

Experimental investigations and analyses of the thermal behavior of a moving pantograph's strip

O DELCEY Nicolas

September 4 th, 2018

RAILWAYS 2018

Main objectives

 Define the thermal behaviour of the pantograph strip during the motion

- Describe the influence of all the different parameters on the heat sources in the strip
- Obtain the times where the thermal configuration can generate strip degradations, premature wear and breaks

Figure: Mass losses of carbon strip with the temperature increase

RAILWAYS 2018

Main objectives

• Define the thermal behaviour of the pantograph strip during the motion

- o Describe the influence of all the different parameters on the heat sources in the strip
- Obtain the times where the thermal configuration can generate strip degradations, premature wear and breaks

Test bench presentation

o Situated at Polimi (Politecnico di Milano)

 It can reproduce a real configuration of a pantograph/catenary system during a real travel

RAILWAYS 2018

Strip instrumentation

19 thermocouples are inserted inside the strip at specific positions

o Electrical insulation and signal filtering are necessary

3-7 September | Stiges, Barcelona, Spain 4/10

RAILWAYS 2018

Experimental parameters

	0		
Strip impregnation	Strip thickness	Velocity	Force
32 %	32 mm	$140 km.h^{-1}$ constant	60 N
25 %	18 mm	$140 km.h^{-1}$ constant	90 N
		Variable profile	\bigcirc

3-7 September | Stiges, Barcelona, Spain 5/10

Results and interpretations: Matter change

Figure: Comparison between the thermal response of the pantograph strips A and B, for thermocouples 2-3 with a velocity of 140 km/h, a force of 60N and a normal current profile

Results and interpretations: Stagger motion

3-7 September | Stiges, Barcelona, Spain 7/10

RAILWAYS 2018

Results and interpretations: Velocity profile

Thermal distribution

3-7 September | Stiges, Barcelona, Spain 9/10

Conclusion

- The strip matter characteristics have an important influence on the temperature of the strip and its thermal diffusivity
- o A high part of impregnated copper generates:
 - Low temperatures and high diffusivity
 - Less wear on the material, more problems on the glue joint
- A velocity change creates:
 - Temperature peaks
 - Convection variations and then cooling variations
- o Possibility to understand the thermal effect with accuracy
- Possibility to control the strip validity from a thermal point a view with only two thermocouples

