
Checkpointing Workflows for Fail-Stop Errors
Li Han∗†, Louis-Claude Canon∗‡, Henri Casanova§, Yves Robert∗¶ and Frédéric Vivien∗

∗LIP, École Normale Supérieure de Lyon, CNRS & Inria, France, email: {li.han|yves.robert|frederic.vivien}@inria.fr
†East China Normal University, China

‡FEMTO-ST, Université de Bourgogne Franche-Comté, France, email: louis-claude.canon@univ-fcomte.fr
§University of Hawai‘i at Manoa, USA, email:henric@hawaii.edu

¶University of Tennessee Knoxville, USA

Abstract—We consider the problem of orchestrating the exe-
cution of workflow applications structured as Directed Acyclic
Graphs (DAGs) on parallel computing platforms that are subject
to fail-stop failures. The objective is to minimize expected overall
execution time, or makespan. A solution to this problem consists
of a schedule of the workflow tasks on the available processors
and of a decision of which application data to checkpoint to stable
storage, so as to mitigate the impact of processor failures. For
general DAGs this problem is hopelessly intractable. In fact, given
a solution, computing its expected makespan is still a difficult
problem. To address this challenge, we consider a restricted class
of graphs, Minimal Series-Parallel Graphs (M-SPGS). It turns
out that many real-world workflow applications are naturally
structured as M-SPGS. For this class of graphs, we propose
a recursive list-scheduling algorithm that exploits the M-SPG
structure to assign sub-graphs to individual processors, and uses
dynamic programming to decide which tasks in these sub-gaphs
should be checkpointed. Furthermore, it is possible to efficiently
compute the expected makespan for the solution produced by
this algorithm, using a first-order approximation of task weights
and existing evaluation algorithms for 2-state probabilistic DAGs.
We assess the performance of our algorithm for production
workflow configurations, comparing it to (i) an approach in
which all application data is checkpointed, which corresponds
to the standard way in which most production workflows are
executed today; and (ii) an approach in which no application
data is checkpointed. Our results demonstrate that our algorithm
strikes a good compromise between these two approaches, leading
to lower checkpointing overhead than the former and to better
resilience to failure than the latter.

I. INTRODUCTION

This paper proposes a new algorithm to execute workflows
on parallel computing platforms subject to fail-stop processor
failures, e.g., a large-scale cluster. The de-facto approach to
handle fail-stop failures is Checkpoint/Restart (C/R), by which
application state is saved to stable storage, such as a shared
file system, throughout execution. Workflows are structured
as Directed Acyclic Graphs (DAGs) of tasks. Workflow tasks
can be checkpointed individually and asynchronously. Also,
rather than checkpointing the entire memory footprint of a
task, it is typically only necessary to checkpoint its output data.
Therefore, workflows are good candidates for a C/R approach.

The common strategy used in practice is checkpoint every-
thing, or CKPTALL: the output data of each task is saved
onto stable storage (in which case we say “the task is check-
pointed”). For instance, in production Workflow Management
Systems (WMSs) [1], [2], [3], [4], [5], [6], the default behavior
is that all output data is saved to files and all input data

is read from files, which is exactly the CKPTALL strategy.
While this strategy leads to fast restarts in case of failures,
its downside is that it maximizes checkpointing overhead. At
the other end of the spectrum would be a checkpoint nothing
strategy, or CKPTNONE, by which all output data is kept in
memory (up to memory capacity constraints) and no task is
ever checkpointed, which falls under the “in-situ” workflow
executions paradigm [7]. While in a failure-free execution the
checkpointing overhead is zero, the downside of this approach
is that in case of a failure, a large number of tasks may have
to be re-executed. The objective of this work is to achieve a
desirable trade-off between these two extremes.

Consider the problem of scheduling a workflow execution
and deciding which tasks should checkpoint their output data.
The objective is to minimize the expectation of the execution
time, or makespan, which is a random variable due to task
failures and re-executions. The complexity of this problem is
steep. Indeed, consider the CKPTALL strategy and assume a
given schedule in which each task is assigned to a different
processor. Consider now the problem of computing the ex-
pected makespan, which amounts to computing the expected
longest path in the schedule. Because of failures, task durations
are non-deterministic. Computing the expected length of the
longest path in a DAG with probabilistic task durations is a
known difficult problem [8], [9]. Even in the simplified case
in which each task is re-executed at most once, i.e., when task
durations are random variables that can take only two discrete
values, the problem is #P-complete [8].1

In this work, we consider strategies by which some tasks
are checkpointed and others are not. When some tasks are
not checkpointed, computing the expected makespan becomes
more combinatorial due to the complexity of failure recoveries.
To understand this intuitively, consider a workflow for which
there is a given schedule, i.e., each processor is assigned a
sequence of tasks to execute. Furthermore, assume that for
each task it has already been decided whether to checkpoint
it or not. Consider a non-checkpointed task T1 assigned to
processor P1 that sends output data to an immediate successor
T2, which is scheduled on another processor, P2. In this case,
we say that T1 and T2 have a “crossover dependency”. For sim-
plicity, assume that all predecessors of T1 are checkpointed,

1Recall that #P is the class of counting problems that correspond to NP
decision problems [10], [11], [12], and that #P-complete problems are at least
as hard as NP-complete problems.

meaning that T1 can always be restarted immediately after a
failure of P1. After a successful execution of T1, a datum d
is sent to P2, perhaps immediately or delayed until T2 begins
execution. Regardless, d is stored in memory. If P1 crashes
before d has been sent, then T1 must be re-executed on P1

(after a reboot) or on a spare processor. If P2 crashes before
T2 completes, then d must be retrieved from P1, assuming P1

has not crashed and has kept d in memory (which may not be
the case due to memory space constraints), or T1 must be re-
executed if P1 has crashed. A series of alternating failures on
P1 and P2, albeit unlikely, causes many re-executions and data
transfers. In general, each processor is scheduled to execute
many tasks. Due to the presence of crossover dependencies, a
few crashes can thus lead to many task re-executions and data
re-transfers, during which other crashes can occur. Computing
the expected makespan in this case seems, if anything, more
difficult than in the CKPTALL strategy which, as seen above,
is already #P-complete. Finally, consider the other extreme
strategy, CKPTNONE. To the best of our knowledge, the
complexity of computing, or even approximating, the expected
makespan for this strategy remained an open problem. In this
work, we prove that it is #P-complete.

The above shows that merely computing the expected
makespan of a workflow execution in the presence of fail-
stop failures, when all scheduling and checkpointing decisions
are given, is computationally difficult. Therefore, hoping to
compute good scheduling and checkpointing decisions, the
effectiveness of which cannot be tractably quantified, seems
out of reach. We address this challenge by restricting the
problem to Minimal Series Parallel Graphs (M-SPGS) [13].
Despite its name, an M-SPG is essentially an extension of
classical Series Parallel Graph (SPG) [14], because source
and sink nodes are not merged in series composition (see
Section II-A for details). It turns out that most production
workflows, e.g., those enabled by production WMSs [1], [2],
[3], [4], [5], [6], are M-SPGS. The structure of these graphs
makes it possible to orchestrate the execution in fork-join
fashion, by which processors compute independent task sets,
before joining and exchanging data with other processors. We
call these independent task sets superchains, because tasks in
these sets are linearized into a chain (as they are executed
by a single processor) but have forward dependencies that
can “skip over” immediate successors. We decide which tasks
in a superchain should be checkpointed via a new algorithm,
which extends the dynamic programming algorithm of Toueg
and Babaoğlu [15] for regular chains. Our solution thus
checkpoints fewer tasks than the standard CKPTALL strategy.
Furthermore, we always checkpoint the exit tasks of each
superchain, which removes all crossover dependencies. As a
result, we can tractably compute the expected makespan. More
specifically, the contributions of this work are:
• A method to efficiently compute the expected makespan of
a checkpointed M-SPG (Section II-B);
• A scheduling/checkpointing strategy CKPTSOME for M-
SPGS that improves upon the de-facto standard CKPTALL
strategy and avoids all crossover dependencies, and that relies

on the two algorithms below (Section II-C);
• A list-scheduling algorithm for scheduling M-SPG work-
flows as sets of superchains (Section III);
• An algorithm to checkpoint an optimal subset of tasks in a
superchain (Section IV);
• The #P-completeness of the problem of computing the
expected makespan for the CKPTNONE strategy (Section V);
• Extensive evaluation with real-world Pegasus [1] workflows
to evaluate the performance gain afforded by our proposed
approach in practice (Section VI).
In addition to the above sections, Section VII reviews relevant
related work, and Section VIII provides concluding remarks
and highlights directions for future work.

II. PRELIMINARIES AND PROPOSED APPROACH

In this section, we first define M-SPGS. We then review
results on how to compute the makespan of a 2-state prob-
abilistic M-SPG, and how to approximate the probability
distribution of the execution time of a checkpointed task.
Finally, we provide an overview of our proposed approach,
including how we compute a schedule and how we determine
which tasks should be checkpointed.

A. Minimal Series Parallel Graphs (M-SPG)

We consider computational workflows structured as Min-
imal Series Parallel Graphs (M-SPGS) [13], which (despite
their name) are generalizations of standards SPGS [14]. An
M-SPG is a graph G = (V,E), where V is a set of
vertices (representing workflow tasks) and E is a set of edges
(representing task dependencies). Each task has a weight, i.e.,
its execution time in a no-failure scenario. Each edge between
two tasks Ti and Tj is also weighted by the size of the output
data produced by Ti that is needed as input to Tj . An M-SPG
is defined recursively based on two operators

→
; and || defined

as follows:
• The serial composition operator

→
; takes two graphs as input

and adds dependencies from all sinks of the first graph to
all sources of the second graph. Formally, given two graphs
G1 = (V1, E1) and G2 = (V2, E2), G1

→
; G2 = (V1∪V2, E1∪

E2 ∪ (sk1 × sc2)), where sk1 is the set of sinks of G1 and
sc2 the set of sources of G2. This is similar to the serial
composition of SPGS, but without merging the sink of the first
graph to the source of the second, and extending the construct
to multiple sources and sinks.
• The parallel composition operator || simply makes the union
of two graphs. Formally, given two graphs G1 = (V1, E1) and
G2 = (V2, E2), G1||G2 = (V1 ∪ V2, E1 ∪E2). This is similar
to the parallel composition of SPGS, but without merging
sources and sinks. Also, we extend the parallel composition
to arbitrary numbers of graphs, say G1|| . . . ||Gn. An M-SPG
is then defined recursively as follows:
• A chain g1

→
; . . .

→
; gn, where each gi is an atomic task;

• A serial composition G1
→
; . . .

→
; Gn, where each Gi is an

M-SPG; or
• A parallel composition G1|| . . . ||Gn, where each Gi is an
M-SPG.

g1

g2

G1 G2 G3

(a)

G1 G2 G3

g1

g2

(b)

G1 G2 G3

G4 G5 G6

(c)

Figure 1: Example M-SPG structures (g1 and g2 are
atomic tasks whereas G1 to G6 are M-SPGS): (a) fork:
(g1
→
; g2)

→
; (G1||G2||G3); (b) join: (G1||G2||G3)

→
; (g1

→
; g2);

(c) bipartite: (G1||G2||G3)
→
; (G4||G5||G6).

Figure 1 shows example M-SPG structures. Due to the
above definition supporting multiple sources and sinks, and
not merging sources and sinks, M-SPGS naturally support
fork, join (and therefore fork-join), and bipartite structures.
It turns out that these structures are common in production
workflow applications. For instance, most workflows from the
Pegasus benchmark suite [16], [1], which comprises workflows
from 20 real-world applications that span various fields of
physics, biology, and engineering, are M-SPGS. Overall, M-
SPGS exhibit the recursive structure of SPGS (which is key
to developing tractable scheduling/checkpointing solutions),
but are more general, and as a result maps directly to most
production workflow applications. In particular, M-SPGS can
model communication patterns that cannot be modeled with
SPGS (as the bipartite structure shown in Figure 1.c).

B. First-Order Task Weight Approximation

As discussed in Section I, a key question is the estimation
of the expected makespan of a workflow execution for a
given schedule and a set of checkpointed tasks. This is
because without this estimation, it is not possible to make any
claim regarding the effectiveness of scheduling/checkpointing
strategies. Computing the expected makespan is #P-complete,
even if one considers that the execution time of a task is a
discrete random variable that can take only 2 values, i.e., the
application is a 2-state probabilistic DAG [8]. However, basic
probability theory tells us how to compute the probability
distribution of the sum of two independent random variables
(by a convolution) and of the maximum of two independent
random variables (by taking the product of their cumulative
density functions). As a result, one can compute the makespan
distribution and its expected value if the DAG is an SPG, due
to its recursive structure [17], [18]. However, the makespan
may take an exponential number of values, which makes its
direct evaluation inefficient. In fact, the problem of computing
the expected makespan remains NP-complete, but in the weak
sense, and admits a pseudo-polynomial solution [17]. These
results are directly generalizable to M-SPGS.

In this work, we consider failure-prone processors. Consider
a single task T , with weight w, scheduled on such a processor.
It takes a time r to read the input data of T from stable
storage, either for its first execution or after a failure. The total
execution time W of T is a random variable, because several

execution attempts may be needed before the task succeeds.
Let λ � 1 be the exponential failure rate of the processor.
With probability e−λ(r+w) = 1 − λ(r + w) + Θ(λ2), there
i s no failure and W is equal to r + w. With probability
(1 − e−λ(r+w))e−λ(r+w) = λ(r + w) + Θ(λ2) a single
failure has occurred. For exponentially distributed failures,
the expected time to failure knowing that a failure occurs
during the task execution (i.e., in the next r + w seconds),
is 1/λ − (r + w)/(eλ(r+w) − 1) [19], which converges to
(r+w)/2 as λ tends to 0. Therefore, when one failure occurs
during the first execution of T , and the second execution
is successful, W is equal to 3

2 (r + w) + Θ(λ) (one failure
after (r + w)/2 seconds in average, a recovery of r seconds,
and one successful execution of w seconds). As a first order
approximation, we ignore the cases where more than one
failure occurs (whose probability is Θ(λ2)), leading to:

W =

{
r + w with probability 1− λ(r + w) ,

3/2(r + w) with probability λ(r + w) .
(1)

Consider now a workflow application with a given schedule
and with all tasks checkpointed, so that each task has a known
deterministic recovery cost (that of loading from stable storage
the output of its predecessors, which are all checkpointed).
Then, with the first-order approximation above, computing the
expected makespan of the application is the same problem as
that of computing the expected makespan of a 2-state proba-
bilistic DAG. We use and compare four existing algorithms to
solve this latter problem:
• MONTECARLO – This is the classical Monte Carlo ap-
proach [20], [21];
• DODIN (approximation by series-parallel graphs) – See [17],
[18] for a detailed description of Dodin’s method;
• NORMAL (approximation via a normality assumption) –
See [18] for a full description of Sculli’s method [22];
• PATHAPPROX (approximation via longest paths) – See [23]
for a description of this method.

Again, if each task were checkpointed, we could use these
four algorithms to compute the expected makespan. This
observation is the key driver for our proposed approach.

C. Proposed Approach

Thanks to the results in Section II-B, given a scheduled
M-SPG we can compute the expected makespan for the
CKPTALL strategy. However, as outlined in Section I, our
objective is to not checkpoint all tasks, so as to save on check-
pointing overhead and thus reduce the expected makespan. Our
CKPTSOME approach achieves this objective, while retaining
the property that the expected makespan can be computed via
evaluation algorithms for 2-state probabilistic DAGs.

Consider an M-SPG, G. Without loss of generality,
G = C

→
; (G1|| . . . ||Gn)

→
; Gn+1, where C is a chain and

G1, . . . , Gn, Gn+1 are M-SPG graphs, with some of these
graphs possibly empty graphs. The schedule for G is the
temporal concatenation of the schedule for C, the schedule for
G1|| . . . ||Gn, and the schedule for Gn+1. A chain is always
scheduled on a single processor, with all its tasks executed

in sequence on that processor. When scheduling a parallel
composition of M-SPGS, we use the following polynomial-
time list-scheduling approach, inspired by the “proportional
mapping” heuristic [24]. Given an available number of pro-
cessors, we allocate to each parallel component Gi an integral
fraction of the processors in proportion to the sum of the task
weights in Gi (communications with stable storage are ignored
in this phase). In other terms, we allocate more processors
to more costly graphs. We apply this process recursively,
each time scheduling a sub-M-SPG on some number of
processors. Eventually, each sub-M-SPG is scheduled on a
single processor, either because it is a chain or because it is
allocated to a single processor. In this case, all atomic tasks
in the sub-M-SPG are linearized based on a topological order
induced by task dependencies and scheduled sequentially on
the processor. This algorithm is described in Section III.

Each time a sub-M-SPG is scheduled on a single processor,
we call the set of its atomic tasks a superchain, because the
tasks are executed sequentially even though the graph may
not be a chain. We call the entry tasks, resp. exit tasks, of a
superchain the tasks in the superchain that have predecessors,
resp. successors, outside the superchain. Due to the recursive
structure of an M-SPG, all predecessors of the entry tasks in
a superchain are themselves exit tasks in other superchains.
Similarly, all successors of the exit tasks in a superchain are
themselves entry tasks in other superchains. This has two
important consequences:
• The workflow is an “M-SPG of superchains”; and
• Checkpointing the exit tasks of a superchain means that

this superchain never needs to be re-executed. In this case,
we say that the superchain is checkpointed.

T1

T2 T3 T4

T5 T6 T7 T8 T9

T10 T11 T12

T13

Figure 2: Example M-SPG.

P1

P2

T1 T2 T5 T6 T10 T13

T3 T4 T7 T8 T9 T11 T12

Figure 3: Mapping the M-SPG of Figure 2 onto two pro-
cessors. The two superchains are shown inside boxes, with
all internal and external dependencies from the original graph
(red edges result from the linearization). T10 is the only exit
task of the top superchain while T11 and T12 are the two exit
tasks of the bottom superchain. A checkpoint is performed to
save the output of each shadowed task.

A natural strategy is then simply to checkpoint all super-
chains, which avoids all crossover dependencies (see Sec-

tion I). In the proposed mechanism, a systematic checkpoint
that saves the output files of all exit tasks is done after the
execution of the last task of any superchain. This checkpoint
strategy is detailed in Section IV-A. Figure 3 shows an
example of a schedule obtained on two processors for the M-
SPG in Figure 2. A set of tasks is linearized on each processor
(additional dependencies are added to enforce a sequential
execution). Five checkpoints are taken, after T1, T10, T11, T12,
and T13. This guarantees that once T13 starts its execution,
any failure on P2 will have no effect (if P1 fails, T13 will be
immediately restarted, otherwise the execution will succeed).

For the makespan evaluation, a naive solution would be
to coalesce all the tasks in any superchain into a single
checkpointed task, leading to an M-SPG in which all tasks
are checkpointed. In the example, the four tasks of the top
superchain would be coalesced into one checkpointed task,
just as the seven tasks of the bottom superchain. Thanks to the
results in Section II-B, one could then compute the expected
makespan using the algorithms for 2-state probabilistic DAGs.
This naive solution meets our objective, but it may not
lead to enough checkpoints. Depending on the parallelism
of the M-SPG and the total number of available processors,
superchains may contain large numbers of tasks. If only the
exit tasks are checkpointed, then the expected execution time
of the superchain can be large due to many re-executions
from scratch. The solution is to checkpoint other tasks in
the superchain in addition to the exit tasks. To this end, we
propose a polynomial-time dynamic programming algorithm
that determines the optimal set of tasks to checkpoint in each
superchain. This algorithm is described in Section IV-B. Once
the checkpoints are located, thereby creating task segments
ended by a checkpoint, we coalesce each task segment into a
single task: again, this is to be able to use the algorithms for
2-state probabilistic DAGs to evaluate the expected makespan.

III. SCHEDULING M-SPGS

In this section, we describe the list-scheduling algorithm
of our CKPTSOME approach, by which we assign sub-graphs
to processors. Consider an M-SPG workflow, G, which com-
prises sequential atomic tasks, to be executed on a finite set
of processors P . Our algorithm decides how many processors
should be allocated to each parallel sub-graph. Furthermore,
the algorithm is recursive, thus following the recursive M-
SPG structure and producing a schedule of superchains,
as explained in Section II-C. The pseudo-code is given in
Algorithm 1. Procedure ALLOCATE schedules an M-SPG G
on a set P of processors. It does nothing if G = ∅ (Line 2),
otherwise it decomposes G into the sequential composition
of a chain, C, a parallel composition, G1|| . . . ||Gn, and
an M-SPG, Gn+1 (Line 3). Several such decompositions
exist and some of them lead to infinite recursions (when
the chain is empty and a single graph is non-empty among
{G1, . . . , Gn+1}). Our algorithm avoids these decompositions
and make sure that C is the longest possible chain. It then
schedules the three components in sequence. To do so, it
relies on two helper procedures: the ONONEPROCESSOR

procedure, which schedules tasks on a single processor, and
the PROPMAP procedure, when more processors are available.
ALLOCATE calls ONONEPROCESSOR to schedule C (Line 4)
and to schedule G1|| . . . ||Gn if a single processor is available
(Line 6). If |P| > 1, then ALLOCATE calls the second helper
procedure, PROPMAP (Line 8). This procedure takes in a set
of n M-SPGS and a number of processors, p, and returns a
list of M-SPGS and a list of processor counts. ALLOCATE
then simply recursively schedules the i-th returned M-SPG
onto a partition of the platform that contains the i-th processor
count (Lines 9-12). Finally, ALLOCATE is called recursively
to schedule Gn+1 (Line 13).

The PROPMAP procedure is the core of our scheduling
algorithm. Let k = min(n, p) be the number of returned M-
SPGS and processor counts (Line 16). Initially, the k M-SPGS
are set to empty graphs (Line 17), and the k processor counts
are set to 1 (Line 18). Array W contains the weight of each
returned M-SPGS, initially all zeros (Line 19). Then, input
M-SPGS are sorted by non-increasing weight, the weight of
an M-SPG being the sum of the weights of all its atomic tasks
(Line 20). Two cases are then handled. If n ≥ p, PROPMAP
iteratively merges each Gi with the output M-SPG that has
the lowest weight so as to obtain a total of p non-empty output
M-SPGS (Lines 22-25). The processor counts remain set to
1 for each output M-SPG. If instead n < p, then there is a
surplus of processors. PROPMAP first assigns each input Gi to
one output M-SPG (Lines 27-29). The p−n extra processors
are then allocated iteratively to the output M-SPG with the
largest weight (Lines 30-35). Finally, PROPMAP returns the
lists of output M-SPGS and of processor counts.

The ONONEPROCESSOR procedure (Lines 38-41) takes as
input an M-SPG and a processor, performs a random topo-
logical sort of the M-SPG’s atomic tasks, and then schedules
these tasks in sequence onto the processor.

After assigning all sub-graphs of G onto processors, we
complete our CKPTSOME approach by calling the CHECK-
POINT procedure to decide which tasks to checkpoint
(Lines 43-46), which is described in Section IV.

IV. PLACING CHECKPOINTS IN SUPER CHAINS

In this section, we describe our approach for deciding which
tasks in a superchain should be checkpointed. We first describe
existing results for simple chains and explain how the problem
is more difficult in the case of superchains. We then describe
an optimal dynamic programming algorithm for superchains.

A. From chains to superchains

Toueg and Babaoğlu [15] have proposed an optimal dy-
namic programming algorithm to decide which tasks to check-
point in a linear chain of tasks. For a linear chain, when
a failure occurs during the execution of a task T , one has
to recover from the latest checkpoint and re-execute all non-
checkpointed ancestors of T . In this work, we target M-SPG
(sub-)graphs that are linearized on a single processor. As a
result, recovery from failure is more complex than in the case
of a linear chain. Consider a failure during the execution of

Algorithm 1 Algorithm CKPTSOME

1: procedure ALLOCATE(G, P)
2: if G = ∅ then return
3: C

→
; (G1|| . . . ||Gn)

→
; Gn+1 ← G

4: L ← ONONEPROCESSOR (C, P[0])
5: if (|P| = 1) then
6: L ← L ∪ ONONEPROCESSOR (G1|| . . . ||Gn, P[0])
7: else
8: (Graphs, Counts)← PROPMAP (G1, . . . , Gn, |P|)
9: i← 0

10: for each graph, count in Graphs, Counts do
11: ALLOCATE (graph, {P[i], . . . ,P[i+ count− 1]})
12: i← i+ count
13: return L ∪ ALLOCATE (Gn+1, P)
14:
15: procedure PROPMAP(G1, . . . , Gn, p)
16: k ← min(n, p)
17: Graphs← [∅, . . . , ∅] (k elements)
18: procNums← [1, . . . , 1] (k elements)
19: W ← [0, . . . , 0] (k elements)
20: Sort [G1, . . . , Gn] by non-increasing total weight
21: if n ≥ p then
22: for i = 1 . . . n do
23: j ← argmin1≤q≤p (W [q])
24: W [j]←W [j] + weight(Gi)
25: Graphs[j]← Graphs[j] ||Gi

26: else
27: for i = 1 . . . n in Gi do
28: Graphs[i]← Gi

29: W [i]← weight(Gi)
30: ρ← p− n
31: while ρ 6= 0 do
32: j ← argmax1≤q≤n (W [q])
33: procNums[j]← procNums[j] + 1
34: W [j]←W [j]× (1− 1/procNums[j])
35: ρ← ρ− 1
36: return Graphs, procNums
37:
38: procedure ONONEPROCESSOR(G, proc)
39: L← topological sort(G)
40: MAP (L, proc) . Schedule tasks serially on one processor
41: return {L}
42:
43: procedure CKPTSOME(G, P)
44: L ← ALLOCATE (G, P)
45: for L ∈ L do
46: CHECKPOINT (L) . Decide which tasks to checkpoint

a task T . For T to be re-executed, all its input data must
be available in memory. Therefore, for each reverse path in
the graph from T back to entry tasks of the superchain, one
must recover from the latest checkpoint, and then recover
by re-executing all non-checkpointed ancestors of T along
all reverse paths. Consider the M-SPG in Figure 4(a), and
its linearization on a single processor in Figure 4(b). Let us
assume that tasks T2 and T4 are checkpointed (shadowed in the
figures). According to the standard definition, the checkpoint
of T2 includes both its output for T3 and its output for T4,
while the checkpoint of T4 includes only its output for T5.

Let us now consider a single failure that occurs during
the execution of T5. To re-execute T5, one needs to recover
from the checkpointed output of T4. But one also needs to

(a)
T1 T2

T3

T4

T5 T6

(b)
T1 T2 T3 T4 T5 T6

Figure 4: (a) Example of M-SPG. Tasks that are followed by
a checkpoint (T2 and T4) are shadowed. (b) Linearization of
the M-SPG. The dependency from T3 to T4, in red, results
from the linearization. Vertical dashed lines correspond to
checkpoints (after T2 and T4). Dotted lines correspond to
dependencies from tasks that have been checkpointed.

re-execute T3, which was not checkpointed, since the output
of T3 is needed for executing T5. To re-execute T3, one
needs to recover from the checkpoint of T2. This sequence
of recoveries and re-executions must be re-attempted until T5

executes successfully. As a result, the problem of deciding
which tasks to checkpoint to minimize expected makespan
cannot be solved by the simple linear chain algorithm in [15].

We thus propose an alternative approach by which a check-
point, which takes place after the execution of a task, saves
not only the output from that task, but also the output of all
non-checkpointed tasks with at least one yet-to-be-executed
successor. This is shown in Figure 4, where checkpoint times
are depicted as vertical dashed lines, after each execution of
a checkpointed task (in this case T2 and T4). Graphically,
“taking a checkpoint” means saving to stable storage all
output data of previously executed but un-checkpointed tasks,
which corresponds to solid dependence edges that cross the
checkpoint time. With this extended definition of checkpoints,
the checkpoint of T4 now includes the output data of T3 for
T5, in addition to the output of T4 for T5.

B. Checkpointing algorithm

To answer the question of when to take checkpoints through-
out the execution of a superchain on a processor, we propose
an O(n2) algorithm. Let us consider a superchain that con-
tains tasks Ta, . . . , Tb (we assume that tasks T1, . . . , Tn are
numbered according to a topological sort in such a way that
tasks from any superchain have contiguous indices). Without
loss of generality let us assume that Tj executes immediately
before Tj+1, j = a, . . . , b − 1 and that Ta starts as soon
as the necessary input data is read from stable storage. Our
approach always takes a checkpoint after Tb completes. This is
to avoid crossover dependencies. Recall from Section I that a
crossover dependency occurs when a processor failure during
the execution of a superchain would require the re-execution
of a previously executed superchain. With the checkpointing
approach described in the previous section, taking a checkpoint
after Tb completes ensures that all output data from all exist
tasks of the superchain are checkpointed. As a result, crossover

dependencies are prevented. Let ETime(j) be the optimal
expected time to successfully execute tasks Ta, . . . , Tj , when a
checkpoint is taken immediately after Tj completes (with pos-
sibly earlier checkpoints). Our goal is to minimize ETime(b).

To compute ETime(j), we formulate the following dynamic
program by trying all possible locations for the last checkpoint
before Tj :

ETime(j) =

min

(
T (a, j), min

a≤i<j
{ETime(i) + T (i+ 1, j)}

)
,

where T (i+ 1, j) is the expected time to successfully execute
tasks Ti+1 to Tj , provided that a checkpoint occurs after task
Tj completes and the previous checkpoint occurred before
task Ti+1 starts. This account for the time to read the input
data, execute the tasks and checkpoint them. As there is
no checkpoint between tasks Ti+1 and Tj , all intermediate
data are kept in memory and retrieved instantly. This limits
the checkpoint overhead. A first-order approximation of the
expected time needed to execute tasks Ti to Tj for each (i, j)
pair with i ≤ j is given by

T (i, j) =(1− λ(Rji +W j
i + Cji))× (Rji +W j

i + Cji)+

λ(Rji +W j
i + Cji)× 3

2
(Rji +W j

i + Cji)

(2)

where λ is the processor’s exponential failure rate, Rji is the
time necessary to read from stable storage all data produced
by tasks T1, . . . , Ti−1 and needed by tasks Ti, . . . , Tj , W

j
i =

wi + . . . + wj is the time to execute tasks Ti to Tj when no
failure occurs, and Cji is the time taken to checkpoint the input
data of Tj+1, . . . , Tn that is produced by Ti, . . . , Tj (i.e., the
non-checkpointed predecessors of Tj+1, . . . , Tn in Ti, . . . , Tj).
Formally, Rji =

∑j
k=i

∑
Tl∈Pred(Tk)\{Ti,...,Tj} clk and Cji =∑j

k=i

∑
Tl∈Succ(Tk)\{Ti,...,Tj} ckl where ckl is the cost to read

or write the data produced by Tk and needed by Tl, Pred(Tk)
is the set of predecessors of Tk and Succ(Tk) is the set of
successors of Tk. Note that the data that is read (during Rji)
may be produced by exit tasks of previous superchains and
that the data that is saved (during Cji) may be needed by entry
tasks in next superchains. In particular, Cji is greater than or
equal to the time to checkpoint all output data of Tj .

The first term in Equation (2) corresponds to the “no failure”
case (with probability (1− λ(Rji +W j

i + Cji)) the execution
takes time Rji +W j

i +Cji). The second term corresponds to the
“one failure” case (with probability λ(Rji + W j

i + Cji) there
is one failed execution, which on average takes time 1

2 (Rji +

W j
i + Cji), followed by a successful execution, which takes

time Rji +W j
i +Cji). As explained in Section II-B, this first-

order approximation neglects the λ2 terms, which correspond
to scenarios when multiple failures occur. However, in case of
multiple successive failures, T (i, j) is underestimated.

The pseudo-code for this dynamic programming solution is
given in Algorithm 2. The computation of ETime(j) takes
O(n) time, as it depends on at most j other entries. The

computation of T (i, j) for all (i, j) pairs with i ≤ j takes
O(n2) time. Therefore, the overall complexity is O(n2).

Algorithm 2 CHECKPOINT

1: procedure CHECKPOINT(Ta, . . . , Tb)
2: last ckpt← [0, . . . , 0] (b− a+ 1 elements)
3: for j = a . . . b do
4: ET ime(j)← T (a, j)
5: last ckpt[j]← 0
6: for i = a . . . j − 1 do
7: temp← ET ime(i) + T (i+ 1, j)
8: if temp < ET ime(j) then
9: ET ime(j)← temp

10: last ckpt[j]← i
11: Ckpts← ∅ . List of tasks to checkpoint
12: while b 6= a do . Backtracking
13: Ckpts← Ckpts ∪ {Tb} . Checkpoint after task Tb

14: b← last ckpt[b]
15: return Ckpts

We conclude this section with a technical remark. We
said a superchain is checkpointed when all its exit tasks are
checkpointed. The exact definition should be: a superchain
is checkpointed when all the output data of all its exit tasks
are saved onto stable storage. Consider the superchain in the
example of Figure 3 with two exit tasks T11 and T12. Algo-
rithm 2 systematically checkpoints the last task T12 but not
necessarily T11. However, whenever T11 is not checkpointed,
the algorithm guarantees that all its output files are saved
when checkpointing T12. In addition, the structure of M-SPGS
ensures that T11 and T12 have the same successors outside the
superchain, and the recovery is straightforward to implement.

V. THE CKPTNONE STRATEGY

A major contribution of this work is to show the #P-
Completeness of the CKPTNONE strategy. Due to lack of
space, we refer to the extended version [25] for a precise
statement of this result and its proof. Hereafter we simply state
a simple formula to evaluate the expected makespan [25]:

Theorem 1. Consider a schedule for an M-SPG G with
p processors, with all tasks assigned to processors and no
checkpoint. Let Wpar be the parallel time of the schedule with
no failure, and let λ be the processor’s exponential failure
rate. A formula to estimate the expected makespan EM(G) is

EM(G) = (1− pλWpar)×Wpar + pλWpar ×
(

3

2
Wpar

)
In Section VI, we use EM(G) to evaluate the expected

makespan of CKPTNONE. While this formula is likely to be
inaccurate, we are not aware of any better approximation.

VI. EXPERIMENTS

In this section, we present experimental results that quantify
the effectiveness of the proposed CKPTSOME algorithm.

A. Experimental methodology

Our experiments are for representative workflow ap-
plications generated by the Pegasus Workflow Generator
(PWG) [26], [27], [16]. PWG uses the information gathered
from actual executions of scientific workflows as well as
domain-specific knowledge of these workflows to generate
representative and realistic synthetic workflows (the param-
eters of which, e.g., total number of tasks, can be chosen).
We consider three different classes of workflows generated by
PWG, namely MONTAGE, LIGO and GENOME, which are all
M-SPGS2 (information on the corresponding scientific appli-
cations is available in [16], [28]). We generate MONTAGE,
LIGO, and GENOME workflows with various number of tasks.
For each task Ti in the workflow, its weight wi is generated by
PWG. We compute the time required to read or save the data
produced by task Ti and needed by task Tj , cij , by dividing
the size of the file in bytes by the stable storage bandwidth
in byte/sec. The file sizes are generated by PWG. In some
instances, a task may generate the same file for two successors.
When this happens, a checkpoint will save the file only once.

In the experiments we consider different exponential pro-
cessor failure rates. To allow for consistent comparisons of
results across different M-SPGS (with different numbers of
tasks and different task weights), we simply fix the probability
that a task fails, which we denote as pfail, and then simulate
the corresponding failure rate. Formally, for a given M-SPG
G = (V,E) and a given pfail value, we compute the average
task weight as w̄ =

∑
i∈V wi/|V |, where wi is the weight

of the i-th task in V . We then pick the failure rate λ such
that pfail = 1 − e−λw̄. We conduct experiments for three pfail
values: 0.01, 0.001, and 0.0001.

An important factor that influences the performance of
checkpointing strategies, and more precisely of the check-
pointing and recovery overheads, is the time spent computing
relative to the time spent performing I/O. The workflows
generated by PWG give task durations in seconds and file sizes
in bytes. We thus define the Communication-to-Computation
Ratio (CCR) as the time needed to store all the files handled
by a workflow (input, output, and intermediate files) divided
by the time needed to perform all the computations of that
workflow on a single processor. The total store time is the
total file size divided by the bandwidth to the stable storage.
Instead of picking arbitrary bandwidth values, which would
have different meanings for different workflows, we vary the
CCR by scaling file data sizes by a factor. Decreasing the value
of this factor will reduce the file store time (checkpointing
cost) and CCR value. This makes it possible to study the
performance impact of I/O operations in a coherent manner
across experiments and workflow classes and configurations.

2Depending on the number of tasks required, PWG may not output an M-
SPG Ligo workflow because of some incomplete bipartite graphs. In these
cases, to ensure full fairness when comparing approaches, the baseline strate-
gies process the original workflow while CKPTSOME processes a workflow
where bipartite graphs have been extended with dummy dependencies carrying
empty files (which adds synchronizations but no data transfers).

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
p = 3
p = 5
p = 7
p = 10

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

300 tasks
p = 18
p = 35
p = 52
p = 70

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

1000 tasks
p = 61
p = 123
p = 184
p = 245

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR
R

el
at

iv
e

E
xp

ec
te

d
M

ak
es

pa
n

10−4 10−3 10−2
0.6

0.78

0.96

1.14

1.32

1.5

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

Figure 5: Relative expected makespan of CKPTALL and of CKPTNONE with that of CKPTSOME for the GENOME workflow,
three different failure rates, three workflow sizes, and varying Communication-to-Computation Ratio (CCR).

The experiments compare CKPTSOME to the two extreme
approaches, CKPTALL and CKPTNONE. Recall from Sec-
tion V that we have only an estimate for CKPTNONE. Ex-
pected makespan results are discussed in Section VI-C. But
since the expected makespan in those results is computed
using approximation algorithms, we first evaluate the accuracy
of these algorithms in Section VI-B. The code is publicly
available at [29].

B. Accuracy of makespan evaluation

In the extended version [25], we evaluate the accuracy of the
evaluation of the expected makespan, using the four methods
mentioned in Section II-B, namely MONTECARLO, DODIN,
NORMAL and PATHAPPROX, to compute the expected longest
path in 2-state probabilistic DAGs. To this end, we follow the
methodology in [23], and also reuse the simulator developed
by the authors. For MONTECARLO, we use 300,000 trials
and approximate the expected makespan as the average over
the 300,000 makespan samples. This huge number of trials is
prohibitively expensive in practice, but provides us with an
accurate ground truth.

PATHAPPROX had proven both faster and more accurate
than DODIN and NORMAL for dense LU and QR factorization
workflows subject to silent errors [23]. We reach the same
conclusion for the workflows under study (see [25]), and make
PATHAPPROX the method of choice for our experiments.

C. Expected makespan

In this section, we compare the expected makespan of two
baseline strategies (CKPTALL and CKPTNONE) over that of
our proposed strategy (CKPTSOME). Figures 5, 6 and 7 show

these relative expected makespans vs. the Communication-to-
Computation Ratio (CCR). Data points above the y = 1 line
denote cases in which our strategy leads to better performance
than a competitor (i.e., a lower expected makespan). Each
figure shows results for workflows with 50, 300, and 1000
tasks, for various numbers of processors P , and for the three
pfail values (0.01, 0.001, and 0.0001). More comprehensive
results are provided in a companion research report [25].

A clear observation is that CKPTSOME always outper-
forms CKPTALL3. In each scenario, above some CCR value,
which depends on the failure rate and the workflow size,
CKPTSOME leads to significant improvement over CKPTALL.
As the CCR decreases, the relative expected makespan of
CKPTALL decreases and converges to 1. This is because when
checkpointing becomes cheap enough CKPTSOME decides to
checkpoint every task, and thus is equivalent to CKPTALL.

Another common trend is that the relative expected
makespan of CKPTNONE increases as the CCR decreases
since as checkpoints become cheaper not checkpointing be-
comes a losing strategy (poorer resilience to failures, but
little saving on checkpointing overhead). Overall, CKPTNONE
becomes worse whenever there are more failing tasks, i.e.,
when the failure rate increases (going from the rightmost
column to the leftmost one in the figures), and/or when the
number of tasks increases (going from the topmost row to the
bottom one in the figures). When the failure rate is high and
the workflows are large (the bottom left corner of the figures),

3There are in fact a couple of CCR values for Ligo with 300 tasks for
which this is not true. This is an artifact of our slight transformation of the
Ligo workflow (see Section VI-A for details).

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
p = 3
p = 5
p = 7
p = 10

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

300 tasks
p = 18
p = 35
p = 52
p = 70

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

1000 tasks
p = 61
p = 123
p = 184
p = 245

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR
R

el
at

iv
e

E
xp

ec
te

d
M

ak
es

pa
n

10−3 10−2 10−1 100
0

0.6

1.2

1.8

2.4

3

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

Figure 6: Relative expected makespan of CKPTALL and of CKPTNONE with that of CKPTSOME for the MONTAGE workflow,
three different failure rates, three workflow sizes, and varying Communication-to-Computation Ratio (CCR).

the relative expected makespan of CKPTNONE is so high that
it does not appear in the plots.

CKPTSOME achieves better results than CKPTNONE except
when (i) checkpoints are expensive (high CCR) and/or (ii) fail-
ures are rare (low pfail). In these cases, checkpointing is a
losing proposition, and yet CKPTSOME always checkpoints
some tasks (the exit tasks of superchains). In practice, in such
cases, the optimal approach is to bet that no failure will happen
and to restart the whole workflow execution from scratch upon
the very rare occurrence of a failure. The results above for our
benchmark workflows, and our experimental methodology in
general, make it possible to identify these cases so as to select
which approach to use in particular practical situations.

VII. RELATED WORK

Checkpointing workflows has received considerable atten-
tion in the recent years, but no satisfactory solution is available
for fail-stop failures and general DAGs. Many works have been
devoted to soft errors, by which a task execution fails but does
not lead to completely losing the data present in the processor
memory. See the extended version [25] for an overview.

By contrast with soft errors, relatively few published works
have studied fail-stop failures in the context of workflow
applications. In fact, to the best of our knowledge, existing
work only considers linear chains of tasks, or considers
workflows that are fully linearized before execution. Consider
first a workflow that consists of a linear chain of tasks. The
problem of finding the optimal checkpoint strategy, i.e., of
determining which tasks to checkpoint, in order to minimize
the expected execution time, has been solved by Toueg and
Babaoglu [30] using a dynamic programming algorithm. Note

that the tasks can themselves be parallel, but the execution
flow is sequential, which dramatically limits the amount of
re-execution in case of a failure. The algorithm of [30] was
later extended in [31] to cope with both fail-stop and silent
errors simultaneously.

Consider now a general workflow comprised of parallel
tasks that each executes on the whole platform. Therefore,
the workflow execution is linearized, and in essence executes
as a chain of macro-tasks that execute on a single macro-
processor whose speed is the aggregate speed of the available
processors and whose failure rate is proportional to the number
of available processors. Checkpoints can then be placed after
some tasks. However, because the original workflow is not
a chain, it is more complicated to keep track of live output
data, and the problem of placing checkpoints is NP-complete
for simple join graphs [32]. To circumvent this problem,
when checkpointing a task, one can decide to checkpoint
not only the task’s own output data, but also all the live
data that will be needed later on in the workflow. This is
the main idea of the algorithm proposed in Section IV. To
the best of our knowledge, this work is the first approach
(beyond application-specific instances) that does not resort to
linearizing the entire workflow as a chain of (macro-)tasks. As
a result, we propose the first DAG scheduling/checkpointing
algorithm that allows independent (sequential) tasks to execute
concurrently on multiple processors in standard task-parallel
fashion.

VIII. CONCLUSION

We have proposed a scheduling/checkpointing algorithm,
called CKPTSOME, for executing workflow applications on

CKPTALL CKPTNONE

pfail = 0.01 pfail = 0.001 pfail = 0.0001

50 tasks
p = 3
p = 5
p = 7
p = 10

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

300 tasks
p = 18
p = 35
p = 52
p = 70

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

1000 tasks
p = 61
p = 123
p = 184
p = 245

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR
R

el
at

iv
e

E
xp

ec
te

d
M

ak
es

pa
n

10−3 10−2 10−1 100
0.8

0.88

0.96

1.04

1.12

1.2

1

CCR

R
el

at
iv

e
E

xp
ec

te
d

M
ak

es
pa

n

Figure 7: Relative expected makespan of CKPTALL and of CKPTNONE with that of CKPTSOME for the LIGO workflow, three
different failure rates, three workflow sizes, and varying Communication-to-Computation Ratio (CCR).

parallel computing platforms in which processors are subject
to fail-stop failures. The objective function to be minimized is
the expectation of the makespan, which is a random variable
due to non-deterministic task re-executions when failures
occur. For general Directed Acyclic Graphs (DAGs), this prob-
lem is intractable and even computing the objective function
is itself a #P-complete problem. However, by restricting our
work to a class of structured recursive DAGs, Minimal Series-
Parallel Graphs (M-SPGS), which are broadly relevant to
production workflow applications, we are able to design a
sensible algorithm and to efficiently compute the expected
makespan of the solutions it produces. A competing approach,
CKPTALL, side-steps part of the difficulty of solving the
problem by saving all application data to stable storage so
as to minimize the impact of failures, with the drawback
of maximizing checkpointing overhead. This is the approach
employed by default in most production workflow executions,
in which each task is an executable that reads all its input
from files and writes all its output to files. Another competing
approach, CKPTNONE, is a risky zero-overhead approach in
which the whole workflow is re-executed from scratch in
case of a failure. The broad objective of our algorithm is to
produce solutions that strike a good compromise between these
two extremes. Note that for the CKPTNONE approach, when
applied to general DAGs, we have established that the problem
of computing the expected makespan is #P-complete, which
to the best of our knowledge is a new result.

We have evaluated the effectiveness of our algorithm by
considering realistic workflow configurations produced by
a workflow generator from the Pegasus community [26],
[27], [16]. We have first demonstrated that the PATHAP-

PROX method for the expected makespan leads to accurate
results, and in particular to results close to those obtained
using a brute-force Monte Carlo method, while much faster
than DODIN or NORMAL. Then, we have shown that our
CKPTSOME algorithm does indeed provide an attractive com-
promise between the CKPTALL and CKPTNONE approaches.
More specifically, CKPTSOME always outperforms CKPTALL,
is only outperformed by CKPTNONE when checkpoints are
expensive and/or failures are rare. Our experimental method-
ology provides the quantitative means to identify these cases
(based on application CCR, platform scale, and failure rates),
so as to select which approach to use in practice.

Future work will be devoted to extending the scheduling
algorithms to parallel (moldable) tasks, and to derive graph
transformation techniques to enable the approach to arbitrary
workflows. A first step would be to deal with General Series
Parallel Graphs, which are defined in [13] as graphs whose
transitive reduction is an M-SPG.

Another promising direction is to refine the linearization
algorithm for superchains (Algorithm 1). Instead of choosing
the topological sort arbitrarily, one may try and reduce the
total volume of output files, in the hope of reducing the
total checkpointing cost when applying Algorithm 2 after
the linearization. This problem is related to the sum cut
problem [33], which is NP-Complete for general DAGs, but
may be amenable to efficient solutions for M-SPGS.

ACKNOWLEDGMENTS

This work was supported by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program “Investissements d’Avenir” (ANR-
11-IDEX-0007) operated by the French National Research Agency (ANR).

REFERENCES

[1] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, no. 0, pp. 17–35, 2015.

[2] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong et al., “Askalon: A
development and grid computing environment for scientific workflows,”
in Workflows for e-Science. Springer, 2007, pp. 450–471.

[3] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[4] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
p. gkt328, 2013.

[5] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on. IEEE, 2004, pp. 423–
424.

[6] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in 1st ACM SIGMOD Workshop on Scalable Workflow Execution En-
gines and Technologies. ACM, 2012, p. 1.

[7] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling In-situ Execution of Coupled Scientific Workflow
on Multi-core Platform,” in Proc. of the 26th IEEE International Parallel
and Distributed Processing Symposium, 2012, pp. 1352–1363.

[8] J. N. Hagstrom, “Computational complexity of PERT problems,” Net-
works, vol. 18, no. 2, pp. 139–147, 1988.

[9] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed.
Springer, 2016.

[10] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM J. Comput., vol. 8, no. 3, pp. 410–421, 1979.

[11] J. S. Provan and M. O. Ball, “The complexity of counting cuts and of
computing the probability that a graph is connected,” SIAM J. Comp.,
vol. 12, no. 4, pp. 777–788, 1983.

[12] H. L. Bodlaender and T. Wolle, “A note on the complexity of network
reliability problems,” IEEE Trans. Inf. Theory, vol. 47, pp. 1971–1988,
2004.

[13] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition of series
parallel digraphs,” in Proc. 11th ACM Symp. Theory of Computing, ser.
STOC ’79. ACM, 1979, pp. 1–12.

[14] H. L. Bodlaender and B. de Fluiter, Parallel algorithms for series
parallel graphs. Springer, 1996, pp. 277–289.

[15] S. Toueg and O. Babaoğlu, “On the optimum checkpoint selection
problem,” SIAM J. Comput., vol. 13, no. 3, 1984.

[16] Pegasus, “Pegasus workflow generator.” https://confluence.pegasus.isi.
edu/display/pegasus/WorkflowGenerator, 2014.

[17] R. H. Möhring, “Scheduling under uncertainty: Bounding the makespan
distribution,” in Computational Discrete Mathematics: Advanced Lec-
tures, H. Alt, Ed. Springer, 2001, pp. 79–97.

[18] L. C. Canon and E. Jeannot, “Correlation-aware heuristics for evaluating
the distribution of the longest path length of a DAG with random
weights,” IEEE Trans. Parallel Distributed Systems, 2016, available at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2016.2528983.

[19] T. Hérault and Y. Robert, Eds., Fault-Tolerance Techniques for High-
Performance Computing, ser. Computer Communications and Networks.
Springer Verlag, 2015.

[20] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

[21] R. M. van Slyke, “Monte carlo methods and the pert problem,” Opera-
tions Research, vol. 11, no. 5, pp. 839–860, 1963.

[22] D. Sculli, “The completion time of PERT networks,” The Journal of the
Operational Research Society, vol. 34, no. 2, pp. 155–158, 1983.

[23] H. Casanova, J. Herrmann, and Y. Robert, “Computing the expected
makespan of task graphs in the presence of silent errors,” in P2S2’2016,
the 9th Int. Workshop on Programming Models and Systems Software
for High-End Computing. IEEE Computer Society Press, 2016.

[24] A. Pothen and C. Sun, “A mapping algorithm for parallel sparse cholesky
factorization,” SIAM Journal on Scientific Computing, vol. 14, no. 5, pp.
1253–1257, 1993.

[25] L. Han, L.-C. Canon, H. Casanova, Y. Robert, and F. Vivien, “Check-
pointing workflows for fail-stop errors,” INRIA, Research Report 9068,
May 2017.

[26] R. F. da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman, “Community
resources for enabling research in distributed scientific workflows,” in e-
Science (e-Science), 2014 IEEE 10th International Conference on, vol. 1.
IEEE, 2014, pp. 177–184.

[27] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in Workflows in
Support of Large-Scale Science (WORKS). IEEE, 2008, pp. 1–10.

[28] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi,
“Characterizing and profiling scientific workflows,” Future Generation
Computer Systems, vol. 29, no. 3, pp. 682–692, 2013.

[29] L. Han, “Checkpointing Workflows for Fail-Stop Errors: Simulation
Code,” https://doi.org/10.6084/m9.figshare.5057650.v3, 2017.

[30] S. Toueg and Ö. Babaoglu, “On the optimum checkpoint selection
problem,” SIAM J. Comput., vol. 13, no. 3, pp. 630–649, 1984.

[31] A. Benoit, A. Cavelan, Y. Robert, and H. Sun, “Assessing general-
purpose algorithms to cope with fail-stop and silent errors,” ACM Trans.
Parallel Computing, vol. 3, no. 2, 2016.

[32] G. Aupy, A. Benoit, H. Casanova, and Y. Robert, “Scheduling computa-
tional workflows on failure-prone platforms,” Int. J. of Networking and
Computing, vol. 6, no. 1, pp. 2–26, 2016.

[33] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,”
ACM Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

