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Rue Thierry-Mieg (UTBM),
90 010 Belfort Cedex, France
marie-ange.manier@utbm.fr

Abstract—This paper discusses a robust variant of the well
known Pickup and Delivery Problem (PDP) which we called the
Robust Selective PDP (RSPDP). In this problem, a fleet composed
of several vehicles with a given capacity should satisfy a set of
transportation requests while respecting various constraints in
relation with the precedence between suppliers and customers,
the capacity of vehicles, the opening and closing times of each site.
Because of all these constraints, the honoring of all requests over
a given period (for example, one day) is sometimes impossible
so the selective aspect consists in choosing the sites to be served.
This robust variant is characterized by the presence of different
scenarios used to handle the uncertain traveling time for each
arc. Subject to all scenarios and constraints, the goal is to find the
best solution (with the higher profit) which validates all scenarios.
This study introduces the mathematical formulation for this
new variant. Then, an exact and a metaheuristic approaches
will be used to solve it. Several tests have been done, on new
generated instances for the considered problem, in order to show
the efficiency of developed methods.

Index Terms—Robust optimization, Routing problems, Trans-
portation, Exact method, Metaheuristic approach

I. INTRODUCTION

The Pickup and Delivery Problem (PDP) is one of the most
studied problem in the literature. It aims at finding routes
for a fleet of vehicles based on a depot. Those routes must
start and end at the depot. Each vehicle should serve a set of
transportation requests subject to a set of constraints.
A request consists in transporting goods from a supplier
(pickup location) to a customer (delivery location). In the
considered variant, paired demands are included so the prece-
dence constraints must be respected. In other words, each
supplier must be visited before its specific customer and by the
same vehicle. Moreover, the depot, in the considered problem,
can be the supplier and/or the customer for one or several
transportation demands. So, three types of flow are considered:
the first one between depot and customers; the second one is
from suppliers to depot and the last one links suppliers to
customers.

This study deals with the variant in an urban context where
the planning of vehicle routes is often more critical because
of the applied laws in many cities in relation with the street
access and the restricted hours of operations. To take into
consideration the limited hours of operations, time windows
are included in the considered problem. Hence, each node is
associated with a time interval and the vehicle cannot visit
this node after the end of its interval. If it arrives earlier than
the beginning of the time window, it has to wait until the
opening of this node. The street access limitations are taken
into account by considering that all vehicles having a limited
capacity which cannot be exceeded.
Taking all the above mentioned constraints into consideration
makes sometimes the visit of all nodes impossible (selective
aspect). So the choice of the subset to be served is based on
the profit associated to each site.
In real life contexts, traveling between two different sites can
be done through many paths. The ideal path is the one with
the shortest traveling time. This one is generally related to
the traveled distance or the fuel consumption. But in some
situations (scenarios) the chosen path may suffer from heavy
traffic or accidents. Therefore carriers should use another path
or take more time to reach their destinations.
This paper studies the Robust Selective Pickup and Delivery
Problem (RSPDP) in which uncertain traveling times are
modeled as a set of discrete scenarios and the optimization
relies on maximizing the total collected profit while offering
a robust solution which can be realized in all scenarios. In
this study, the traveling cost is not considered as an objective
because of the selective aspect. Indeed, the use of such an
objective generates an optimal solution which consists in
visiting no site.
Figure 1 shows a small example with a fleet composed of 1
vehicle, 4 suppliers (represented by triangles) and 4 customers
(represented by circles). Each paired demand is illustrated by
a couple of sites with the same number and the same color.



Customer 4 is paired with the depot which is also the customer
of supplier 5. In the presented solution, nodes numbered 2
were not visited. Let us consider that the solution of the

Fig. 1. Example of the RSPDP : ideal scenario

figure 1 is elaborated in the ideal scenario with a total profit
of 100. Then, another scenario can be imagined where an
accident may occur on the shortest path between supplier 1
and customer 3. So, another path is required to travel between
those sites. In such a context, another solution can be obtained
like the one in figure 2, but this time with a profit of 90. Here,
the time delay on the arc linking supplier 1 and customer 3
has degraded the final obtained profit.

Fig. 2. Example of the RSPDP : a possible scenario

The remaining of this paper is organized as follows: a literature
review is given in section II. Then, section III defines the
RSPDP with a mathematical formulation. In section IV, the
Greedy Randomized Adaptive Search Procedure (GRASP) is
introduced to solve the considered variant. The experimental
results are reported in section V. Finally, section VI concludes
this study and gives direction for further research.

II. LITERATURE REVIEW

This section is divided into two parts. The first one provides
a state of the art of various methods used to solve different
variants of the PDP (subsection II-A). And the second one

deals with some studies on robust routing problems (subsec-
tion II-B).

A. Pickup and Delivery Problem

The PDP can be considered as a variant of the well known
Vehicle Routing Problem (VRP). So it is a NP-hard problem
[1]. Over the last decades, researchers have studied many
variants of the PDP and they have used various algorithms
to solve those variants. Two taxonomic reviews of the PDP
literature have been published in [2] and [3].
Like other optimization problems, many resolution methods
were introduced by researchers to solve the PDP. Those
methods are divided into : exact and heuristic approaches.
Among the exact ones, a Branch & Bound was developed
in [4] to solve the PDP with Paired Demands (PDPPD).
Moreover, researches in [5] have elaborated a Branch & Cut
& Price approach to address the PDP with Time Windows
and Paired Demands (PDPTWPD). In a previous work, an
exact method based on linear programming was used to solve
the Selective PDPTWPD (SPDPTWPD) in a mono-objective
context [6]. And in another study, a lexicographic approach
was developed to address the bi-objectives version of the
SPDPTWPD [7].
As the exact approaches were limited to small instances,
researchers have also used heuristic ones to solve bigger
instances. For example, a tabu search combined with simulated
annealing was introduced in [8] to solve the PDPTWPD.
To address the same variant, researchers have used a hybrid
Particle Swarm Optimization Algorithm [9]. Furthermore, two
metaheuristic approaches were used to solve the SPDPTWPD:
the first one is based on a hybrid genetic algorithm [10] and
the second one combines a simulated annealing with a local
search procedure [11].

B. Robust routing problems

To our best knowledge, there are no studies that deal with
robust PDP in the literature. Therefore, this subsection presents
some papers that address other routing problems from a robust
point of view.
A literature review for the Robust Vehicle Routing Problem
(RVRP) was presented by [12].
Among the exact method used to solve robust routing prob-
lems, a Branch & Bound was developed in [13] to deal with
the RVRP. In this study, authors have considered uncertain
demand on a set of fixed nodes and their method seeks to
optimize the worst-case value over all scenarios. Such method
does not discover all the real search space but it treat the
problem as a normal VPP where each site demand is the
worst over all scenarios. Another exact algorithm based on
benders decomposition was introduced in [14] to solve the
robust traveling salesman problem (RTSP) while considering
uncertainty on travel time for each arc. The objective function
was to find the tour which minimizes the distance in the worst
case. Recently, a compact formulation and a Branch & Cut
& Price method were elaborated in [15] to solve the RVRP.
Authors of this paper took both customer demand and travel



time uncertainties into consideration. In addition, their method
explores all the search space and gives a solution that remains
feasible for all possible scenarios.
Heuristic approaches are also used to tackle robust routing
problems. For example, the authors in [16] have elaborated
a heuristic method to solve the RTSP where the distances
between nodes are not known exactly. In their paper, they
start with the minimal tour obtained in the ideal scenario
and they use a recovery action once a scenario is realized.
Moreover, a genetic algorithm was introduced in [17] to solve
the RVRP with uncertain travel cost. Authors use the min-
max optimization criterion. Then, they consider that the robust
solution is the one which prevents against the worst case.
Furthermore, a local search based metaheuristics were used by
[18] to solve the RVRP with uncertain arc costs. They consider
the min-max criterion against the worst scenario. But also the
second worst scenario, the third one, etc. So they finally offer
a Pareto front to help decision makers. Recently, a two-stage
algorithm based on a modified variable neighborhood search
was developed to solve RVRP with demand and travel time
uncertainties in [19].

III. EXACT APPROACH FOR THE RSPDP

This section starts by giving some notations that will be
used to formulate the new variant.

A. Notations :

1) Data:

• 0 : Id of the depot,
• B : Set of suppliers,
• C : Set of customers,
• Nodes = B ∪ C : Set of all suppliers and customers,
• N = Nodes ∪ 0 : Set of all suppliers, customers and depot,
• Supplieri : Supplier of the customer i (i ∈ C),
• Pi : Profit associated with the node i (i ∈ N),
• qi : Goods quantity requested by node i (i ∈ N)

– If qi >0 then i ∈ B else i ∈ C,
• [ai, bi] : Time window of the node i (i ∈ N),
• Si : Service time needed to load or unload goods at node

i (i ∈ N),
• Scenarios : Set of possible scenarios,
• V : Set of available vehicles,
• Qk : Maximal load of vehicle k (k ∈ V),
• T ks

ij : Time needed to travel directly from node i to node
j using vehicle k in scenario s (i,j ∈ N; k ∈ V and s ∈
Scenarios),

• M : Very big number.

2) Variables:

• Aks
i : Starting service time of the vehicle k at node i in

scenario s (k ∈ V; i ∈ N and s ∈ Scenarios),
• Dks

i : Departure time of the vehicle k from node i in
scenario s (k ∈ V; i ∈ N and s ∈ Scenarios),

• Y k
i : Goods quantity in the vehicle k visiting node i (k
∈ V and i ∈ N),

• Xk
ij=


1 If the vehicle k moves from i to j (k ∈ V

and i,j ∈ N)
0 Else

B. Mixed Linear Program for the RSPDP

After detailing all parameters, this subsection introduces the
first mixed linear program for the Robust Selective Pickup and
Delivery Problem (RSPDP) which can be as follows:

Maximize
∑
i∈N

∑
j∈N

∑
k∈V

PiX
k
ij (1)

Subject to: ∑
i∈N

∑
k∈V

Xk
ij ≤ 1 ∀j ∈ Nodes (2)

∑
j∈N

∑
k∈V

Xk
ij ≤ 1 ∀i ∈ Nodes (3)

∑
i∈N

Xk
iu −

∑
j∈N

Xk
uj = 0 ∀k ∈ V ;∀u ∈ Nodes (4)

Nodes∑
i=1

Xk
0i = 1 ∀k ∈ V (5)

Nodes∑
j=1

Xk
j0 = 1 ∀k ∈ V (6)

Y k
0 =

∑
i∈C/Supplieri=0

(−qi
∑

j∈N/j 6=i

Xk
ji) ∀k ∈ V (7)

Y k
j ≥ Y k

i + qj −M(1−Xk
ij) ∀i, j ∈ N ;∀k ∈ V (8)

Y k
j ≤ Y k

i + qj +M(1−Xk
ij) ∀i, j ∈ N ;∀k ∈ V (9)

Qk ≥ Y k
i ≥ 0 ∀i ∈ N ;∀k ∈ V (10)

Aks
j ≥ Dks

i +T ks
ij −M(1−Xk

ij)

∀i, j ∈ N ;∀k ∈ V ;∀s ∈ Scenarios
(11)

Dks
i ≥ Aks

i +Si −M(1−Xk
ij)

∀i, j ∈ Nodes;∀k ∈ V ;∀s ∈ Scenarios
(12)

Dks
i ≤ Aks

i +Si +M(1−Xk
ij)

∀i, j ∈ Nodes;∀k ∈ V ;∀s ∈ Scenarios
(13)

ai

N∑
j=1

Xk
ij ≤Aks

i ≤ bi
N∑
j=1

Xk
ij

∀i ∈ N ;∀k ∈ V ;∀s ∈ Scenarios

(14)

Dks
0 = 0 ∀k ∈ V ;∀s ∈ Scenarios (15)

Dks
f ≤Aks

c ∀f ∈ B;∀c ∈ C/Supplierc = f ;

∀k ∈ V ;∀s ∈ Scenarios
(16)

∑
i∈N/i!=f

Xk
if −

∑
j∈N/j!=c

Xk
cj = 0

∀f ∈ B;∀c ∈ C/Supplierc = f ;∀k ∈ V
(17)



Constraint (1) represent the objective function. The aim is to
maximize the total collected profit. Constraints (2) and (3)
verify that each node is visited at most once. The routing
continuity is ensured by constraints (4). To confirm that each
route begins and finishes at the depot, we used constraints (5)
and (6). The respect of each vehicle capacity is guaranteed
by (7),(8), (9) and (10). Constraints (11) update the starting
service time at each node for each scenario while taking into
account the associated traveling time. This starting time should
be in the time windows of this site (constraints (14)) and it will
be used to update the departure time from this site (constraints
(12) and (13)). All vehicle routes should begin from the depot
at time equal to zero (constraints (15)). Constraints (16) and
(17) are used to verify that the supplier is visited before its
customer and by the same vehicle.
This MILP is implemented using commercial solver CPLEX
12.7.1 in order to get optimal solutions for the considered
variant. The main drawback of this exact approach is the long
solving time. Therefore, a metaheuristic approach has been
also implemented to solve the RSPDP.

IV. METAHEURISTIC APPROACH FOR THE RSPDP

the metaheuristic approach is based on a GRASP (Greedy
Randomized Adaptive Search Procedure) which is largely
used to tackle such combinatorial optimization problems. This
method consists in mixing the guided aspect and the random
one to generate a solution. It was first introduced in [20]
as a multi-start metaheuristic in which the construction of
the solution is partially randomized and coupled with a local
search approach. For example: authors in [21] used GRASP to
address the traveling salesman problem. Recently, a GRASP
approach hybridized with a genetic algorithm was applied to
solve a multi-period variant of PDP [22].
The GRASP approach is divided into two parts: the con-
structive phase (subsection IV-A) and the improvement one
(subsection IV-B).

A. Constructive phase

In this phase, a function of ordering is applied on a candi-
date list (CL) composed of all sites which can be inserted into
the solution at each iteration. The function of ordering is based
on the Waiting Time (WT) parameter calculated using equation
(18). Using our GRASP, the sites having the bigger WT values
are prioritized because they have a bigger possibility to stay
feasible among different scenarios. The overall algorithm of
our GRASP is illustrated by algorithm 1.

WT (i, j, k, s) = ai − T ks
ji −Dk

j (18)

The procedure begins by generating the first route. So, the
depot is firstly chosen as the reference site. Then, a site is
picked randomly from the restricted list of candidates (RCL)
composed of the first α sites of CL. Let us note that the random
selection of a candidate is equally probable. The procedure
tries to insert the chosen site and its paired node (if different
from the depot) into the route. After a feasible insertion, the
improvement phase is applied and the last site is considered as

Algorithm 1: GRASP method

Input : α, β; Output : Solution Sol;
for v=1 until |V | do

Counter ← 0;
Ref-Node ← Depot;
Flag 1: Compute WT for all sites using
WT(i,Ref-Node,v,ideal scenario);

CL ← Sort all non-assigned nodes by decreasing
value of WT;

RCL ← First α sites of CL;
Flag 2: Choose a site S randomly from RCL;
Insert S and its paired site (if different than the
depot) into route v;

if Route v is feasible and Route v is robust then
Apply improvement phase on route v;
Ref-Node ← Site at last position in route v;
Counter ← 0;
Goto Flag 1;

else
Remove inserted S and its paired site;
Counter++;
if Counter > β then

Leave the loop and goto the next route;
else

Goto Flag 2;
end

end
end

the new reference node. The procedure is repeated until we did
the maximum number of attempts without improvement fixed
by the parameter β. Once the first route is constructed, the
procedure moves on the next one and so on until the solution
is built.

B. Improvement phase

Algorithm 2: Improvement phase

Input : σ, route r; Output : route r;
Counter=0;
while Counter < σ do

route r temp ← r;
Exchange two randomly chosen sites in route
r temp (different from the depot);

if r temp is feasible and r temp is robust and
distance(r temp) < distance(r) then

r ← r temp;
Counter ← 0;

else
r temp ← r;
Counter++;

end
end



To improve the solution under construction, this phase
consists in minimizing the distance of the solution which can
help to insert more sites. So, it may increase the total collected
profit. Indeed, two randomly chosen sites are exchanged in a
route. If the route is still feasible (respects all the constraints),
robust (works for all scenarios) and has a lower distance, then
we keep it. This process is repeated until σ times without
improvement. The algorithm 2 describes this phase.

V. EXPERIMENTAL RESULTS

As we mentioned earlier, the considered variant, to our best
knowledge, is not treated yet in the literature. Hence, this paper
presents the first instances dedicated to the RSPDP. Indeed,
the instances introduced in [6] to solve the SPDP are used
and adapted to the considered problem. 48 new instances are
generated and solved by our exact and GRASP approaches.
Each instance is labelled as RSPDP-i1-i2-i3-i4-i5 where :
• i1 is equal to “C” if the nodes are clustered; “R” if the

nodes are distributed randomly and “RC” if the nodes are
partially clustered and partially randomly distributed.

• i2 is the number of nodes.
• i3 is the number of scenarios.
• i4 is the ratio of the new path to the ideal time for each

disturbed arc in a given scenario.
• i5 is the number of affected arcs per scenario.

The results were obtained using a commercial solver CPLEX
12.7.1 and a computer Intel core i7, 2.80 GHz CPU and 16
GB of RAM. The GRASP approach was coded in C++. The
results are reported in table I. The GRASP parameters used
to get those solutions are fixed after several tests as follows :
α= i2

2 , β=7 and σ=3. In fact, if α decreases, the GRASP will
get closer to the classic greedy method and if it increases, the
GRASP will act like a random method. On the other hand,
increasing β and σ will increase the solving time.
Table I shows the obtained profit for each approach as well
as solving time in seconds. In addition, it gives the profit op-
timal obtained while considering the ideal scenario. The gaps
between exact and metaheuristic methods in terms of profit
and solving time are also reported. The obtained profits in a
robust context either using CPLEX or GRASP are sometimes
equal to the optimal profit in the ideal scenario which means
that another solution having the same profit can be obtained
despite all traveling time perturbations (for example: instance
RSPDP-C20-50-1-38). In other cases, the perturbations have
remarkably degraded the profit (for example: instance RSPDP-
RC50-50-2-245). In addition, the exact approach has failed to
solve all instances to the optimality while limiting the solving
time to two hours (generally used in the literature). Solutions
with “*” represent the best feasible solutions obtained using
CPLEX after the fixed time limit. The GRASP has successfully
solved all instances in a very short time regarding to the exact
approach. The average gap in terms of solving time is 86.33%
with a standard deviation of 4.32%.
Moreover, using the metaheuristic approach, the optimal so-
lution is obtained in 14 cases (when the gap is equal to 0).
For instance RSPDP-C50-100-1-490, although the gap is equal

to zero but the solution obtained is not optimal. Indeed, it is
equal to the best solution obtained by CPLEX. Furthermore, a
better profit than the one found by CPLEX after two hours of
running was obtained in 16 cases (when we have a negative
gap). On the other hand, profits obtained by the exact approach
are better than the ones getting using the GRASP method in
17 cases (where a positive gap is reported). The average gap
in terms of profit is 7.28% with a standard deviation of 8.26%
if we took into consideration only the cases where CPLEX
has obtained the optimal solution within the fixed time limit.
All gap values are computed using this equation:

GAP (CPLEX|GRASP ) =
100 ∗ (ProfitCPLEX − ProfitGRASP )

ProfitGRASP

(19)

The new generated instances can be downloaded
using this link: https://drive.google.com/drive/folders/
1vFi5IgWH6S8LIrxZ0iwKhp7Ba41PqWy9?usp=sharing.
To summarize this part, two main points can be remarked.
Firstly, dealing with a robust variant degrades the total
profit regarding to the one obtained in the ideal case but
the advantage is that the obtained profit is luckily to be
achieved in real life. Secondly, adding scenarios can increase
remarkably the complexity of the variant. Therefore, exact
methods will be unable to provide the optimal solution in
a reasonable time and the use of an approximate method
becomes a necessity.

VI. CONCLUSION

In this paper, a new variant of the Pickup and Delivery Prob-
lem (PDP) was introduced. We called it the Robust Selective
PDP (RSPDP) when travel times are subject to uncertainty.
The aim of this variant is to find a good solution which remains
feasible over a set of different scenarios. Two methods were
then elaborated to solve this new variant: the first one used
the well-known solver CPLEX and the other one is a Greedy
Randomized Adaptive Search Procedure (GRASP).
In order to validate the two approaches, 48 instances dedicated
to the RSPDP have been generated. On the one hand, the
obtained results show the efficiency of our metaheuristic
approach. And on the other hand, the difference between
the profit in ideal scenario and the ones founded by robust
approaches shows that the majority of ideal profit cannot be
achieved when taking uncertain travel times into account.
Future works will be focused on improving the metaheuristic
approach. In addition, trying to generate scenarios more ap-
propriate to real life situations will be studied. Extending our
variant by dealing with new objective functions or taking more
real-life constraints into consideration can be also the subject
of our next studies.
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Instance Profit in CPLEX GRASP GAP (CPLEX|GRASP)
ideal scenario Profit CPU time (s) Profit CPU time (s) Profit CPU time (s)

RSPDP-C20-50-1-38 180 180 56.15 180 6 0.00 89.31
RSPDP-C20-50-1-76 180 180 58.69 150 6 16.67 89.78
RSPDP-C20-50-2-38 180 180 58.94 160 8 11.11 86.43
RSPDP-C20-50-2-76 180 180 110.76 180 9 0.00 91.87
RSPDP-C20-100-1-38 180 180 119.26 160 20 11.11 83.23
RSPDP-C20-100-1-76 180 180 122.35 180 20 0.00 83.65
RSPDP-C20-100-2-38 180 180 124.08 160 21 11.11 83.08
RSPDP-C20-100-2-76 180 130 129.07 130 21 0.00 83.73
RSPDP-R20-50-1-38 190 190 57.86 180 12 5.26 79.26
RSPDP-R20-50-1-76 190 160 59.12 160 13 0.00 78.01
RSPDP-R20-50-2-38 190 170 110.02 160 13 5.88 88.18
RSPDP-R20-50-2-76 190 80 112.15 80 14 0.00 87.52
RSPDP-R20-100-1-38 190 140 223.76 140 22 0.00 90.17
RSPDP-R20-100-1-76 190 190 226.88 190 23 0.00 89.86
RSPDP-R20-100-2-38 190 180 228.76 180 24 0.00 89.51
RSPDP-R20-100-2-76 190 180 231.54 150 25 16.67 89.20
RSPDP-RC20-50-1-38 160 150 57.04 140 9 6.67 84.22
RSPDP-RC20-50-1-76 160 140 58.97 120 9 14.29 84.74
RSPDP-RC20-50-2-38 160 80 59.07 80 10 0.00 83.07
RSPDP-RC20-50-2-76 160 130 111.55 100 12 23.08 89.24

RSPDP-RC20-100-1-38 160 120 222.86 90 22 25.00 90.13
RSPDP-RC20-100-1-76 160 140 225.72 140 23 0.00 89.81
RSPDP-RC20-100-2-38 160 90 227.69 80 23 11.11 89.90
RSPDP-RC20-100-2-76 160 120 230.77 120 25 0.00 89.17
RSPDP-C50-50-1-245 480 220* 7200 360 527 -63.64 92.68
RSPDP-C50-50-1-490 480 280* 7200 380 568 -35.71 92.11
RSPDP-C50-50-2-245 480 270* 7200 340 573 -25.93 92.04
RSPDP-C50-50-2-245 480 380* 7200 330 578 13.16 91.97

RSPDP-C50-100-1-245 480 250* 7200 340 1089 -36.00 84.88
RSPDP-C50-100-1-490 480 360* 7200 360 1096 0.00 84.78
RSPDP-C50-100-2-245 480 250* 7200 330 1103 -32.00 84.68
RSPDP-C50-100-2-490 480 280* 7200 340 1109 -21.43 84.60
RSPDP-R50-50-1-245 490 300 5732.59 280 767 6.67 86.62
RSPDP-R50-50-1-490 490 310* 7200 400 774 -29.03 89.25
RSPDP-R50-50-2-245 490 330* 7200 400 778 -21.21 89.19
RSPDP-R50-50-2-245 490 280 5823.46 280 783 0.00 86.55

RSPDP-R50-100-1-245 490 340* 7200 390 1390 -14.71 80.69
RSPDP-R50-100-1-490 490 360 6492.13 310 1405 13.89 78.36
RSPDP-R50-100-2-245 490 290* 7200 360 1410 -24.14 80.42
RSPDP-R50-100-2-490 490 290* 7200 340 1425 -17.24 80.21
RSPDP-RC50-50-1-245 320 140* 7200 200 632 -42.86 91.22
RSPDP-RC50-50-1-490 320 160* 7200 220 657 -37.50 90.88
RSPDP-RC50-50-2-245 320 120 5681.15 100 679 16.67 88.05
RSPDP-RC50-50-2-245 320 210* 7200 290 712 -38.10 90.11
RSPDP-RC50-100-1-245 320 160* 7200 220 1296 -37.50 82.00
RSPDP-RC50-100-1-490 320 180* 7200 210 1305 -16.67 81.88
RSPDP-RC50-100-2-245 320 130 6235.96 100 1312 23.08 78.96
RSPDP-RC50-100-2-490 320 160 6318.12 160 1350 0.00 78.63

TABLE I
EXPERIMENTAL RESULTS ON NEW GENERATED INSTANCES

This project ANR-14-CE22-0017 is labelled by the Pôle
Véhicule du Futur, and is jointly performed by four partners,
the three french universities of technology (UTT, UTBM,
UTC) and the society Share And Move Solutions.
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