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ABSTRACT

This work deals with scheduling and checkpointing strategies to
execute scientific workflows on failure-prone large-scale platforms.
To the best of our knowledge, this work is the first to target fail-
stop errors for arbitrary workflows. Most previous work addresses
soft errors, which corrupt the task being executed by a processor
but do not cause the entire memory of that processor to be lost,
contrarily to fail-stop errors. We revisit classical mapping heuristics
such as HEFT and MINMIN and complement them with several
checkpointing strategies. The objective is to derive an efficient
trade-off between checkpointing every task (CKkPTALL), which is
an overkill when failures are rare events, and checkpointing no
task (CkpTNONE), which induces dramatic re-execution overhead
even when only a few failures strike during execution. Contrarily
to previous work, our approach applies to arbitrary workflows, not
just special classes of dependence graphs such as M-SPGs (Minimal
Series-Parallel Graphs). Extensive experiments report significant
gain over both CkpTALL and CKPTNONE, for a wide variety of
workflows.
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1 INTRODUCTION

This work deals with scheduling techniques to deploy scientific
workflows on large parallel or distributed platforms. Scientific work-
flows are the archetype of HPC (High Performance Computing)
applications, which are naturally partitioned into tasks that repre-
sent computational kernels. The tasks are partially ordered because
the output of some tasks may be needed as input to some other
tasks. Altogether, the application is structured as a DAG (Directed
Acyclic Graph) whose nodes are the tasks and whose edges en-
force the dependences. Nodes are weighted by the computational
requirements (in flops) while edges are weighted by the size of com-
municated data (in bytes). Given a workflow and a platform, the
problem of mapping the tasks onto the processors and to schedule
them so as to minimize the total execution time, or makespan, has
received considerable attention.

This classical mapping and scheduling problem has recently
been revisited to account for the fact that errors and failures can
strike during execution. Indeed, platform sizes have become so large
that errors and failures are likely to strike at a high rate during
application execution [8]. More precisely, the MTBF (Mean Time
Between Failures) pup of the platform decreases linearly with the
number of processors P, since yp = }E‘d , where p;,q is the MTBF
of each individual component (see Proposition 1.2 in [16]). Take
Hind = 10 years as an example. If P = 10° then pp ~ 50 minutes
and if P = 10° then pp ~ 5 minutes: from the point of view of
fault-tolerance, scale is the enemy.

Several approaches (see Section 6 for a review) have been pro-
posed to mitigate the simplest instance of the problem, that of soft
and silent errors. Soft errors cause a task execution to fail but with-
out completely losing the data present in the processor memory.
Local checkpointing (making a copy of all task input/output data)
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and task replication are the most widely used technique to address
soft errors. Silent errors represent a different challenge than soft
errors, in that they do not interrupt the execution of the task but
corrupt its output data. However, their net effect is the same, since
a task must be re-executed whenever a silent error is detected. A
silent error detector is applied at the end of a task’s execution, and
the task must be re-executed from scratch in case of an error. Again,
local checkpointing or replicating tasks and comparing outputs, are
two common techniques to mitigate the impact of silent errors.

Fail-stop errors, or failures, are much more difficult to deal with.
In the case of a fail-stop error (e.g., a crash due to a power loss) the
execution of the processor stops, all the content of its memory is
lost, and the computations have to be restarted from scratch, either
on the same processor once it reboots or on a spare. The de-facto
approach to handle such failures is Checkpoint/Restart (C/R), by
which application state is saved to stable storage, such as a shared
file system, throughout execution. The common strategy used in
practice is checkpoint everything, or CKPTALL: all output data of
each task is saved onto stable storage. For instance, in production
Workflow Management Systems (WMSs) [1, 11, 24], the default
behavior is that all output data is saved to files and all input data
is read from files, which is exactly the CKpTALL strategy. While
this strategy leads to fast restarts in case of failures, its downside is
that it maximizes checkpointing overhead. At the other end of the
spectrum would be a checkpoint nothing strategy, or CKPTNONE, by
which all output data is kept in memory (up to memory capacity
constraints) and no task is checkpointed. This corresponds to “in-
situ” workflow executions, which has been proposed to reduce
I/O overhead [26]. The downside is that, in case of a failure, a
large number of tasks may have to be re-executed, leading to slow
restarts. The objective of this work is to achieve a desirable trade-
off between these two extremes. To the best of our knowledge, no
general solution is available. We build upon our previous work [14]
that was restricted to M-SPGs (Minimal Series-Parallel Graphs) [22].
In [14], we took advantage of the recursive structure of M-SPGs and
used proportional mapping [18] for scheduling and checkpointing
M-SPG workflows as sets of superchains. For general graphs, we
have to resort to classical scheduling heuristics such as HEFT [20]
and MINMIN [7], two reference scheduling algorithms widely used
by the community. We provide extensions of HEFT and MINMIN
that allow for a smaller subset of tasks to be checkpointed and lead
to better makespans than the versions where each task (CKPTALL)
or no task (CkpTNONE) is checkpointed.

The main contributions of this paper are the following:

e We deal with arbitrary dependence graphs, and require no
graph transformation before applying our scheduling and
checkpointing algorithms.

e We compare several mapping strategies and combine them
with several checkpointing strategies.

o We design an event-based simulator to evaluate the makespan
of the proposed solution. Indeed, computing the expected
makespan of a solution is a difficult problem [14], and simple
Monte-Carlo based simulations cannot be applied to general
DAGs unless all tasks are checkpointed: otherwise, sampling
the weight distribution for each task independently is not
enough to compute the makespan, since a failure may in-
volve re-executing several tasks (as shown in Section 2).
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Figure 1: Schedule of a workflow with 9 tasks on 2 processors
(each edge corresponds to a file dependence between tasks).
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Figure 2: Sample execution of the workflow in Figure 1 with-
out any checkpoint, with two failures striking during the
execution of T; on P; and during that of T5 on P;.

e We report extensive experimental evaluation with both real-
world and randomly generated workflows to quantify the
performance gain achieved by the proposed approach.

The rest of the paper is organized as follows. First in Section 2,
we work out an example to help understand the difficulty of the
problem. Then we introduce the performance model in Section 3.
We detail our scheduling and checkpointing algorithms in Section 4.
We give experimental results in Section 5. Section 6 surveys the
related work. Finally, we provide concluding remarks and directions
for future work in Section 7.

2 EXAMPLE

In this section, we illustrate the difficulty of deciding where to place
checkpoints in a workflow. Consider the example of Figure 1 with
9 tasks, T;, 1 < i < 9, that have been mapped on 2 processors as
shown on the figure. Note that this DAG cannot be reduced to an
M-SPG and our previous approach [14] cannot be applied for this
graph. While most tasks are assigned to processor Pq, some tasks
are assigned to the second processor, Py, to exploit the parallelism
of the DAG. Any dependence between two tasks represents a file
that is required to start the execution of the successor task; hence,
Ty — Ty represents a file produced by task T; that is required for the
execution of task T, to start. Because Ty and T are both executed on
processor Py, this file is kept in the memory of P; after T; completes.
However, for the dependence Ty — T3, because the tasks Ty and T3
are executed on different processors, the corresponding file must
be retrieved by P,. Such a dependence between two tasks assigned
to two different processors is called a crossover dependence.

In a first scenario, let us suppose that no task is checkpointed
as showed in Figure 1: then if no failure strikes, the makespan
will be the shortest possible, consisting only of the execution time
of each task and of retrieving the necessary input files. However,
as soon as a failure happens, we may need to restart the whole
application from the very beginning. To study such a scenario,
we need to explicit the memory management. Let us assume that
once a processor has sent a file to another processor, then this
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Figure 3: A purple crossover checkpoint is performed for
each file produced by one processor and used by another
one.

T N 0 A
P |T1|13 T2*|T1| T 34|T4|T6|T7|T8||59|T9|

time

Figure 4: Sample execution of the application in Figure 3
with two failures striking during the execution of T, on P;
and that of T5 on P;, with crossover checkpoints. Label ij in-
dicates the file from T; to T;. Now T; can start before the re-
execution of T3 since its output was checkpointed.

file is deleted from the memory of the producing processor. For
instance, as soon as Py has received from P; the file corresponding
to the dependence Ty — T3, this file is erased from the memory
of P;. Remember that a failure wipes out the whole content of the
memory of the struck processor. Thus, if a failure strikes during
the execution of Ts, to be able to re-attempt to execute T5, T3 will
need to be re-executed before (because the file T3 — T5 is no longer
available), which requires T; to be re-executed first (because the
file T; — T3 is no longer available). Hence, a single failure in a part
of the graph may require the re-execution of most of the workflow.
Figure 2 shows an example of execution of the DAG when no task
is checkpointed. To execute Ty, we need both T3 and T3 to finish
successfully, and that no fault strikes neither P; nor P, between
the completion of these tasks and the start of T4. Here, T, does not
finish so Tj is re-executed. When P, fails, we need to re-execute T3,
which requires input from Ty. Luckily (!), P; already suffered from
a failure, so T; has already been re-executed. Otherwise, we would
have had to restart the execution of the whole workflow.

To avoid rolling back to the beginning in case of failures, we can
try to place some checkpoints inside the workflow. As commonly
assumed in workflow management systems [1, 11, 24], we do not
rely on direct point-to-point communications between processors
but instead assume that task input and output files are exchanged
through the file system. Thus, any file produced by one processor
and required by another processor is necessarily saved to, and then
read from, stable storage. In the second scenario shown in Figure 3,
we decide to checkpoint every crossover dependence (from T to
T3, T3 to Ty, and Ts to Ty). An execution of that schedule is shown
in Figure 4. Cyan boxes represent checkpoints while yellow boxes
represent data being read. The transfer of file T; — T3 is done
through a checkpointing phase on Py, followed by a reading phase
on P,. We can see that thanks to the crossover checkpoints, Ty does
not need to wait for the completion of the second execution of T3
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Figure 5: Blue induced checkpoints are used to isolate
task sequences on a processor (labeled in green, such as
the sequence Ty, Ty, T and Tz on P;). Finally, additional
checkpoints can be added inside an idle-free task sequence
through a dynamic programming algorithm: the orange
checkpoint corresponds to such an addition.

anymore, as T3 output data has already been checkpointed. More-
over, if only a failure on Py happened, instead of rolling back to task
T; to re-execute T3 as it was the case before, T3 could have restarted
directly (although the entire content of the processor memory is
lost, so all inputs of T3 must be recovered from stable storage after
a downtime before the execution of T3 can restart). The motivation
to checkpoint all files involved in crossover dependences is to iso-
late the processors. Indeed, if all crossover files are checkpointed,
a failure on a processor will never lead to the re-execution of a
task successfully executed on another processor. Overall, we will
lose less time recomputing tasks or waiting for their second com-
pletion. However, reading from stable storage and checkpointing
also take time. Finding the right trade-off is the main focus of this
paper: deciding which tasks should be checkpointed, so that the
overhead added by the checkpointing and reading of files is not
more expensive than the re-execution of tasks.

We conclude by informally introducing examples of checkpoint-
ing strategies that achieve desirable trade-offs (see Section 4.2 for
details). First, two additional checkpoints, in blue, called induced
checkpoints, have been added in Figure 5. Their role is to secure the
fast re-execution of tasks that are the target of a crossover depen-
dence, namely Ty and To. The blue checkpoint after T» isolates the
execution of the task sequence S; = {T4, Ts, T7, T3} on P;. To this
purpose, it is necessary to checkpoint all intermediate results that
may be used after the execution of Ty: these are the files generated
by previous tasks, namely T; — T7 and Tp — T4, This way, when a
failure strikes, previous tasks do not have to be restarted and the
computation may be restarted directly from Ty4. This way, tasks in
the sequence S; may be sequentially executed without idle time. It
would not have been possible to include T; and T, in S1 because Ty
could have waited for the completion of T3 leading to idle time in
some scenarios. Similarly, the second blue checkpoint isolates the
execution of Ty. Then, once the four tasks Ty, Ty, T7, and Tg of the
sequence S1 have been “isolated” from other tasks, it is possible to
use a dynamic programming algorithm similar to that used in [14]
in order to introduce additional checkpoints. In the example of
Figure 5, a single additional checkpoint, in orange, is inserted after

.

3 MODEL

This section details the execution and fault-tolerance models used
to compare scheduling and checkpointing algorithms.
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3.1 Execution Model

The execution model for a task workflow on a homogeneous sys-
tem is represented as a Directed Acyclic Graph (DAG), G = (V,E),
where V is the set of nodes corresponding to the tasks, and E is the
set of edges corresponding to the dependences between tasks. In a
DAG, a node without any predecessor is called an entry node, while
a node without any successor is an exit node. For a task T in G,
pred(T) and succ(T) represent the set of its immediate predecessors
and successors respectively. We say that a task T is ready if either it
does not have any predecessor in the dependence graph, or if all its
predecessors have been executed. In this model, the execution time
of a task T; € V is w;, i.e,, its execution time in a failure-free execu-
tion. Each dependence (T, T;) € E is associated with the cost ¢; j to
store/read the data onto/from stable storage. Before the execution
of Tj on processor Py, all input files needed by T; must be present
in the local memory of P and absent files must be read from the
stable storage, which happens as late as possible. We ignore di-
rect communication between processors because each data transfer
between two processors (i.e., a crossover dependence) consists of
writing to and reading from the stable storage. Alternatively, we
also say that the file is checkpointed and then recovered.

3.2 Fault-Tolerance Model

In this work, each processor is a processing element that is subject
to its own individual failures. Failures can strike a processor at any
time, during either task execution or waiting time. Failure inter-
arrival times are assumed to be Exponentially distributed. These
failure-prone processors stop their execution once a failure strikes,
i.e., we have fail-stop errors. When a fail-stop error strikes a proces-
sor, the whole content of its memory is lost and the computation
it was performing must be restarted, either on the same processor
after a reboot, or on a spare processor (e.g., taken from a pool of
spare processors either specifically requested by the job submitter,
or maintained by the resource management infrastructure).
Consider a single task T, with weight w, scheduled on such a
processor, and whose input is stored on stable storage. It takes a
time r to read that input data from stable storage, either for its
first execution or after a failure. The total execution time W of T
is a random variable, because several execution attempts may be
needed before the task succeeds. We assume that failures are i.i.d.
(independent and identically distributed) across the processors and
that the failure inter-arrival times at each processor is Exponentially
distributed with Mean Time Between Failures (MTBF) y = 1/A.
Let A < 1 be the Exponential failure rate of the processor. With
probability e~ A+ W) no failure occurs, and W is equal to r + w.
With probability (1 — e~A("*")), a failure occurs. For Exponentially
distributed failures, the expected time to failure, knowing that a
failure occurs during the task execution (i.e., in the next r + w
seconds), is 1/ — (r +w)/(e*("+W) 1) [16]. After this failure, there
is a downtime d, which is (an upper bound of) the time needed
to reboot the processor or migrate to a spare. Then we start the
execution again, first with the recovery r and then the work w. With
a general model where an unbounded number of failures can occur
during recovery and work, the expected time W to execute task T is

given by W = (% + d) (eMHW) - 1) [16]. Now if the output data

Li Han, Valentin Le Févre, Louis-Claude Canon, Yves Robert, and Frédéric Vivien

of task T is checkpointed, with a time c to write all of its output
files onto stable storage, the total time becomes:

W= (% + d) (Xrewre) _q) (1)

Equation (1) assumes that failures can also occur during check-
points, which is the most general model for failures. We also assume
that failures may strike during the idle time (i.e., waiting time) of
the processor (e.g., the power supply may fail). In the case of a
sequence of non-checkpointed tasks to be executed on a processor
P, the output data of each task resides in the memory of P for use
by subsequent tasks. When a failure strikes P, the entire memory
content is lost and the whole task sequence must be re-executed.

4 SCHEDULING AND CHECKPOINTING
ALGORITHMS

In this section, we first present heuristics to map tasks to processors.
Then we propose three different checkpointing strategies that can
be used simultaneously.

4.1 Scheduling heuristics

We map tasks to processors and schedule them using two classical
scheduling heuristics, HEFT [20]! and MINMIN [7]. We run these
heuristics as if the platforms were not subject to failures, that is,
without considering checkpoints. Therefore, we decide first on
which processor a task will be executed, and the order in which
a processor will execute tasks, before deciding when and what to
checkpoint (see Section 4.2). However, we present variants of HEFT
and MINMIN, named HEFTC and MINMINC, that are specifically
designed for our failure-prone framework.

Heterogeneous Earliest Finish Time first (HEFT) is presented as the
HEFTC variant in Algorithm 1. The original HEFT algorithm com-
prises two phases. In a first task prioritizing phase, the bottom-level
of all tasks is computed and tasks are ordered by non-increasing
bottom-levels. The bottom-level of a task is the maximum length
of any path starting at the task and ending in an exit task, con-
sidering that all communications take place [10]. In the second
processor selection phase, the first unscheduled task is scheduled
as early as possible on a processor that minimizes its completion
time. In all cases, ties are broken arbitrarily. To these original two
phases, we add a third one, the chain mapping phase (lines 7 and 8
of Algorithm 1). If the newly mapped task T is the head of a chain
in the task graph, then this whole chain is mapped on the same
processor as T, and the tasks will be executed consecutively. Ensur-
ing that entire chain of tasks are scheduled on the same processor
decreases the number of crossover dependences and thus, the time
to checkpoint them. HEFTC has a complexity of O(n?) for a work-
flow with n tasks. During the processor selection phase, the earliest
finish time of a task is computed in HEFTC while assuming that the
newly mapped task must start after all tasks previously scheduled
on that processor have completed. On the contrary, the original
HEFT heuristic is allowed to perform backfilling following a classi-
cal insertion-based policy, as long as the completion time of no task
is delayed. Allowing backfilling is more expensive at scheduling

n fact, because we have homogeneous processors, we use MCP (Modified Critical
Path) [25] with backfilling, which is exactly HEFT in this context.
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Algorithm 1: HEFTC

1 Compute the bottom-level of all tasks by traversing the graph from
the exit tasks
2 Sort the tasks by non-increasing values of their bottom-levels

3 while there are unscheduled tasks do
4 Select the first task T;

5 k « argmin, <<, EarliestFinishTime(T;, Py)

6 Schedule task T; on processor Px

7 if T; is the head of a chain of tasks then

8 L Schedule the whole chain continuously on Py

time but should lower the execution time (the complexity of HEFT
with backfilling is also O(n?) with homogeneous processors). We
do not allow backfilling for HEFTC because it could be antagonistic
to the chain mapping phase if it led to backfill the head of the chain,
but not the whole chain.

The MINMIN scheduling algorithm is presented in the MINMINC
variant in Algorithm 2. The original MINMIN algorithm is a simple
loop which, at each step, schedules the task that can finish the
earliest among unscheduled tasks. Therefore, at each step it con-
siders all ready tasks and, for each of them, all the processors. We
(try to) improve this heuristic by adding a chain mapping phase
exactly as previously (lines 5 and 6 of Algorithm 2). MINMINC has a
complexity of O(n?p) for a workflow with n tasks and p processors.

Algorithm 2: MINMINC
1 ReadyTasks «— entry tasks

2 while there are unscheduled tasks do
3 Pick a task T € ReadyTasks and a processor P such that the
completion time of T on P is minimum among the Earliest
Finish Times of all ready tasks

4 Schedule task T on processor P
5 if T is the head of a chain of tasks then
6 L Schedule the whole chain continuously on P

7 | Update ReadyTasks

4.2 Checkpointing strategies

While the previous scheduling algorithms provide mappings of
tasks to processors, it remains to decide which files must be check-
pointed and when. This section introduces finer strategies than the
two extremes solutions that consist of checkpointing no task or all
tasks. These two extreme solutions, CKpTALL and CKPTNONE, are
denoted with the suffixes ALL and NONE, respectively.

Our model forbids direct communications between processors
(see Section 3.1). However, for the sake of comparison, we make an
exception for CkPTNONE: in the absence of any checkpoint with
CkPTNONE, direct communications must be performed for each
crossover dependence. We assume that, in this case, transferring a
file takes half the time needed to save it to and read it from stable
storage. This special case is thus more efficient when files are large.

The minimum strategy that is required to avoid direct communi-
cations consists of checkpointing all files that must be transferred
between any pair of processors, i.e., exactly the files corresponding

ICPP 2018, August 13-16, 2018, Eugene, OR, USA

to crossover dependences. Moreover, in this case, any failure on
a processor will not require any re-execution on other processors.
The strategy is denoted with a “C” in the checkpoint suffix.

For the next two additional strategies, we introduce a new type
of checkpoints: task checkpoints. While a simple file checkpoint
consists of writing to stable storage a file that corresponds to a
dependence between two tasks, a task checkpoint consists of writ-
ing all files that (i) reside in memory on a processor; (ii) will be
used later by tasks assigned to the same processor; and (iii) have
not already been checkpointed. In the example in Section 2, for
each crossover dependence we did a simple file checkpoint rather
than a full task checkpoint. A task checkpoint after task T3 would
have also checkpointed the file corresponding to the dependence
T3 — Ts. A non-trivial task checkpoint would be a task checkpoint
for task T5. This checkpoint would require checkpointing the files
corresponding to the dependences T — T4 and T1 — T7.

When a task checkpoint is performed after the execution of a
task, multiple files may be checkpointed “at the same time” (either
newly created files or previously created ones that will later be
used). If several files are checkpointed, they are all checkpointed
after the task completion, one after the other (in any order), and
they can all be read again only when the last of them has been
checkpointed. When absent from memory (following a failure or
due to a crossover dependence), input files are read from stable
storage as late as possible, just before the execution of the task that
needs them. One could imagine optimizations where files (in a task
checkpoint) would be checkpointed independently and as soon as
possible, or in a carefully designed order. Such optimizations could
lead to lower expected makespans in some cases. However, the
interplay of file checkpoints and reads that could result from these
optimizations may lead to slowdowns. This is the reason why we
prefer our simpler scheme.

Checkpointing crossover dependences enable to isolate proces-
sors, in that there is no re-execution propagation from a processor
to another. However, when a task is the target of a crossover de-
pendence, its starting time is the maximum of the availability times
of all its input files, and these files come from different processors.
Therefore, its starting time may be delayed by failures occurring
on other processors. Because failures can strike during idle time,
it may be beneficial to try to use the potential waiting time by
performing a task checkpoint of the task preceding the target task.
This way, the whole content of the memory will be preserved, the
cost of the checkpoint may be offset by some waiting time, and if
a failure strikes during the remaining waiting time all input files
remain available. Therefore, we propose a new checkpointing strat-
egy denoted with “I” in the checkpoint suffix. This strategy consists
of checkpointing all induced dependences. A dependence T; — T;
is an induced dependence if T; and T; are scheduled on the same
processor P and there exists a crossover dependence T — T; such
that T; is scheduled on P after T; and before T; (or T; = T;). Check-
pointing these induced dependences is done by performing a task
checkpoint of the task preceding T on P. In the example of Sec-
tion 2, the dependences T, — T4 and T; — T7 are both induced
dependences because of the crossover dependence T3 — Ty.

So far, we have only introduced checkpoints to isolate proces-
sors, either to avoid failure propagation or to try to minimize the
impact of processors having to wait from each other. We further
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consider checkpoints that more directly optimize expected total
execution time. We present an additional strategy, denoted by the
suffix “DP”, which adds additional checkpoints through a O(n?)
dynamic programming algorithm, which is a transposition of that
of [14]. This dynamic program considers a maximal sequence of
consecutive tasks that are all assigned to the same processor, and
that are isolated from other tasks: the sequence contains no check-
point and none of its tasks is the target of a crossover dependence,
except for its first task. Let T1, ..., Ty be such a sequence of tasks.
By definition, all input data produced by some previous tasks have
been checkpointed. Then, the optimal expected time to execute this
sequence is given by Time(k) where Time is defined as follows:

Time(j) = min (T(I,j), min Time(i) + T(i + l,j))
1<i<j

where T (i, j) is the expected time to execute tasks T; to Tj provided

that two task checkpoints are performed: one right before task

T; and one right after task T;. Using the same reasoning as in

Section 3.2, we can provide an upper bound on T(i, j) as follows:

1 . -
T(i,j) = (I + d) (e’l(Rf”VhC,{) _ 1)

where Ré (resp. Wl] and Cf ) is the sum of the recovery (resp. ex-
ecution and checkpointing) costs of tasks T; to Tj. The recovery
costs concern all input files of these tasks that are on the stable
storage, while the checkpointing costs concern all files that will be
checkpointed when a task checkpoint is done after T;. This is an
upper bound, because when no failure strikes, some input files of
tasks T; to Tj may already be present in memory and will not be
read from stable storage. Because we have no simple mean to know
whether some failures had previously struck, we have to resort
to this upper bound. This is a necessary condition to be able to
reuse, in some way, the dynamic programming approach of in [14].
This algorithm requires, by construction, that induced dependences
be checkpointed. However, we heuristically use it even when this
condition is not satisfied. In this case, we take a maximal sequence
while allowing tasks to be the target of crossover dependences, and
behave as if these crossover dependences were not existing: we dis-
card any potential waiting time that may be due to these crossover
dependences (because we have no means to estimate them).

5 EXPERIMENTS

In this section, we describe the experiments conducted to assess
the efficiency of the checkpointing strategies. In Subsection 5.1, we
describe the parameters, applications and simulator used during our
experimental campaign. We present our results in Subsection 5.2.

5.1 Experimental methodology

We consider workflows from real-world applications, namely repre-
sentative workflow applications generated by the Pegasus Workflow
Generator (PWG) [6], as well as the three most classical matrix de-
composition algorithms (LU, QR, and Cholesky) [9], and randomly
generated DAGs from the Standard Task Graph Set (STG) [19].
Pegasus workflows. PWG uses the information gathered from
actual executions of scientific workflows as well as domain-specific
knowledge of these workflows to generate representative and re-
alistic synthetic workflows. We consider all five workflows [17]
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generated by PWG, including three M-SPGs (GENOME, LiGo, and
MONTAGE) that are used to compare our new general approach with
ProPCKPT, the strategy for M-SPGs proposed in [14]. We generate
these workflows with 50, 300, and 700 tasks (these are the number
of tasks given to the generator, the actual number of tasks in the
generated workflows depend on the workflow shape). The task
weights and file sizes are generated by PWG.

Matrix factorizations. We consider the three most classical factor-
izations of a k X k tiled matrix: LU, QR, and Cholesky factorizations.
For each factorization, we perform experiments with k = 6, 10, and
15, for a total of 3 X 3 = 9 DAGs with up to 1240 tasks. The number
of vertices in the DAG depends on k as follows: the Cholesky DAG
has §k* +O(k?) tasks, while the LU and QR DAGs have k3 +0(k?)
tasks. There are 4 types of tasks in LU, QR, and Cholesky, which are
labeled by the corresponding BLAS kernels [9], and their weights
are based on actual kernel execution times as reported in [3].

Random graphs. The STG benchmark [19] includes 180 instances
for each size of DAGs (from 50 to 5 000). This set is often used in
the literature to compare the performance of scheduling strategies.
Instead of choosing part of the instances for each size, we did
experiments on all instances of size 300 and 750.

Failure distribution. We consider different exponential processor
failure rates. To allow for consistent comparisons of results across
different DAGs (with different numbers of tasks and task weights),
we fix the probability that a task fails, which we denote as pg,j,
and then simulate the corresponding failure rate. Formally, for a
given DAG G = (V,E) and a given pg,; value, we compute the
average task weight as w = }};cy w;i/|V|], where w; is the weight
of the i-th task in V. We then pick the failure rate A such that
Prail = 1 — e~ We conduct experiments for three pg,; values:
0.01, 0.001, and 0.0001.

Checkpointing costs. An important factor that influences the per-
formance of checkpointing strategies, and more precisely the check-
pointing and recovery overheads, is the data-intensiveness of the
application. We define the Communication-to-Computation Ratio
(CCR) as the time needed to store all the files handled by a workflow
(input, output, and intermediate files) divided by the time needed to
perform all the computations of that workflow on a single processor.
For Pegasus workflows, LU, QR, and Cholesky, we vary the CCR by
scaling file sizes by a factor. As STG only provides task weights, we
compute the average communication cost as ¢ = w X CCR. Com-
munication costs are generated with a lognormal distribution with
parameters p = log(¢) — 2 and o = 2 to ensure an expected value
of ¢. This distribution with parameter o = 2 has been advocated to
model file sizes [12]. This allows considering and quantifying the
data-intensiveness of all workflows in a coherent manner across
experiments and workflow classes and configurations.

Reference strategies. We compare our strategies to the two ex-
treme approaches CkPTALL and CKPTNONE. For each parameter
setting of each workflow, we run 10,000 random simulations and
approximate the makespan by the observed average makespan.

Simulator. We implemented a discrete event simulator. The C++
code is available at http://github.com/vlefevre/task-graph-simulation.
A full description of the simulator can be found in [15]. This simu-
lator computes the number of file checkpoints taken, the number
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of task checkpoints taken, the number of failures, the total time
spent checkpointing data, and the execution time.

5.2 Results

Due to space limitations, we only report here a subset of our simu-
lations results. For instance, we only report on the Cholesky factor-
ization as results are similar for LU and QR, and on CYBERSHAKE
and SIPHT as results are similar for GENOME, L1Go, and MONTAGE.
All results can be found in the companion research report [15].
First we compare the four considered task mapping and sched-
uling strategies: HEFT and MINMIN, with their chain-mapping
variants HEFTC and MINMINC. Figure 6 presents such a compar-
ison for Cholesky using boxplots?. On this figure, the lower the
better and the baseline at 1 is the performance of HEFT. The chain-
mapping variants have the same performance or improve that of
their basic counterparts, especially when communications are ex-
pensive (rightmost parts of the graphs). The other conclusion is
that MINMIN (resp. MINMINC) almost always achieves same or
worse performance than HEFT (resp. HEFTC). This is explained
by the fact that HEFT and HEFTC take into account the critical
path of workflows. These trends are representative of the trends
observed for all considered graphs and workflows (see [15] for the
other graphs) but suffer from some exceptions. The chain-mapping
variants can be superceded by their basic counterparts for work-
flows that do not include any chains (like LU), because the basic
variants use backfilling. However, backfilling sometimes backfires,
even in the absence of chains, like for Sipht where HEFTC can
decrease the expected makespan by more than 30% with respect to
HEFT (see [15]). Overall, of the four considered task mapping and
scheduling heuristics, HEFTC never achieves significantly bad per-
formance, and most of the time achieves the best performance. This
is the reason why we focus on it in the remainder of this section.
Figures 7 through 9 present the expected makespans achieved
by CDP, CIDP3, and NonE divided by that of ALL when the Com-
munication-to-Computation Ratio increases. The lower the better
and data points below the y = 1 line denote cases in which these
strategies outperform the competitor ALr. Each figure shows results
for workflows with different number of tasks (each line of subfigure
is for a different size, the number of tasks being reported on the
rightmost column), for various number of processors P (different
line styles), and for the three pg,; values (0.0001, 0.001, 0.01). On
these figures, we report in black above the horizontal axis the
average number of failures that occur for the 10,000 random trials
for each setting. The other two lines of numbers are the number
of checkpointed tasks for CDP and CIDP, each number is printed
with the same color as the curve of the corresponding strategy.
CIDP achieves a similar performance then ALL or outperforms it
(for Montage, Genome and Ligo, see [15]), especially when commu-
nications, and thus checkpoints, are expensive. When checkpoints
come for free, ALL and CIDP have the same performance as they
both checkpoint all tasks.
In the majority of cases, CDP also achieves similar or better
performance than ALL. As explained in Section 4, the dynamic

ZEach boxplot consists of a bold line for the median, a box for the quartiles, whiskers
that extend at most to 1.5 times the interquartile range from the box and additional
points for outliers.

3CDP and CIDP correspond to the designations introduced in Section 4.2.
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programming algorithm is well-defined for CIDP, which check-
points all induced dependences. However, CDP tries to save some
checkpointing overhead by not systematically checkpointing in-
duced dependences. As a consequence, the dynamic programming
algorithm estimations of expected execution times may be inac-
curate, which explains the sometimes bad performance of CDP.
There are only a couple of CCR values for CYBERSHAKE for which
CDP achieves a significantly worse performance than ArL. On the
contrary, CDP often has better performance than CIDP when check-
pointing cost is high. CDP never checkpoints more tasks than CIDP.
Depending on the checkpointing cost and failure rate, CDP can lead
to significant improvement over ALL. For workflows as dense as LU,
we save more than 10% when CCR = 1 for both strategies (see[15]);
CDP even achieves 35% saving for SIpHT. As the CCR decreases, all
strategies checkpoint all tasks and the ratio converges to 1.

CDP and CIDP achieve better results than NoNE except when
(i) checkpoints are expensive (high CCR) and/or (ii) failures are
rare (low pg,j1)- In these cases, checkpointing is a losing proposition,
and yet our strategies, by design, always checkpoints some files
(all crossover files and even induced dependences for CIDP). The
optimal approach is then to bet that no failure will happen and to
restart the whole workflow execution from scratch upon the very
rare occurrence of a failure. NONE becomes worse whenever there
are more failing tasks, i.e., when the failure rate increases, and/or
when the number of tasks increases. When the failure rate is high
and the workflows are large, the relative expected makespan of
NONE is so high that it does not appear in the plots.

Figure 10 presents the aggregated results for the 180 STG random
DAGs with boxplots. The trends on these graphs are the same as
already reported. This confirms the generality of our conclusions.

Finally, we compare our new general approach with PRopCkeT,
the approach specific to M-SPGs that we proposed in [14]. Figure 11
presents this comparison for Montage, which is the worst case for
our approaches compared to Genome and Ligo. Overall, the new
approaches perform better than PROPCKPT.

6 RELATED WORK

Checkpointing workflows has received considerable attention in
the recent years, but no satisfactory solution has yet been proposed
for fail-stop failures and general DAGs.

Many authors have considered soft errors, by which a task exe-
cution fails but does not lead to completely losing the data present
in the processor memory. Fail-stop errors have far more drastic
consequences than soft errors as they induce the loss of all data
present in memory. Therefore they require different solutions. As
discussed in Section 1, silent errors do not interrupt the execution
of the task but corrupt its output data. Their net effect is the same,
since a task must be re-executed whenever a silent error is detected.
Their detection requires the use of some silent error detectors at
the end of a task’s execution. As we only consider fail-stop errors
we do not need to use fault detectors. See our previous work [14]
for an overview of the related work on soft and silent errors.

Relatively few published works have studied fail-stop failures
in the context of workflow applications. When the workflow is a
linear chain of tasks, the problem of finding the optimal checkpoint
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Figure 7: Performance of the checkpointing strategies for Cholesky using HEFTC for task mapping and scheduling.
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Figure 8: Performance of the checkpointing strategies for CyberShake using HEFTC for task mapping and scheduling.
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Figure 9: Performance of the checkpointing strategies for Sipht using HEFTC for task mapping and scheduling.
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strategy has been solved by Toueg and Babaoglu [21] using a dy-
namic programming algorithm. This algorithm was later extended
in [5] to cope with both fail-stop and silent errors simultaneously.
When the workflow is general but comprised of parallel tasks that
each executes on the whole platform, the problem of placing check-
points is NP-complete for simple join graphs [4]. Existing work
in the most general context, i.e., when tasks of a workflow do not
necessarily span the whole platform, diverges from ours as follows:
either there is a limit to the number of failures that an execution
can cope with [23], or the optimization objective is reliability [2],
meaning that the application execution can fail altogether. The only
exception that we are aware of is our previous work [14]. The limi-
tation of that work was different: the proposed solution could only
deal with workflows whose structure was a Minimal Series-Parallel
Graph (a generalization of Series-Parallel Graph).

To the best of our knowledge, this work is the first approach
(beyond application-specific solutions) that (i) does not resort to
linearizing the entire workflow as a chain of (parallel) tasks; (ii)
can be applied to any workflow; (iii) can cope with an arbitrary
number of failures; (iv) always guarantees a successful application
execution; and (v) minimizes the (expectation of) the application
execution time. As a result, we propose the first DAG schedul-
ing/checkpointing algorithm that allows arbitrary workflows to
execute concurrently on multiple failure-prone processors in stan-
dard task-parallel fashion.

7 CONCLUSION

This work tackles the challenging problem of executing arbitrary
workflows on homogeneous processors, with reasonable perfor-
mance in presence of failures but without incurring a prohibitive
cost when no failure strikes. While CKPTALL meets the first ob-
jective by expensively checkpointing every task and CKPTNONE
meets the second one by avoiding any checkpoint at all, we propose
new strategies that provide different trade-offs between these two
extremes. First, all crossover dependences, corresponding to file
transfers between processors, are checkpointed, which prevents re-
execution propagation between processors in case of failure. Then,
a DP (Dynamic Programming) solution is used to insert additional
checkpoints to minimize the expected completion time. Additional
(induced) checkpoints may be added prior to the DP execution
to provide it with more accurate information. Moreover, different
mapping strategies that extend classical ones to reduce the number
of checkpoints were also proposed. To the best of our knowledge,
these new strategies are the first to be tuned to minimize the need
for checkpointing while mapping tasks. Extensive experiments with
a discrete event simulator, conducted for both synthetic and realis-
tic instances, show that our approaches significantly outperform
CkPTALL and CKPTNONE in most scenarios.

Future work will aim at extending our approach to workflows
with parallel moldable tasks [13]. Such an extension raises yet an-
other significant challenge: now the number of processors assigned
to each task becomes a parameter to the proposed solutions, with a
dramatic impact on both performance and resilience.
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