
A particle swarm optimization for selective pickup

and delivery problem

1st Zhihao PENG

Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS,

Rue Thierry-Mieg (UTBM),

90 010 Belfort Cedex, France

zhihao.peng@utbm.fr

2nd Zaher Al Chami

Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS,

Rue Thierry-Mieg (UTBM),

90 010 Belfort Cedex, France

zaher.al-chami@utbm.fr

3rd Hervé Manier

Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS,

Rue Thierry-Mieg (UTBM),

90 010 Belfort Cedex, France

herve.manier@utbm.fr

4th Marie-Ange Manier

Univ. Bourgogne Franche-Comté FEMTO-ST Institute/CNRS,

Rue Thierry-Mieg (UTBM),

90 010 Belfort Cedex, France

marie-ange.manier@utbm.fr

Abstract—This paper studies a variant of vehicle routing
problem called Selective Pickup and Delivery Problem with
Time Windows and Paired Demands (SPDPTWPD). A visiting
sequence of each assigned vehicle needs to be determined by
respecting the imposed constraints. Like for other combinatorial
problems, the optimal solution cannot be obtained in a reasonable
time when the size increases. An approached method is thus
chosen as an alternative to tackle this issue. The proposed method
integrates particle swarm optimization (PSO) with local searches
by considering the diversification of PSO and intensification of
local search. To validate the method, experiments are made on
the benchmarks from the literature. The experiments are divided
into two parts. In the first part, a self-comparison is made to
demonstrate the evolutionary capacity of PSO and the efficiency
of proposed local searches. In the second part, the proposed
method is compared with a genetic algorithm from the literature.
The results show that the method is competitive and efficient.

Index Terms—PSO, Pickup and delivery problem, Meta-
heuristic

I. INTRODUCTION

The pickup and delivery problem (PDP) studies the problem

in which all the demands should be transported from pickup

points (suppliers) to delivery points (customers) by vehicles.

One of the most studied contexts of PDP is the urban area

where the capacity of vehicle and the visiting time are limited.

In the literature, this problem is called pickup and delivery

problem with time windows (PDPTW).

In this paper, a variant is studied called selective pickup

and delivery problem with time windows and paired demand

(SPDPTWPD). The selective variant relaxes the constraint in

which all the demands should be satisfied, and the paired de-

mand variant associates one supplier with its related customer.

To better explain the problem, a sketch has been presented in

Fig.1. In the figure, there are four paired demands which are

identified by the same color. The first vehicle departs from

the depot, and visits the supplier of the first demand. Then

it visits the customer of the first demand, and returns to the

depot. The second vehicle departs from the depot, and visits

suppliers of demand two and three sequentially. Then it visits

related customers, and returns to the depot. The demand four

is not satisfied by any vehicles. When a vehicle is making the

route, several constraints should be respected: 1) It departs

and returns to the same depot. 2) The carried demands should

not exceed its maximum capacity. 3) When it arrives earlier

than the opening time of a site (earliest arrival time), it should

wait until this site is available. It should never arrive later than

the close time of a site (latest arrival time). Since the studied

problem is a generalization of the well-known vehicle routing

problem (VRP), it is a NP-hard problem.

Several applications can be found in the real world. For

example, if the resource (vehicles) of a company is limited, as

consequence it may not satisfy all the demands. In this case,

the decision maker can associate each demand with a profit.

Maximizing the profit (satisfying the most important demands)

is then considered as the first objective. A solution of this

problem is a set of visiting sequence of each assigned vehicle.

Since there may be several solutions corresponding to the first

objective, minimizing the distance can be considered as the

second objective to choose the most economical solution.

S1
C1

S2
C2

S3

C3

depot

Si: supplier i

Ci: customer i

S4 C4

Fig. 1. Example of SPDPTWPD.

II. LITERATURE REVIEW

In this section, related work about SPDPTWPD and PSO

will be presented briefly.

The VRP is a problem in which a set of vehicles needs

to find the best routes to visit all the customers. Many

contributions have been made regarding this problem or its

extensions. To get a better understanding, please refer to the

recent survey [1].

In PDP, integrating pickup and delivery operations in the

same route makes the problem more complicated. Extensive

surveys are presented in [2], [3], [4]. Among the variants of

PDP, PDPTW is the most studied one. As to exact methods,

a new branch-and-cut-and-price algorithm was introduced in

[5] by using column generation. An elementary and a non-

elementary shortest path problem was considered as two

pricing subproblems. In [6], an exact method based on a

set-partitioning–like integer formulation was proposed. As

to heuristic methods, a method integrating Squeaky Wheel

Optimization, Solomon’s Insertion Heuristic, and Local Search

has been introduced in [7]. Minimizing the fleet size, trav-

eling distance, scheduling durations and waiting times are

considered as objectives. In [8], a tabu-embedded simulated

annealing algorithm was proposed to solve large multiple-

vehicle PDPTW instances with various distribution properties.

The SPDPTWPD was firstly studied in [9], in which an

arc-based mixed linear program has been introduced. Several

additional constraints were proposed to accelerate the solving

of the model. Based on the instances of Li and Lim [8],

new instances were generated to validate the model. In [10],

the same problem was studied by taking into account two

objectives: maximizing the profit and minimizing the distance.

To deal with two objectives, an lexicographic approach was

proposed by respecting a predefined execution sequence. Al-

though two objectives were considered in this paper, only

one non dominated solution was obtained for each instance

instead of a complete pareto front. Due to the complexity of

the problem, a metaheuristic based on a combination between

tabu search and simulated annealing was introduced in [11].

The drawback of the proposed method is that only one non

dominated solution can be obtained. Therefore, hybrid genetic

algorithm (HG) was proposed in [12]. The method can find

high quality solutions, but the number of non dominated

solutions was also limited.

As a nature inspired algorithm, PSO was originally designed

for solving continuous problems. To adapt PSO to discrete

problems, a random key (RK) technique is often used. In

[13], PSO combined with local search was used to solve the

capacitated location routing problem. In [14], two solution

representations were proposed to solve a variant of PDPTW.

PSO can also be used to solve multi-objective problems. In

[15], MOPSO combined with adapted multi-objective variable

neighborhood search (AMOVNS) was used to solve a multi-

echelon vehicle routing problem, in which delivery procedure

is divided into different stages, each stage is called one

echelon.

The SPDPTWPD has been little studied. To our best knowl-

edge, only two metaheuristics are proposed in [12] and in [11]

to solve the problem. In this paper, a hybrid multi-objective

PSO is proposed to solve this variant.

III. PROBLEM STATEMENT

In this section, a description of SPDPTWPD is given. A set

of n demands, R = 1...n, is considered. Each demand r ∈ R
is associated with a pickup point p(r) and a delivery point

d(r). The set of all pickup and delivery points are denoted

by P and D. A profit profitr can be gained if demand r
with quantity qr is satisfied. sr is the loading/unloading time

at the pickup/delivery point of demand r. The problem can

be defined on a complete directed graph G = (N,E), where

N = W ∪ P ∪ D is the set of all sites, W is the depot.

E is the set of arcs where E = {(ni, nj)|ni, nj ∈ N, i 6= j}.

Each site i ∈ N is associated with a time window [ei, li],
where ei is the earliest arrival time, and li is the latest arrival

time. K is the set of vehicles. Each vehicle k ∈ K has a

capacity Qk. When a vehicle is making its tour, the following

constraints need to be respected: 1) A pickup point should

always be visited before the related delivery point; 2) The time

window of each site should be respected; 3) The capacity of a

vehicle should not be violated; 4) A vehicle should depart and

return back to the same depot. A mixed integer linear program

has been introduced in [9]. Two objectives (maximizing the

profit/minimizing the distance) have been considered in [10],

in which related instances were proposed. Since the authors

have just generated only one non dominated solution (the one

with maximum profit), we are interested in generating the

complete pareto front for each instance.

A solution of the problem consists of a profit and a distance.

By fixing the profit, a related distance can be obtained. The

aim is to generate the complete Pareto front from all the

combinations of profit. The model is run on a powerful

server with 128 processors and 264Go memories. For all the

instances with 20 sites, the complete pareto fronts are obtained.

However, For instances with 50, 100 sites, it is very difficult

to get optimal solution. As consequence, the solving time for

each profit has been limited to get approximated pareto fronts.

The results can be found on the site: https://www.dropbox.

com/s/ri1v9wffjrdahtr/pareto%20optimal.xlsx?dl=0.

IV. HYBRID MULTI-OBJECTIVE PARTICLE SWARM

OPTIMIZATION

In this section, the principles of Multi-Objective PSO

(MOPSO) is firstly introduced. Then, a problem related encod-

ing strategy is presented. At last, local searches are detailed.

A. Multi-Objective Particle Swarm Optimization

Inspiring from the behavior of flock of birds, PSO has

been used to solve many optimization problems since it was

proposed. It can be described as a group of particles in which

each represents a solution. Each particle has a memory which

can record the best solution ever found by itself (Pbest).

Among these best solutions, a leader is selected to present

the best solution ever found by the group (Gbest). The

evolution of each particle is effected by its current solution,

Pbest and Gbest. This mechanic can well explain that PSO

imitates the social activity from the nature. As PSO performs

well in single-objective problems, researchers tried to adapt

it to multi-objective problems [16]. In MOPSO, a strategy

needs to be proposed to select a leader from a set of non

dominated solutions. Different variants have been proposed

in the literature. Since [17] is one of the first papers trying

to solve multiobjectives by using PSO, it’s easier to adapt it

to solve the studied problem. Before the adaptation, a few

modifications are made. First, let us introduce two equations:

V ELi = W ∗ V ELi +R1 ∗ (REP PBESTi[h]− POPi)

+R2 ∗ (REP GBESTi[h]− POPi) (1)

POPi = POPi + V ELi (2)

For particle i, V ELi represents its velocity, and POPi repre-

sents its position (solution). REP PBESTi is the repository

recording all the non dominated solutions ever found by

itself. REP GBESTi is the repository recording all the non

dominated solutions found by the group. h is the index of

selected solution. W is the inertia weight. R1, R2 are random

numbers in the range [0, . . . , 1].

Repository can be seen as an external file used to record

non dominated solutions. Three related operations need to

be defined: update, capacity, selection. If a new candidate is

dominated by any solution in the repository, it will not be

considered. If it dominates any solution, it is recorded, and all

the dominated solutions are removed. If the limited number of

solutions (capacity) is reached, a strategy should be proposed

to remove several solutions. However, we consider the capacity

is unlimited. As to the selection of a leader, two strategies are

studied in this paper: First-In-First-Out (FIFO), fitness-based

on sharing method. In FIFO, the selection procedure is based

on the sequence by which each candidate enters the repository.

However, this procedure would be disturbed when updating the

repository. In this case, a corresponding strategy is illustrated

in Fig.2. Iterator points the selected solution, and it moves

from left to right. When it reaches the tail, it will restart from

the head.

Iterator Iterator

Remove solutions in red

Iterator
Iterator

Add solution in brown

Fig. 2. FIFO strategy

The second strategy is based on the idea that solutions in a

less crowded area have higher chance to be selected. For each

solution i in the population (repository), a probability can be

calculated:

Probi =
Fitnessi

∑

j∈population Fitnessj
(3)

Where Fitnessi is the fitness of each solution, it can be

calculated:

Fitnessi =
1

∑

j∈population φij

(4)

Where φij is the density which can be calculated:

φij =

{

1−
(

distij
σsh

)α

, distij < σsh

0, Otherwise
(5)

Where α and σsh are the sharing parameters. distij is the

Euclidean distance between solutions i and j, which can be

calculated:

distij =
√

(s1i − s1j)
2
+ . . .+ (sni − snj)

2
(6)

Where (s1i , . . . s
n
i) is solution vector i, with n corresponding

to the number of objectives. As we can see from the equations

defined above, the solution with higher fitness value has more

chance to be selected.

Based on the preliminary experiments, FIFO is used for

REP PBESTi, and fitness-based on sharing method is em-

ployed for REP GBEST .

B. Encoding and Decoding

A good solution representation is important when dealing

with combination optimization problem. A solution represen-

tation is shown in Fig.3.

1 1 … r r 1 2 3 … r-2 r-1 r

Priority list Assignment to vehicle

Fig. 3. Representation of solution

In the figure, a particle is divided into two parts. In the first

part, each demand in [1...r] is assigned with two dimensions.

The value of each dimension is randomly generated in [0...10].
By sorting the value in ascending order, a priority list (visiting

sequence A) can be generated. In the list, the first dimension

of a demand is the pickup point, the second dimension of a

demand is then the delivery point. This is shown in Fig.4.

p p! … d d!

Fig. 4. Visiting sequence A

In the second part, each demand is assigned with one dimen-

sion. The value of each dimension is randomly generated in

[0, . . . , NV [, where NV is the maximum number of vehicles.

A floor operation is performed on each value to get the index

of assigned vehicle. This is shown in Fig.5.

By using the information provided above, Algorithm1 de-

fines the construction of tours. In the algorithm, the Insert
method adds the pair (supplier, customer) into vehicle of

v v! … v"# v

Fig. 5. Vehicle assignment

S at the position which is defined by visiting sequence A.

The output is a complete solution S, and a set of unsatisfied

demands D.

Algorithm 1: Construction of tours

Input : Visiting sequence A, Vehicle assignment B;

Output : Solution S, Demands not satisfied D;

D = ∅;

for each element i in A do

if i is a supplier then
demand = GetDemand(i);
supplier = i;
customer = GetCustomer(demand);
vehicle = GetAssignedV ehicle(B, demand);
Insert(S, vehicle, supplier, customer,A);
if S is not feasible then

Remove(S, vehicle, supplier, customer);
D.add(demand);

end

end

end

C. Local searches

There are mainly two defaults of the proposed solution

representation: 1) when NV increases, a vehicle may satisfy

only one demand during its tour in certain cases. As we believe

that traveling distance will be increased if vehicles are not

charged. 2) Unsatisfied demands are not treated. Although this

is allowed from the selective aspect, the profit achieved by

the population will be possibly very weak. Two local searches

LS1 and LS2 are thus proposed to cover the two defaults.

For LS1, it plays two roles: Firstly, it tries to minimize

the number of vehicles for a given solution. Secondly, it

calls a method named VND to minimize the distance for

each vehicle. We should notice that the total profit is always

the same. For LS2, it tries to insert unsatisfied demands to

increase the total profit. The priority of inserting the demand

is defined by the distance between the demand and the given

solution. The implementations are presented from Algorithm2

to Algorithm3 (see in Appendix section). In the algorithm,

the BestInsertion(s, d) method tries to insert a demand d
into route s in a way that the distance is minimized. The

Shortest(s) finds the route in which the distance is minimal.

The Distance(d, d
′

) method calculates the distance between

two demands by using the equation defined below:

Distance(d, d
′

) = ‖Pd − Pd
′ ‖+ ‖Dd −Dd

′ ‖ (7)

Where Pd and Dd are the related pickup and delivery points

for demand d.

V. EXPERIMENTS

In this section, a self-comparison is first made to show the

performance of each method. Then a comparison with genetic

algorithm from the literature is made to show the efficiency

of the proposed method. The experiments are based on the

benchmark proposed in [10].

A. Running environment and parameters

The programming language used is Java, and the method is

run on an Intel Core i7-4810MQ CPU, 2.80 GHz processor

with 16 GB of memory. The value of each parameter is

determined after several tests, and is shown in Table I.

W N Iteration α σsh MAXNUM

0.8 50 100 1 377 10

TABLE I: parameters

B. Self-comparison

Since the proposed method is a hybridization of PSO and

local searches, a validation of each method is necessary. The

tests are made on the benchmarks, and the result of instance

SPDPTWPD-R201 is shown in Fig.6. In the figure, pure PSO

has evolved from the initial population. This can justify that

PSO itself has the capacity of improving the results. However,

the result is still a bit far from the real pareto front. After

integrating local searches, the result obtained by the method

called HPSO is closer to the real pareto front (see in section III

for more information). This can validate the performance of

the proposed local searches. This phenomenon can be observed

for all the tested instances.

Fig. 6. Self-comparison.

C. Comparison with other method

The second comparison is made between HPSO and HG

which is proposed in [12]. The comparison is also made

between HPSO and real pareto front/approached pareto front.

The instances are divided into two groups. In the first group,

all the real pareto fronts are obtained. In the second group,

the pareto fronts are approximated. Three criteria are taken

into account to make comparison: 1) Gap; 2) Number of non

dominated solutions; 3) Solving time. The gap is calculated

using the equation defined below:

Gap = (
∑Nb

i=1

DistanceiHPSO−DistanceiHG

Distancei
HG

∗ 100)/Nb (8)

Where Nb is a set of common solutions (same profit) found

by HPSO and HG. Distancei is the distance of solution i,
where i ∈ Nb.

The results of the first group are shown in Table II. In terms

of gap, HPSO can perform better in two instances than HG,

and is near the real pareto front. As to the number of solutions,

HSPO can also find more solutions than HG. The solving time

of HPSO is less than HG.

Instance
Gap(%) Number of solutions Solving time(s)

HPSO/HG HPSO/Optimal HPSO HG Optimal HPSO HG

SPDPTWPD-C201 2.13 1.58 12 10 18 3.06 17.00

SPDPTWPD-C202-1 0.43 0.91 26 7 29 2.27 13.12

SPDPTWPD-C202-2 0.43 2.91 32 8 43 3.94 15.47

SPDPTWPD-R201 0.07 0.85 16 9 19 1.17 12.45

SPDPTWPD-R202 -1.27 1.15 26 6 33 1.59 13.01

SPDPTWPD-RC201 1.64 2.66 16 9 17 1.33 12.39

SPDPTWPD-RC202 -0.63 0.45 19 6 24 1.54 12.82

TABLE II: First group

The results of the second group are shown in Table III.

In terms of gap, HPSO performs better than HG in two

instances. In eight instances, the gap is almost 0%. Compared

to approached pareto front, five instances achieve the gap

between 2% and 4.6%. In other instances, a gap around 1%

is achieved except for the instance SPDPTWPD-R1002 in

which the gap is 18% compared to HG and 15% compared

to approached pareto front. As to the number of solutions and

solving time, HPSO is always better than HG.

Instance
Gap(%) Number of solutions Solving time(s)

HPSO/HG HPSO/Approached HPSO HG Optimal HPSO HG

SPDPTWPD-C501 0.01 0.69 18 6 47 42.01 63.87

SPDPTWPD-C502-1 0.01 3.13 27 5 70 6.32 442.15

SPDPTWPD-C502-2 0.01 3.83 33 8 117 12.63 484.71

SPDPTWPD-R501 0.00 0.76 27 6 49 66.34 32.87

SPDPTWPD-R502 -2.98 3.40 78 6 120 20.00 22.13

SPDPTWPD-RC501 1.86 1.76 22 5 32 3.12 31.14

SPDPTWPD-RC502-4 0.00 0.38 46 5 71 1.00 27.48

SPDPTWPD-RC502-5 -1.13 1.11 55 6 92 1.14 29.01

SPDPTWPD-RC502-6 2.24 0.83 56 9 108 1.56 29.98

SPDPTWPD-C1001 0.01 0.79 17 6 64 50.02 310.79

SPDPTWPD-C1002 4.28 4.09 24 7 73 189.15 256.57

SPDPTWPD-R1001 4.47 4.62 26 5 44 20.01 152.95

SPDPTWPD-R1002 18.13 14.75 65 6 135 37.02 183.95

SPDPTWPD-RC1001 2.31 1.49 11 5 13 5.30 169.08

SPDPTWPD-RC1002-1 0.01 0.18 12 5 17 1.02 112.54

SPDPTWPD-RC1002-2 0.01 2.18 27 6 40 2.33 166.24

TABLE III: Second group

The obtained gap for the instance SPDPTWPD-R1002 is

maybe due to the way of comparison which compares only

the solutions of same profit. For this instance, the number

of common solutions maybe very small, and the solutions

obtained by HG are significantly better than HPSO. It will

then give us the illusion that HG performs better than HPSO.

However, HPSO may perform better than HG for the other

solutions non-compared. In terms of number of solutions,

HPSO always performs better than HG. It maybe due to the

fact that HPSO stores a copy of the solutions before the apply

of local searches, which allows HPSO to keep the solution

of low profit and high profit at the same time. As to the

solving time, HPSO is faster than HG thanks to the simplicity

of encoding and decoding of PSO.

VI. CONCLUSION

In this paper, a problem called SPDPTWPD has been

studied. Since the optimal solutions of large instances are very

hard to obtain, an approached method hybridizing PSO with

local searches has been proposed. The idea is to take advantage

of the two integrating methods: the capacity of global search of

PSO, and the capacity of intensive search of local search. The

experiment has been made on benchmarks from the literature.

The results have shown that the proposed method can obtain

high quality solutions in short time. Another remark from

the conducted experiments is that PSO needs the help of

local search to find better solution. In the future works and

to improve the results, more effective local searches will be

studied. To deal with much more problems in real life, other

objectives or variants may also be considered.

VII. ACKNOWLEDGMENTS

This work is supported by the ANR (French National

Research Agency) in the framework of the project TCDU

(Collaborative Transportation in Urban Distribution). This

project ANR-14-CE22-0017 is labelled by the Pôle Véhicule

du Futur, and is jointly performed by four partners, the three

french universities of technology (UTT, UTBM, UTC) and the

society Share And Move Solutions.

REFERENCES

[1] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse. (2016) The
vehicle routing problem: State of the art classification and review.

[2] P. Toth and D. Vigo. (2002) The vehicle routing problem (society for
industrial and applied mathematics, philadelphia).

[3] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey
on pickup and delivery problems,” Journal für Betriebswirtschaft,
vol. 58, no. 1, pp. 21–51, Apr 2008. [Online]. Available: https:
//doi.org/10.1007/s11301-008-0033-7

[4] S. N. Parragh, K. F. Doerner, and R. F. Hartl. (2007) A survey on pickup
and delivery problems.

[5] S. Ropke and J.-F. Cordeau. (2009) Branch and cut and price for the
pickup and delivery problem with time windows.

[6] R. Baldacci, E. Bartolini, and A. Mingozzi. (2011) An exact algorithm
for the pickup and delivery problem with time windows.

[7] H. Lim, A. Lim, and B. Rodrigues. (2002) Solving the pickup and de-
livery problem with time windows using issqueaky wheelli optimization
with local search.

[8] H. Li and A. Lim. (2003) A metaheuristic for the pickup and delivery
problem with time windows.

[9] Z. Al Chami, H. Manier, and M.-A. Manier, “New model for a variant of
pick up and delivery problem,” in 2016 IEEE International Conference

on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 001 708–
001 713.

[10] Z. Al Chami, H. Manier, and M.-A. Manier, “A lexicographic approach
for the bi-objective selective pickup and delivery problem with time
windows and paired demands,” Annals of Operations Research, Apr
2017. [Online]. Available: https://doi.org/10.1007/s10479-017-2500-9

[11] Z. Al Chami, H. El Flity, H. Manier, and M.-A. Manier, “A new
metaheuristic to solve a selective pickup and delivery problem,” in
2018 4th International Conference on Logistics Operations Management

(GOL), April 2018, pp. 1–5.

[12] Z. Al Chami, H. Manier, M.-A. Manier, and C. Fitouri, “A
hybrid genetic algorithm to solve a multi-objective pickup and
delivery problem,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 656
– 14 661, 2017, 20th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896317325326

[13] Z. Peng, H. Manier, and M.-A. Manier, “Particle swarm
optimization for capacitated location-routing problem,” IFAC-

PapersOnLine, vol. 50, no. 1, pp. 14 668 – 14 673,
2017, 20th IFAC World Congress. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2405896317334134

[14] V. Kachitvichyanukul, P. Sombuntham, and S. Kunnapapdeelert. (2015)
Two solution representations for solving multi-depot vehicle routing
problem with multiple pickup and delivery requests via pso.

[15] K. Govindan, A. Jafarian, R. Khodaverdi, and K. Devika. (2014) Two-
echelon multiple-vehicle location–routing problem with time windows
for optimization of sustainable supply chain network of perishable food.

[16] M. Reyes-Sierra, C. C. Coello et al., “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International journal of

computational intelligence research, vol. 2, no. 3, pp. 287–308, 2006.
[17] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple

objectives with particle swarm optimization,” IEEE Transactions on

evolutionary computation, vol. 8, no. 3, pp. 256–279, 2004.

VIII. APPENDIX

Algorithm 4: VND

Input : Solution S, Unsatisfied demands D;
Output : Solution S, Unsatisfied demands D;
for each route r in S do

distance = Distance(r);
Stcok demands of r into list l;
count = 0;
while count < l.length do

d = list.get(count);
Stock demands which have the same profit as d

from D into list l
′

;

if l
′

.isEmpty()==true then
count = count+ 1;
continue;

end
flag = false;

for each demand d
′

in l
′

do

r
′

= r;

r
′

.remove(d
′

);

D.remove(d
′

);
D.add(d);

l.set(count, d
′

);

if BestInsertion(r
′

, d
′

) == true then

temp = Distance(r
′

);
if temp < distance then

r = r
′

;
flag = true;
distance = temp;

end
else

D.remove(d);

D.add(d
′

);
l.set(count, d);

r
′

= r;
end

end
end
count = count+ 1;
if flag == true then

count = 0;
end

end
end

Algorithm 2: LS1

Input : Solution S, Unsatisfied demands D, Number of
iterations MAXNUM ;

Output : Solution S, Unsatisfied demands D;

count = 0, S
′

= S,D
′

= D;
while count<MAXNUM do

S
′′

= S;

D
′′

= D;
Route r = Shortest route(S);
Stock demands of r into list l;
Delete r from S;
flag = true;
for each demand d in l do

flag = BestInsertion(S, d);
if flag==false then

Stock demands which have the same profit as d

from D into list l
′

;

for each demand d
′

in l
′

do

flag = BestInsertion(S, d
′

);
if flag==true then

D.add(d);

D.remove(d
′

);
break;

end
end
if flag==false then

break;
end

end
end
if flag==false then

S = S
′′

;

D = D
′′

;
break;

end
count = count+ 1;

end
VND(); //Algorithm 4

if Distance(S) > Distance(S
′

) then

S = S
′

;

D = D
′

;
end

Algorithm 3: LS2

Input : Solution S, Unsatisfied demands D;
Output : Solution S, Unsatisfied demands D;
Stock demands of S into list l;
for each demand d in D do

distanced = ∞;

for each demand d
′

in l do

temp = Distance(d, d
′

);
if temp < distanced then

distanced = temp;
end

end
end
Sort D in ascending order in terms of distance;
for each demand d in D do

if BestInsertion(S, d) == true then
D.remove(d);

end
end

