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Abstract— This paper addresses the Multi-Period Pickup and
Delivery Problem with Time Windows and Paired Demands
(Mu-PDPTWPD). A first strategy consists in dealing with the
problem as a whole. A second one is to consider the studied
problem as a sequence of mono-period selective PDPTWPDs.
The Mu-PDPTWPD is an extension of well-known pick up
and delivery problem where vehicles must satisfy a set of
transportation requests under many constraints. The Multi-
Period aspect is added to the problem to match real-world
applications where sites must be visited one time during a set
of periods. In this paper, we propose several methods to solve
this problem. The efficiency of our approaches is validated by
tests on two sets of new generated instances. A comparison
between all proposed approaches is done in order to trace the
advantages and drawbacks for each of them.

I. INTRODUCTION AND PROBLEM STATEMENT

The Pickup and Delivery Problem (PDP) is a well-known
combinatorial optimization problem with a wide range of
real-world applications. It aims at routing a fleet of vehicles
with a given capacity based at a depot to satisfy a set of
transportation requests. The route of each vehicle starts and
finishes at the depot. Furthermore, the demand of a given
node must not exceed the maximal capacity of vehicles. Each
request is represented by a known quantity to be loaded from
a pickup location, then to be unloaded at a delivery location.
Moreover, the depot can be treated as the place where the
vehicles start and end theirs trips but also as a supplier to
a set of customers and as a customer to a set of suppliers.
Hence, we consider three types of flows: the first one is when
vehicle picks up the goods demanded by a specific customer
from its supplier. In this case, the depot is nor a customer,
neither a supplier; the second one is when the depot plays
the role of supplier so the vehicle must load goods from the
depot to deliver its customer(s); and the last one is when
it picks up the goods from supplier(s) and returns it back
to the depot. Then it is considered as a customer. In our
problem, the load of each vehicle when leaving the depot
or when returning to the depot may be different from zero.
In fact, the initial and final loads are two decision variables
that should be calculated. The Mu-PDPTWPD is a NP-hard
problem as it is an extension of the PDP [1]. It can be
modeled by a graph where the edges are roads with assigned

distances. Each node represents either a delivery location
(customer) where a given demand must be unloaded, or a
pickup location (supplier) where a given quantity must be
loaded. In our variant, there may be several periods in which
the vehicles can perform the delivery or pickup operations.
The period can be defined as a day or any other time slot.
Each site can accept to be visited in one or several periods
before the planned period of its visit. Then, it proposes a time
window per period and the vehicle visiting the node cannot
arrive after the end of this time interval. But if it arrives
earlier than the beginning of the associated time window,
then it must wait for the earliest date of this time window.
A paired demand links a specific origin to its destination.
Hence, precedence constraints must be considered to ensure
that each supplier is visited before its customer both by the
same vehicle and during the same period. This last constraint
means a strong but realistic hypothesis in the context of urban
logistics in which we address the studied problem: each route
must be performed within a given period.

Fig. 1: Example of the Mu-PDPTWPD

Fig. 1 shows an example of the Mu-PDPTWPD with three
different periods, a single depot represented by a green
star, a single vehicle and a set of nodes composed of five
customers (circles) and five suppliers (triangles). A given
transportation demand is identified thanks to a color and
a number associated with the corresponding customer and
supplier nodes. In figure 1, we can identify nodes without
number, which corresponds to suppliers or customers paired
with the depot. The characteristics of the Mu-PDPTWPD
studied in this paper can be summarized as follows :
(1) A fleet of heterogeneous vehicles based at the depot.
(2) A site can accept to be visited in one or several periods



after defining a time window per accepted period. It must be
visited in one of it(s) accepted period(s).
(3) A set of transportation requests must be satisfied over all
periods under condition that each request must be satisfied
in a given period (we don’t take into consideration the
possibility of splitting a request over several periods).
(4) The depot is a logistics platform located in the periphery
of the city where all vehicles start and end their trips. It
receives goods from suppliers located outside the city which
will be then delivered in the urban area. It also receives
goods from suppliers located inside the city in order to send
them to other cities. So the depot may represent the origin
or the destination for one or several transportation requests.
Otherwise, the origin will be any other supplier and the
destination any other customer located both inside the city.
In terms of complexity, solving a multi-period variant with
T periods is equivalent to solving Tn times the mono-period
variant (if the n demands may be satisfied at any period).
Indeed compared with the mono-period routing problem,
the multi-period variant brings an additional challenge: the
assignment of one period to each site to be visited. For this
goal, we have considered several strategies:
- finding a global assignment for the whole problem. This
involves to handle all assignment possibilities which allows
to find the optimal solution. But this one is practically
difficult to reach in reasonable time for big size instances;
- adopting a decomposition approach by partitioning the
whole problem into several sequential sub-problems, each
one being a mono-period selective PDPTWPD.
At a nth period, the set of considered demands is composed
of the requests not satisfied at the n-1 previous periods and
which can be achieved within the current period. Then the
current PDPTWPD to solve depends on the results of the
PDPTWPDs solved at the n-1 previous periods. Besides,
during this current period, the vehicles will not always be
able to serve all the considered requests because of the
capacity and/or the time window constraints. Then we must
solve a selective problem. Finally, after solving sequentially
all the mono-period selective problems, the final solution will
be feasible if all the demands are satisfied.
Figure 2 illustrates the same problem as in figure 1, but

Fig. 2: Example of a sequence of the Mo-SPDPTWPD

studied as three sequential mono-period selective problems
(Mo-SPDPTWPDs). In the first period, the nodes numbered
2 and 4 were not selected either because they did not accept
to be visited in this period or because the vehicle cannot
visit these nodes after serving the other ones. In the second
period, we notice that the nodes served in the first period have

disappeared and we can now choose between the nodes 2 and
4 and so on. In this example, we have solved the sequence
and we got an optimal solution because we have the same
routes as in figure 1, which is not always the case.

II. LITERATURE REVIEW

In this section, we present a brief state of the art firstly
on the pickup and delivery problem and its variants, then on
the multi-period aspect on different routing problems. Many
reviews of the PDP literature have been presented in [2] and
[3]. Hereafter, we focused on the studied variants.
In the selective PDP, vehicles must transport goods from sup-
pliers to their corresponding customers in the most profitable
way. For example, [4] has introduced a memetic algorithm
to solve the profitable PDPTWPD. For this variant, the
authors have considered that only a part of the available
request can be served and the remaining ones are also served
by subcontracted carriers. Moreover, only the flow between
suppliers and customers is taken into account. In other words,
the depot is only the starting and the ending point of each
vehicle trip. Recently, we elaborated a MILP model in [5]
that deals with the mono-objective Mo-SPDPTWPD, with
the three types of flow defined in the first section.

The studies quoted above deal with PDP and its variants
in a mono-period context, with a time window for each
site. There are few studies that address the multi-period
aspect or the multiple time windows possibility or both
of them. Hence, we present some of these works which
are not necessary dedicated to solve the PDP. The multiple
time windows mean that a customer can has zero, one or
several time windows per period within which loading or
unloading of goods is allowed. Contrary to the multi-Period
variant, in the periodic routing problem, each site has to
be visited periodically (more than one time) during the
periods ([6], [7]). The Mu-PDPTWPD is rarely studied in the

I. Multi-period and Multiple Time windows studies

Reference Routing problem Multi-Period Multiple Time Windows Resolution method
[8] OPTW X X Variable neighborhood search
[9] TOPTW X Hybrid ILS-GRASP

[10] TOPTW X Simulated annealing
[11] VRPTW X Ant colony
[12] VRPTW X Hybrid tabu search
[13] VRPTW X Quantum genetic algorithm
[14] PDPTWPD X Linear programming MILP

OP : Orienteering Problem; TOP : Team Orienteering Problem

literature. Table I gives an overview on the works addressing
either the multi-period or the multiple time windows on
different routing problems. The main contributions of this
paper includes:

i) Introducing three different approaches based on a se-
quential strategy to solve the Mu-PDPTWPD.

ii) Generating of the first instances in the literature dealing
with the considered variant to test our approaches.

In the next section, we propose three sequential approaches
to solve the Mu-PDPTWPD.



III. SEQUENTIAL APPROACHES FOR THE MU-PDPTWPD

A. Global-MILP approach

We first present a mathematical formulation for the Mu-
PDPTWPD, characterized by the following parameters:
Data:
• P : set of all periods,
• C : set of all customers,
• S : set of all suppliers,
• Nodes : set of all suppliers and customers (C ∪ S),
• 0 : Id of the depot,
• N : set of all nodes and depot,
• Supplieri : supplier associated with customer i,
• Customeri : customer associated with supplier i,
• qi : goods quantity requested by node i

– If qi >0 then i ∈ S, else i ∈ C
• [e(i,t), l(i,t)] : time window interval associated to node

i at period t,
• STi : time of service at node i,
• M : very big number,
• V : set of available vehicles,
• Qk : maximal capacity of vehicle k,
• Speedk : the average speed of vehicle k,
• dij : traveling distance from vertex i to vertex j.

Variables:

• Xi,j,k,t =


1 If node j is visited directly after node i

by vehicle k during period t
0 Otherwise

• Ai,k,t : starting service time of vehicle k at node i during
period t,

• Di,k,t : departure time of vehicle k from node i during
period t,

• Yi,k,t : quantity presented in vehicle k visiting node i
during period t,

• Ei,t = 1 if node i is visited during period t and 0
otherwise.

Mixed Linear Program for the Mu-PDPTWPD:

Minimize
∑
i∈N

∑
j∈N

∑
k∈V

∑
t∈P

dijXi,j,k,t (1)

Subject to:∑
i∈N

∑
k∈V

∑
t∈P

Xi,j,k,t = 1 ∀j ∈ Nodes (2)

∑
j∈N

∑
k∈V

∑
t∈P

Xi,j,k,t = 1 ∀i ∈ Nodes (3)

∑
i∈N

Xi,u,k,t −
∑
i∈N

Xu,i,k,t = 0

∀k ∈ V ;∀u ∈ Nodes;∀t ∈ P

(4)

∑
i∈Nodes

X0,i,k,t ≤ 1 ∀k ∈ V ;∀t ∈ P (5)

∑
i∈N

∑
j∈N

Xi,j,k,t ≤M ∗
∑

i∈Nodes

X0,i,k,t

∀k ∈ V ;∀t ∈ P

(6)

∑
j∈Nodes

Xj,0,k,t =
∑

i∈Nodes

X0,i,k,t

∀k ∈ V ;∀t ∈ P

(7)

D0,k,t = 0 ∀k ∈ V ;∀t ∈ P (8)

Di,k,t ≥ Ai,k,t + STi −M ∗ (1−
∑
j∈N

Xi,j,k,t)

∀i ∈ Nodes;∀k ∈ V ;∀t ∈ P

(9)

Di,k,t −M ∗ (1−
∑
j∈N

Xi,j,k,t) ≤ Ai,k,t + STi

∀i ∈ Nodes;∀k ∈ V ;∀t ∈ P

(10)

Di,k,t +
dij

Speedk
−M ∗ (1−Xi,j,k,t) ≤ Aj,k,t

∀i, j ∈ N ;∀k ∈ V ;∀t ∈ P

(11)

Di,k,t ≤M ∗
∑
j∈N

Xi,j,k,t

∀i ∈ Nodes;∀k ∈ V ; t ∈ P

(12)

Ai,k,t ≤M ∗
∑
j∈N

Xj,i,k,t

∀i ∈ Nodes;∀k ∈ V ;∀t ∈ P

(13)

A0,k,t ≤ l(0,t) ∀k ∈ V ;∀t ∈ P (14)∑
t∈P

Ei,t = 1 ∀i ∈ Nodes (15)

Ei,t =
∑
j∈N

∑
k∈V

Xj,i,k,t ∀i ∈ Nodes;∀t ∈ P (16)

∑
k∈V

Ai,k,t −M ∗ (1− Ei,t) ≤ l(i,t)

∀i ∈ Nodes;∀t ∈ P

(17)

e(i,t) ≤
∑
k∈V

Ai,k,t +M ∗ (1− Ei,t)

∀i ∈ Nodes;∀t ∈ P

(18)

Y0,k,t =
∑

i∈C/Supplieri=0

(−qi ∗
∑
j∈N

Xj,i,k,t)

∀k ∈ V ;∀t ∈ P

(19)

Yi,k,t + qj −M ∗ (1−Xi,j,k,t) ≤ Yj,k,t

∀i ∈ N ;∀j ∈ Nodes;∀k ∈ V ;∀t ∈ P
(20)

Yj,k,t − qj −M ∗ (1−Xi,j,k,t) ≤ Yi,k,t

∀i ∈ N ;∀j ∈ Nodes;∀k ∈ V ;∀t ∈ P
(21)

Yi,k,t ≤M ∗
∑
j∈N

Xj,i,k,t ∀i ∈ N ;∀k ∈ V ;∀t ∈ P (22)

0 ≤ Yi,k,t ≤ Qk ∀i ∈ N ;∀k ∈ V ;∀t ∈ P (23)∑
u∈N

XSupplieri,u,k,t =
∑
u∈N

Xu,i,k,t

∀i ∈ C/Supplieri ∈ S;∀k ∈ V ;∀t ∈ P

(24)

DSupplieri,k,t ≤ Ai,k,t ∀i ∈ C;∀k ∈ V ;∀t ∈ P (25)



The objective function (1) is the minimization of distance.
Constraints (2) and (3) guarantee that each node is visited
once during the set of periods. The routing continuity on each
period for each vehicle is ensured by constraints (4). (5), (6)
and (7) guarantee that each route start and finish at a depot.
Constraints (8) ensure that each vehicle route begins on each
period at time 0. (9), (10), (11), (12) and (13) update starting
service and departure times. Constraints (14) ensure that all
vehicles finish their trips before the closing time of the depot.
(15) and (16) ensure that each node is visited during only
one period. The compliance of time windows is ensured by
constraints (17) and (18). (19), (20), (21), (22) and (23) allow
to respect the capacity of each vehicle. Constraints (24) and
(25) ensure that each vehicle visits the supplier before its
customer. This MILP addresses the global problem and as a
consequence, the complexity is very high. Hence, using the
well-known solver CPLEX, we can solve only very small
instances to the optimality in a reasonable time.
The advantage of this MILP (called Global-MILP to differ
from other algorithms) is that it gives us the optimal solution
of the Mu-PDPTWPD. But, the long solving time represents
its big drawback. To deal with it, we present different
approaches for the second considered strategy which tackles
the Mu-PDPTWPD by considering it as a sequence of Mo-
SPDPTWPDs. This strategy may not always give the optimal
solution because the final solution is the sum of the solutions
for each period. In addition, obtaining a feasible solution
even if it exists is not guaranteed with such a strategy.

B. Sequential-MILP approach

Figure 4 represents our first sequential approach, denoted
Sequential-MILP, which deals chronologically with each
period. We start with the first period and run our MILP
developed in [5] for the Mo-SPDPTWPD to get the optimal
solution on this period. After that, we compute the distance
obtained in order to add its value to the final distance and we
insert the visited sites into a list of assigned sites (those nodes
cannot be visited over the left periods). Finally, we solve
the problem for the next period and we repeat this process
to finish all periods, while all requests are not satisfied. In
the global Mu-PDPTWPD, we aim at minimizing the total
distance. But we cannot use this objective function on each
period because of the selective aspect of each mono-period
problem. Indeed, in a selective problem, the minimal distance
is zero with no visited sites. Hence, we use the maximization
of profit as our objective function. This choice is first justified
as in the literature, the main objective for selective problems
is to maximize the profit. Moreover, at equal profits for all the
requests, maximizing the profit is the same as maximizing
the number of visited sites. This may contribute to obtain a
global feasible solution (with all requests satisfied).
After solving the problem, the total distance is evaluated for
further comparisons. With our sequential MILP approach,
the distance obtained may be not the optimal one, neither at
each period nor globally. To deal with this drawback and im-
prove the performance of our sequential strategy, we develop
in the next subsections two bi-objective methods which aim

Fig. 3: Sequential algorithm structure

Fig. 4: Sequential-MILP approach

at both minimizing the total distance and maximizing the
profit for each period.

C. Sequential-Lexicographic approach

Fig. 5: Sequential-Lexicographic approach

The lexicographic approach represents one possible
method to address multi-objective problems. It consists in
establishing a pre-defined ordering between the two objective
functions and then, each function is optimized one at a
time in each period. We called this approach Sequential-
Lexicographic and it is detailed in figure 5. In our case,
the collected profit is first maximized and then the distance
is minimized because of the selective characteristics of the
problem. We have tested the efficiency of this approach by
using it to solve the bi-objective Mo-SPDPTWPD [15].

D. Sequential Hybrid genetic algorithm

Fig. 6: Sequential-HGA approach

The main limitation observed with exact methods is the
high computational time needed to solve big size instances



(table II). Then, we propose a Hybrid Genetic Algorithm
(HGA) to address the studied problem. We call it Sequential-
HGA (figure 6) and we still aim both to minimize the
total distance and to maximize the collected profit for each
period. It is an extension of a genetic algorithm developed
in [16] to solve the Mo-SPDPTWPD, where each solution
is represented by a chromosome composed of genes. Each
gene is a route performed by one vehicle.
The initial population is composed of Max feasible solutions
created randomly. Our genetic algorithm is hybridized with
a local search procedure which improves each given route in
terms of distance by testing CP permutations. The parameters
tunning provided the values CP=15 and Max=200.
The evaluation of chromosomes is based on ranking pro-
cedure using Non-dominated Sorting Genetic Algorithm
(NSGA) [17]. We use the obtained ranks and the sharing
method to assign a fitness value for each individual [18].
The sharing method maintains the diversity of population.
Thanks to a density parameter, This method allows us to
distribute the population over the Pareto front by increasing
the probability to select solutions in uncrowded areas [18].

For mating and reproduction, we introduce a new selection
strategy, based on two consecutive roulette wheels. It aims
at giving a bigger possibility to the best chromosomes to be
selected while keeping the random aspect of the selection.
The first wheel is based on the previous obtained ranks and is
dedicated to determine the rank of future parent. The second
wheel is based on the fitness. It chooses the final parent
among all chromosomes associated with this computed rank.
Then, a crossover operator is applied on the selected parents
in order to get two children: child 1 by getting the genes
with highest profit from its parents and child 2 by getting the
genes with the lowest distance. A repairing procedure enables
us to remove the duplicated sites. After being improved with
our local search method, the children will replaced their
parents if they dominate at least one of them.

IV. EXPERIMENTAL RESULTS

In this section, we give some experimental results obtained
by running the four presented algorithms to solve the Mu-
PDPTWPD: Global-MILP, Sequential-MILP, Sequential-
Lexicographic and Sequential-HGA. For the three first ones,
we use the commercial solver CPLEX 12.4. We coded our
Sequential-HGA in C++. All tests have been done using
an Intel core i7, 2.80 GHz CPU and 16 GB of RAM
computer with Windows 10 as operating system. The tests
were achieved on two sets of new instances we generated
because of a lack of benchmark instances:
- Set 1 : we randomly generated 30 instances with a fixed
number of periods equal to 10. A site can choose the
period(s) in which it could be visited. It may be associated
to several time windows but at most one per period. In this
set, the same profit is associated with all the requests.
- Set 2 : 18 instances were generated from Li and Lim′s
benchmark instances [19] which we have adapted to the
Mu-PDPTWPD. All sites accept to be visited at any period,
which means that for each site there is exactly one associated

time window per period. Moreover two requests may be
associated with different profits. For set 2, we determined the
number of necessary periods for each instance by using the
minimum number of periods required by our three sequential
approaches (column 2 in table II), while repeating the solving
procedure until all sites were visited.

The instance files are available through the link
https://www.dropbox.com/sh/7h4xhoi69ilwxe4/

AACa9ybtN_d58vRLVqHg_Cloa?dl=0. Each instance is
labeled Sx-y-z-i, x is the type of set, y is the type of
instance (R: nodes are randomly distributed, C: nodes are
totally clustered, and RC: nodes are partially clustered and
partially randomly distributed), z is the number of nodes
and i identifies the instance. Table II shows the results
for the considered approaches in terms of total obtained
distance and CPU time in seconds. The term ”Time limit”
means that the approach has not solved to the optimality
the corresponding instances after two hours of running. For
instances with 50 nodes, the Global-MILP solved to the
optimality only one instance over ten from set 1 and three
instances over six from set 2.

II. Experimental results for different approaches
Number of Global-MILP Sequential-MILP Sequential-Lexicographic Sequential-HGAInstance periods Distance CPU time (s) Distance CPU time (s) Distance CPU time (s) Distance CPU time (s)

S1-R-10-1 10 910.659 3.2 991.456 1.34 910.659 2.21 910.659 0.96
S1-R-10-2 10 657.043 5.67 930.628 2.21 930.628 3.45 930.628 0.46
S1-R-10-3 10 821.459 6.98 821.459 3.14 821.549 4.16 821.459 1.05
S1-R-10-4 10 912.905 6.45 1039.51 2.19 1039.51 3.23 1039.51 1.24
S1-R-10-5 10 843.879 6.37 914.891 2.13 914.891 3.15 914.891 1.21
S1-R-10-6 10 930.679 6.87 1011.39 2.57 1011.39 3.72 1011.39 1.45
S1-R-10-7 10 897.632 6.49 1031.62 2.25 1031.62 3.31 1031.62 1.34
S1-R-10-8 10 759.548 7.13 1026.88 2.36 955.985 3.4 955.985 1.51
S1-R-10-9 10 938.955 7.04 1015.72 2.33 1015.72 3.51 1015.72 1.57
S1-R-10-10 10 803.484 7.17 893.013 2.41 893.013 3.53 893.013 1.62
S1-R-20-1 10 1814.512 10.73 1986.65 7.23 1934.25 9.13 1903.12 9.53
S1-R-20-2 10 1706.712 8.95 2016.43 4.25 1855.51 7.21 1855.51 6.15
S1-R-20-3 10 1829.728 6.35 2137.83 4.23 2010.9 5.32 2010.9 4.12
S1-R-20-4 10 1493.822 11 1830.17 5.13 1573.07 8.97 1589.89 5.72
S1-R-20-5 10 1667.67 9.33 1781.38 8.76 1580.91 15.34 1784.01 7.29
S1-R-20-6 10 1643.006 11.64 1993.01 6.21 1724.93 9.32 1724.93 8.2
S1-R-20-7 10 1547.684 6.76 1929.81 6.12 1870.6 14.52 1889.09 5.27
S1-R-20-8 10 1635.755 5.82 1857.75 3.71 1672.39 5.03 1672.39 3.52
S1-R-20-9 10 1605.324 6.74 1938.1 3.51 1807.07 5.4 1815.19 4.16
S1-R-20-10 10 1524.8 6.1 1719.11 3.2 1696.7 5.7 1696.7 2.23
S1-R-50-1 10 Time limit Time limit 4967.02 173.122 3814.23 612.84 3834.33 76.249
S1-R-50-2 10 Time limit Time limit 4497.41 250.266 3626.87 701.44 3672.24 85.661
S1-R-50-3 10 Time limit Time limit 4612.08 117.089 4029.62 436.43 4029.62 58.269
S1-R-50-4 10 Time limit Time limit 4262.57 135.515 3734.91 472.85 3758.32 60.311
S1-R-50-5 10 Time limit Time limit 4589.05 164.35 3748.56 542.24 3748.56 70.534
S1-R-50-6 10 Time limit Time limit 4528.73 128.641 3410.08 452.23 3426.08 56.874
S1-R-50-7 10 Time limit Time limit 4516.64 180.295 3474.27 637.15 3520.86 78.214
S1-R-50-8 10 Time limit Time limit 4539.33 107.972 3474.69 422.72 3494.81 80.561
S1-R-50-9 10 2996.748 4259.32 4267.47 129.265 3627.01 467.68 3686.43 58.721
S1-R-50-10 10 Time limit Time limit 4288.83 114.74 3783.69 435.29 3796.12 62.968
S2-C-10-1 1 58.7243 3.16 58.7243 1.19 58.7243 2.53 58.7243 1.1
S2-C-10-2 1 59.4222 17.18 63.8216 10.12 59.4222 16.42 59.4222 4.6
S2-R-10-1 5 270.925 2.13 290.643 0.87 290.643 1.58 290.643 0.09
S2-R-10-2 3 226.993 13.42 294.437 5.13 294.437 11.71 294.437 3.14

S2-RC-10-1 2 193.085 2.04 193.085 0.45 193.085 1.65 193.085 0.23
S2-RC-10-2 2 195.147 3.21 195.147 0.93 195.147 1.97 195.147 0.76
S2-C-20-1 2 204.177 5.13 484.5 2.3 356.868 3.7 347.429 2.15
S2-C-20-2 2 212.947 42.12 232.838 21.88 221.31 41.75 249.7233 16.23
S2-R-20-1 2 449.999 4.81 548.814 1.9 479.247 2.74 455.168 2.15
S2-R-20-2 2 400.301 140.51 491.133 14.53 451.07 29.27 406.317 13.89

S2-RC-20-1 2 323.981 3.63 399.931 1.31 323.981 2.59 323.981 2.21
S2-RC-20-2 2 327.786 5.12 405.616 1.87 327.786 3.54 327.786 2.54
S2-C-50-1 2 435.339 192.13 523.752 55.452 435.339 167.458 610.244 14.78
S2-C-50-2 2 525.871 305.49 1034.05 206.12 1025.55 258.889 909.847 26.58
S2-R-50-1 2 1125.31 1024.17 1158.24 131.505 1156.77 864.67 1138.93 181.328
S2-R-50-2 2 Time limit Time limit Time limit Time limit Time limit Time limit 1208.04 81.08

S2-RC-50-1 2 Time limit Time limit Time limit Time limit Time limit Time limit 920.245 71.372
S2-RC-50-2 3 Time limit Time limit Time limit Time limit Time limit Time limit 969.247 163.378

The difference between the number of solved instances
can be explained by the fact that the number of periods

https://www.dropbox.com/sh/7h4xhoi69ilwxe4/AACa9ybtN_d58vRLVqHg_Cloa?dl=0
https://www.dropbox.com/sh/7h4xhoi69ilwxe4/AACa9ybtN_d58vRLVqHg_Cloa?dl=0


in set 2 may be smaller than the one in set 1 (which is
fixed to 10). For the instance S1-R-20-5, the sequential-
MILP and Sequential-Lexicographic give us unacceptable
solutions which consist in visiting only 19 sites over the
20 (in grey in table II). Except this case, all the reported
results refer to feasible solutions. To compare our different
approaches, table III synthesizes the average gap for distance
and solving time between our three sequential approaches
and the global approach. It also provides the associated
standard deviations. These gaps and deviations are calculated
based on the 36 instances solved to optimality using the
global approach and we did not take into account the
unfeasible solutions. Table III also gives the total number
of solved instances for each approach. It provides a clear

III. Analysis of obtained results

Approach Mean GAP
distance (%)

Deviation GAP
distance (%)

Mean GAP
solving time (%)

Deviation GAP
solving time (%)

Number of
solved instances

Global-MILP 0 0 0 0 36
Sequential-MILP 21.60 26.63 -58.19 17.31 44

Sequential-Lexicographic 13.40 20.36 -26.77 31.69 44
Sequential-HGA 13.74 18.18 -66.12 23.37 48

idea of the advantages and drawbacks of each approach.
The Global-MILP can be considered as the best approach
because it provides optimal solution for the Mu-PDPTWPD
but the number of solved instances highlights its limitation
to solve small instances (with less than 50 nodes). The three
sequential approaches do not provide optimal solutions and
this can be justified by the fact that the sum of optimal
local solutions cannot give the optimal global solution. But
we can observe that we minimize the solving time and we
increase the number of solved instances. We also remark that
the mean gap obtained using the Sequential-Lexicographic
and the Sequential-HGA is almost equal for the distance.
Furthermore, the standard deviation using Sequential-HGA
is smaller than the one using Sequential-Lexicographic this
means that the distance values are scattered around the mean.
In addition, the Sequential-HGA can solve all the instances
in very small time. So, we can consider it better than the
other sequential approaches.

V. CONCLUSIONS AND FUTURE WORKS

Among the four proposed approaches to solve the Mu-
PDPTWPD, three of them address the problem as a sequence
of Mo-SPDPTWPDs. We have generated the first instances
dedicated to the Mu-PDPTWPD. Experimental results show
the strength and weakness of each approach. The gap be-
tween the solutions provided by our sequential approaches
and the optimal ones is caused by the strategy itself which
consists in solving each period without having any idea about
the global problem. In future works, we will develop heuristic
methods to address the global problem and we will introduce
additional constraints to match better real life cases.
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