

On-chip detection, sizing and proteomics of extracellular vesicles

Obeid S.^{1*}, Ming-Li Chou³, Maximova K¹, Lucchi G², Burnouf T³, Boireau W¹, Elie-Caille C¹

1) Institut FEMTO-ST, Micro Nano Sciences and Systems (MN2S) department / BioMicroDevices group, Besançon (France)

* now: UMR STLO, French National Institution for Agricultural Research (INRA), Rennes, France

2) CLIPP proteomic platform, Dijon (France)

3) Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan

ISEV 2018, 3-5 may 2018, Barcelona

Challenges in EVs analysis :

- **CRUDE** sample (with « contaminating » biological objects)
- NO labelling
- COMPLETE & GLOBAL EVs subpopulations

!! Need to combine technologies !!

- In PHYSIOLOGICAL conditions,

!! to keep them functional !!

Our technological combination : the NBA platform

The gold biochip: the corner stone of NBA

Micropipette

Design of the biochip for EVs capture:

Calibration of NBA: nanoparticles covering 50 nm to 1µm

y = 0,0005x R² = 0,9772

200

AFM to achieve EVs size subsets and morphology

Platelet-derived EVs

-Several area imaged on each spot -At least 1000 EVs counted/spot

EVs = Individual « flatten » objects → Recalculation of <u>effective diameter</u>

Correlation between EVs SPRi biodetection and AFM counting

> SPRi/AFM correlation in EVs analysis, from nm to µm

AFM : size, but also morphology

Platelet-derived EVs

> Discrimination between aggregates & individual big EVs

NBA for EVs biodetection, sizing and morphology

Size distribution of immunocaptured EVs by AFM on gold biochip (black circles) or in solution by FC (red squares) on the same sample.

> NBA efficient to dose, select, spatialize, evaluate size and morphology of EVs subsets

Obeid S., Ceroi A., Mourey G., Saas P., Elie-Caille C. Boireau W., Biosensors & Bioelectronics, 2017, 93, 250-259

EVs : soft and deformable vesicles...

How to keep them spherical while captured on substrate ?

Impact of AFM imaging mode?

→ Dilution of the specific Ab and soft afm imaging mode = spherical EVs

Poster 09.01 of Ksenia Maximova – Saturday

Application of NBA to a biological model: platelet derived EVs effect on monocytes

Objective : understand the pro-inflammatory and pro-thrombotic « role » of EVs from plasma or platelet

concentrates in transfused patients

T-PEVs induce aggregation of THP1...

Collaboration : T. Burnouf, Taiwan

Neutrophil aggregation and extracellular traps (NETs)

stimuli

Neutrophils

neutrophils release granule proteins and chromatin to form an extracellular fibril matrix known as NETs Pathogen trapping & killing

NETs: paradoxical physiological impact ?

Hypothesis: Thrombogenic risks of plasma for transfusion are mediated by PEVs through: - direct thrombin generation - and neutrophil activation

Neutrophil aggregation and extracellular traps (NETs)

N-PEVs on neutrophils

T-PEVs on neutrophils

DNA (blue), histone H1 (green), and MPO (red)

→ T-PEVs induce aggregation of neutrophil aggregation and NETs formation...

T-PEVs effect on monocytes : concentration ?? size ?? composition???

EVs subsets biodetection on the chip

Collaboration : T. Burnouf, Taiwan

NEDICAL UN

T-PMP : capture +++ on aCD41 and aCD62P EVs concentration, size, protein expression level ??

Concentration, in solution ? no

	Concentration (EVs/mL)		
	Qnano	FC	
N-PEVs	3,7x10 ¹²	2,1x10 ¹⁰	
T-PEVs	1,3x10 ¹¹	6,8x10 ⁹	

→ N-PEV sample : higher concentration !! / no apparent difference in size

Size ? ... partially

ter) (nm)

Gwiddion image data processing (more than 1000 EV counted/spot)

EV effective diameter

 \rightarrow <u>T-PEV</u>CD41+ and PS+ : slightly smaller than N-PEVs

 \rightarrow <u>T-PEV</u> CD9 and CD62P : slightly bigger than N-PEVs

Protein expression level ? ...

MALDI MS/MS comet Biochip Matrix in Medical & Science Matrix arrays TPP deposition ImagePrep Identification LESA (Liquid extraction TriVersa **Characterization** surface analysis) NanoMate Quantification **ESI** infusion Digestion ImagePrep **Bioinformatics** (Bruker) Proteome Discoverer 2.1 MATRIX SCIENCE ESI MS/MS ProFI Manual PROTEOMICS Biochip peptide 1 or 2 extraction + macrospots NanoLC biotools

Protein expression level ? ...

EVs proteomics « on arrays »

		T-PEVs		N-PEVs	
Protein Set	Description	Score T-PMP	Peptides T-PMP	Score N-PMP	Peptides N-PMF
Q9Y490	Talin-1	3232,74	49	3943,33	61
P21333	Filamin-A	2805,99	47	3778,84	62
A0A024QZN4	Vinculin, isoform CRA_c	1275,97	23	1157,94	24
P08514	Integrin alpha-IIb	1233,54	17	1653,09	25
P60709	Actin, cytoplasmic 1	1076,79	19	1345,02	25
A0A0A0MRJ7	Coagulation factor V	259,97	5	945,11	17
F6KPG5	Albumin (Fragment)	1031,38	17	608,76	10
A0A024R882	Stomatin, isoform CRA_a	808,04	10	921,68	12
E7EPG1	Multimerin-1	45,33	1	690,01	13
L7UUZ7	Integrin beta	611,35	9	604,56	9
P11142	Heat shock cognate 71 kDa protein	609,84	9	666,08	12
A0A024R1N1	Myosin, heavy polypeptide 9, non-muscle	576,45	10	550,12	8
P02671	Fibrinogen alpha chain	493,98	11	133,44	3
A0A0A0MS51	Gelsolin	489,27	9	823,74	13
AOAO24R3E3	Apolipoprotein A-I, isoform CRA_a	463,22	9	300,03	5
A8K486	Peptidyl-prolyl cis-trans isomerase	457,41	8	355,44	6
A0A024R694	Actinin, alpha 1, isoform CRA_a	428,23	8	327,95	7
A0A024RB87	RAP1B, member of RAS oncogene family	390,9	5	527,1	7
P11021	78 kDa glucose-regulated protein	390,21	7	230,05	4
P04406	Glyceraldehyde-3-phosphate dehydrogenase	367,78	6	542,4	10
P13224	Platelet glycoprotein Ib beta chain	350,35	6	367,7	7
B4DE78	cDNA FLI52141, highly similar to 14-3-3 protein gamma	344,31	7	332,17	e
Q86UX7	Fermitin family homolog 3	341,67	5	409,09	6
A0A024R5Z9	Pyruvate kinase	340,44	6	353,76	6
DOPNI1	Epididymis luminal protein 4	339,64	5	463,93	7

~ 200 proteins identified from ~ 500 ng of captured EV and several differential proteins ...

Collaboration : T. Burnouf, Taiwan

Protein expression level ? Yes ...

Obeid S. et al, unpublished data

Neutrophil aggregation and extracellular traps (NETs)

N-PEVs on neutrophils

→ T-PEVs induce aggregation of neutrophil aggregation and NETs formation...

T-PEVs effect on monocytes :	concentration ??	size ??	Protein expression ???
	NO	partially	YES

Conclusions and perspectives

Acknowledgments

FEMTO-ST Institute & CLIPP

Agence Nutlinuite de la Recherche

CINIS

Collaborators

P. Saas

S. Obeid

K. Maximova

W. Boireau A. Rouleau

G. Lucchi

T. Burnouf

Fundings

Région Franche Comté (2013, 2017) CNRS : Defi Nano 2013 CNRS : Défi instrum. aux limites 2017 FEDER « MIMEDI » 2018 ANR 2017 « MADNESS »

THANK YOU !

- Selective detection and quantification of the different EV subsets.
- Discrimination between EVs and exosomes

