

α = 2ρ∗ +
N2 + n2

N2 − n2
√
ρ∗2 − 1. (4.4)

Notice that the curves Γn,1, for N = 1, are the curves Γn defined by (3.14) in Sec-
tion 3. Using the same arguments as in the case k∗ = kmax, we obtain the following
stability result (see also Figure 4.1b).

Theorem 4 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of
anomalous dispersion, and the steady periodic solutions ψµ(x) given by (3.16), with
wavelengths kmin and the properties in Theorem 2. For any N > 1, consider the
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curve ΓN+1,N defined through (4.4). Then the following stability properties hold for
periodic perturbations with periods 2πN/kmin, for any N > 1.

(i) If (α, ρ∗) belongs to the open set situated to the left of the curve ΓN+1,N in the
Turing instability region, then the steady periodic solutions found in the super-
critical bifurcation are stable, whereas the steady periodic solutions found in
the subcritical bifurcation are unstable and the instability is a shape instability.

(ii) If (α, ρ∗) belongs to the open set situated to the right of the curve ΓN+1,N in
the Turing instability region, then the steady periodic solutions are unstable;
the instability is a background instability for the solutions found in the super-
critical bifurcation, whereas the solutions found in the subcritical bifurcation
are both background and shape unstable.

5 The case of normal dispersion

In this section we briefly discuss the case β = 1 of normal dispersion. The main
difference with the case β = −1 of anomalous dispersion occurs in the linear stabil-
ity analysis of constant solutions. This implies that the periodic waves bifurcate in
different parameter regions, but the bifurcation and stability analysis in Sections 3-4
remain the same, including computations.

5.1 Stability of constant solutions

The constant solutions of the Lugiato-Lefever equation (1.1) are the same in both
cases of normal and of anomalous dispersion (see Figure 2.1), but they have different
stability properties. For a constant solution ψ∗ = ψ∗r + iψ∗i , with modulus square ρ∗,
the linear operator A∗ has the same form (2.2), but the linear operator L∗ changes in
the case of normal dispersion, the terms ∂2x having now a coefficient −1,

L∗ =

(
−∂2x − α+ 3ψ∗r

2 + ψ∗i
2 2ψ∗rψ

∗
i

2ψ∗rψ
∗
i −∂2x − α+ ψ∗r

2 + 3ψ∗i
2

)
.

As a consequence, the sign of the coefficient of k2 changes in the formula of a(k) in
the spectrum of linear operator A∗,

σ(A∗) =
{
λ ∈ C : λ2 + 2λ+ a(k) = 0, k ∈ R

}
,

in which
a(k) = k4 − 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1.

This implies a change in the stability properties of the constant solutions (see [3]).
The zero-mode instability region is the same, but the Turing instability region is now
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Figure 5.1: Stability of constant solutions in the case of normal dispersion. In the (α, ρ∗)-
plane, the shaded regions represent the values for which a constant solution with ρ∗ = |ψ∗|2
is Turing unstable (left plot) and zero-mode unstable (right plot). The insets show a typical
shape of the largest eigenvalue λ1(k) in these instability regions.

situated between the curve Γ+ defined in (2.5) and the half-line

Γ̃1 = {α > 2, ρ∗ = 1}.

These regions are represented in Figure 5.1.

5.2 Bifurcations and stability of periodic solutions

As in the case of anomalous dispersion, in the Turing instability region we expect
bifurcations of steady periodic solutions with wavelengths k∗ = k̃min and k∗ =

k̃max, where k̃min < k̃max are such that λ1(k̃min) = λ1(k̃max) = 0, whereas in the
zero-mode instability region we expect bifurcations of steady periodic solutions with
wavelengths k∗ = k̃max. Since the difference between the formulas of a(k) in the
two cases is only a change of the sign of the coefficient of k2, we find that

k̃2max = −k2min, k̃2min = −k2max,

where kmax and kmin are the wavelengths given by (3.6) and (3.7), respectively. To-
gether with the fact that in the Lugiato-Lefever equation (1.1) the difference between
the two cases of normal and anomalous dispersion is the sign of β, this implies that
the dynamical systems found for k∗ = k̃max and k∗ = k̃min in the case of nor-
mal dispersion are precisely the ones found in the case of anomalous dispersion for
k∗ = kmin and k∗ = kmax, respectively. As a consequence, the calculations are the
same as the ones in Sections 3 and 4, with the only difference that (α, ρ∗) belongs to
a different parameter region in the case of the Turing instability. We do not give the
precise statements of the analogue of Theorems 1–4 in this case, but only summarize
the results in Figure 5.2.
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Figure 5.2: Stability of steady periodic solutions in the case of normal dispersion. In the
(α, ρ∗)-plane, the steady periodic solutions are background stable for subharmonic perturba-
tions with periods 2πN/k∗ for the values of N as indicated, and unstable otherwise. In the
lighter shaded regions (light blue online) they are shape stable, whereas in the darker shaded
regions (navy blue online) they are shape unstable. The curves Γn,N are defined by (4.4) in
the case k∗ = k̃max and by (4.3) in the case k∗ = k̃min.

A Coefficients of the reduced system

A.1 Computation of c11

According to [3], the coefficient c11 in the Taylor expansion (3.12) of the reduced
vector field f can be computed from the formula

c11 =
dλ∗
dµ

(0),

where λ∗(µ) is the eigenvalue of the operator A∗µ which is the continuation of the
eigenvalue 0 of the operator A∗0, for small µ. The results in Section 2 imply that
λ∗(µ) is the largest root of the polynomial

λ2 + 2λ+ aµ(k∗) = 0, (A.1)

in which

aµ(k∗) = k4∗ + 2(α− 2ρ∗µ)k2∗ + α2 − 4αρ∗µ + 3ρ∗µ
2 + 1,
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and ρ∗µ is the square modulus of the constant solution ψ∗µ in (3.1), ρ∗µ = |ψ∗µ|2. Upon
differentiating (A.1) with respect to µ and taking µ = 0, after some elementary
calculations, we obtain

c11 =
1

k2maxk
2
min

(
ρ∗ + 2

√
ρ∗2 − 1

)
, (A.2)

in the case k∗ = kmax, and

c11 =
1

k2maxk
2
min

(
ρ∗ − 2

√
ρ∗2 − 1

)
, (A.3)

in the case k∗ = kmin. Notice that we can obtain the formula for k∗ = kmin from the
one for k∗ = kmax just by changing the sign of the square root

√
ρ∗2 − 1.

A.2 Computation of c30

According to [3], the coefficient c30 in the Taylor expansion (3.12) can be computed
from the formula

c30 =
1

〈ζ,J ζ2〉
〈
2R2(ζ,Ψ11, 0) + 2R2(ζ,Ψ20, 0) + 3R3(ζ, ζ, ζ), ζ2

〉
,

in which R2 and R3 are the bilinear and trilinear maps, respectively, given by (3.3)-
(3.4), ζ and ζ2 are eigenvectors ofA∗0 associated to the eigenvalues 0 and−2, respec-
tively, and the vectors Ψ11 and Ψ20 are solutions of the linear equations:

A∗0Ψ11 = −2JR2(ζ, ζ, 0), A∗0Ψ20 = −JR2(ζ, ζ, 0).

In the case k∗ = kmax, the eigenvector ζ is given by (3.9) and a direct calculation
gives

ζ2 =

(
(ρ∗ −

√
ρ∗2 − 1)(2ρ∗ − α+

√
ρ∗2 − 1)

−α+
√
ρ∗2 − 1

)
eiy.

A symbolic computation using Maple gives

Ψ11 =
4F∗

k2max k
2
min

(
u11

v11

)
,

Ψ20 =
2F∗

k2max(9(2ρ∗ − α) + 15
√
ρ∗2 − 1)

(
u20

v20

)
e2iy,
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in which

u11 = (ρ∗ −
√
ρ∗2 − 1)α2 + (2ρ∗

√
ρ∗2 − 1− 2ρ∗2 + 2)α

−ρ∗2
√
ρ∗2 − 1 + ρ∗3 +

√
ρ∗2 − 1− 3ρ∗,

v11 = (ρ∗
√
ρ∗2 − 1− ρ∗2 − 1)α2

−2(ρ∗2
√
ρ∗2 − 1− ρ∗3 +

√
ρ∗2 − 1− 2ρ∗)α

+ρ∗3
√
ρ∗2 − 1− ρ∗4 + 3ρ∗

√
ρ∗2 − 1− 4ρ∗2 + 1,

u20 = 3(
√
ρ∗2 − 1− ρ∗)α2 − 2(ρ∗

√
ρ∗2 − 1− ρ∗2 − 1)α

−ρ∗2
√
ρ∗2 − 1 + ρ∗3 + 5

√
ρ∗2 − 1 + 5ρ∗,

v20 = −3(ρ∗
√
ρ∗2 − 1− ρ∗2 − 1)α2

+2(3ρ∗2
√
ρ∗2 − 1− 3ρ∗3 −

√
ρ∗2 − 1− 8ρ∗)α

−3ρ∗3
√
ρ∗2 − 1 + 3ρ∗4 + 3ρ∗

√
ρ∗2 − 1 + 12ρ∗2 + 5,

and then the formula for the coefficient c30,

c30 =
2F 2
∗ (ρ∗ −

√
ρ∗2 − 1)

k2max k
2
min(9(2ρ∗ − α) + 15

√
ρ∗2 − 1)

c̃30, (A.4)

where

c̃30 = −27
√
ρ∗2 − 1α3 + 3(4ρ∗

√
ρ∗2 − 1− 25ρ∗2 + 5)α2 (A.5)

+(345ρ∗2
√
ρ∗2 − 1 + 438ρ∗3 − 67

√
ρ∗2 − 1− 236ρ∗)α

−330ρ∗3
√
ρ∗2 − 1− 363ρ∗4 + 144ρ∗2 + 55.

Finally, as for the coefficient c11, we obtain the formula for the coefficient c30 in
the case k∗ = kmin by changing the sign of the square root

√
ρ∗2 − 1 in the formula

(A.4) for k∗ = kmax, so that

c30 =
2F 2
∗ (ρ∗ +

√
ρ∗2 − 1)

k2max k
2
min(9(2ρ∗ − α)− 15

√
ρ∗2 − 1)

c̃30, (A.6)

where

c̃30 = 27
√
ρ∗2 − 1α3 − 3(4ρ∗

√
ρ∗2 − 1 + 25ρ∗2 − 5)α2 (A.7)

−(345ρ∗2
√
ρ∗2 − 1− 438ρ∗3 − 67

√
ρ∗2 − 1 + 236ρ∗)α

+330ρ∗3
√
ρ∗2 − 1− 363ρ∗4 + 144ρ∗2 + 55.
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