
Online Scheduling of Task Graphs
on Hybrid Platforms

Louis-Claude Canon1,2, Loris Marchal2, Bertrand Simon2, and Frédéric Vivien2

1 FEMTO-ST Institute – Université de Bourgogne Franche-Comté
16 route de Gray, 25 030 Besançon, France
louis-claude.canon@univ-fcomte.fr

2 Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1, LIP
UMR5668, F-69342, LYON Cedex 07, France

loris.marchal@ens-lyon.fr, frederic.vivien@inria.fr,
bertrand.simon@ens-lyon.fr

Abstract. Modern computing platforms commonly include accelera-
tors. We target the problem of scheduling applications modeled as task
graphs on hybrid platforms made of two types of resources, such as CPUs
and GPUs. We consider that task graphs are uncovered dynamically, and
that the scheduler has information only on the available tasks, i.e., tasks
whose predecessors have all been completed. Each task can be processed
by either a CPU or a GPU, and the corresponding processing times are
known. Our study extends a previous 4

√
m/k-competitive online algo-

rithm [2], where m is the number of CPUs and k the number of GPUs
(m ≥ k). We prove that no online algorithm can have a competitive
ratio smaller than

√
m/k. We also study how adding flexibility on task

processing, such as task migration or spoliation, or increasing the knowl-
edge of the scheduler by providing it with information on the task graph,
influences the lower bound. We provide a (2

√
m/k + 1)-competitive al-

gorithm as well as a tunable combination of a system-oriented heuristic
and a competitive algorithm; this combination performs well in practice
and has a competitive ratio in Θ(

√
m/k). Finally, simulations on differ-

ent sets of task graphs illustrate how the instance properties impact the
performance of the studied algorithms and show that our proposed tun-
able algorithm performs the best among the online algorithms in almost
all cases and has even performance close to an offline algorithm.

Keywords: Scheduling, heterogeneous computing, task graphs, online
algorithms.

1 Introduction

Modern computing platforms increasingly use specialized hardware accelera-
tors, such as GPUs or Xeon Phis: 102 of the supercomputers in the TOP500
list include such accelerators, while several of them include several accelerator
types [24]. The increasing complexity of such computing platforms makes it hard
to predict the exact execution time of computational tasks or of data movement.



Thus, dynamic runtime schedulers are often preferred to static ones, as they are
able to adapt to variable running times and to cope with inaccurate predictions.
Indeed, with the widespread heterogeneity of computing platforms, many scien-
tific applications now rely on runtime schedulers such as OmpSs [22], XKaapi [7],
or StarPU [4]. Most of these frameworks model an application as a Directed
Acyclic Graph (DAG) of tasks, where nodes represent tasks and edges represent
dependences between tasks. While task graphs have been widely studied in the
theoretical scheduling literature [14], most of the existing studies concentrate on
static scheduling in the offline context: both the graph and the running times of
the tasks are known beforehand.

We believe that there is a crucial need for online schedulers, that is, of
scheduling algorithms that rely neither on the structure of the graph nor on
the knowledge of tasks’ running times. First, not all graphs are fully available
at the beginning of the computation: sometimes the graph itself depends on the
data being processed, different inputs may result in different task graphs. This
is especially the case when the behavior of an iterative application depends on
the accuracy of the output. Second, in most existing runtimes, even if the graph
does not depend on the input data, it is not fully submitted at the beginning of
the computation; instead, tasks are dynamically uncovered during the computa-
tion. Third, even if part of the graph is available, schedulers (such as StarPU [4])
usually avoid traversing large parts of the graph each time they take a decision
in order to strongly limit the time needed to take decisions. Finally, tasks’ pro-
cessing times are not always known beforehand, and the occasionally available
predictions may not be very accurate, as two successive executions of the same
task may result in slightly different timings.

There has recently been an effort of the scheduling community to fill the
gap between the assumptions used in theoretical studies and the information
available to the underlying schedulers of runtime systems (see details in Sec-
tion 2). Schedulers for independent tasks on hybrid platforms have first been
proposed [5, 8, 11]. Some of them have been adapted for task graphs: [20] ex-
tends the algorithm of [5] to the (offline) scheduling of task graphs, while [2]
adapts an online scheduler for independent tasks on hybrid platforms [17] to
obtain a competitive online scheduler for task graphs.

In the present paper, we concentrate on the online scheduling of task graphs
on a hybrid platform composed of 2 types of processors that we call CPU and
GPU for convenience. There are m CPUs and k GPUs, where m ≥ k ≥ 1.
Note that we do not make any assumptions on the CPUs and GPUs (i.e., on
the processing times of each task), so that these results may be symmetrically
applied to the converse case with more GPUs. The objective is to schedule a
DAG G of tasks, so as to minimize the total completion time, or makespan.
Each task can be assigned either to a single CPU or to a single GPU. We adopt
the notations of [2]: the processing time of task Ti on a CPU is noted by pi and
on a GPU by pi.

We consider the following online problem. At the beginning, the algorithm is
aware of all the input tasks of the graph, and can schedule each one on either a



CPU or on a GPU. A task is released and becomes available to the scheduler only
when all its predecessors are terminated. At any given point in the computation,
the scheduler is totally unaware of tasks that have not yet been released, but it
knows the processing times pi and pi of all available tasks: we assume that tasks
correspond to well-known kernels whose processing times have been acquired
through extensive benchmarking; this happens in particular in linear algebra
applications. We do not take into account the time needed for moving data and
assume that there is no delay between the release of a task and the start of its
processing.

The closer related work considering the very same problem is [2], which pro-
vides a 4

√
m/k-competitive algorithm for this problem. We recall that an online

algorithm is x-competitive if the makespan returned by this algorithm on any
instance is at most x times larger than the optimal makespan (which can be
computed by an offline algorithm). The present paper brings the following con-
tributions:
– We prove that the competitive ratio of any online algorithm is lower-bounded

by
√
m/k. We study how the knowledge of the task graph and the flexibility

of the tasks may influence the lower bound; we especially prove that knowing
the bottom-level of any task (i.e., the critical path length from this task
to the end of the graph) or having preemptive tasks does not help much,
whereas the knowledge of the number of descendants allows to reduce the
lower bound to 1

2 (m/k)1/4 (Section 3).

– We propose a (2
√
m/k + 1)-competitive algorithm, by refining both the

algorithm and the analysis of [2] (Section 4.1).
– We propose a simple heuristic (Section 4.2) based on the system-oriented

heuristic EFT, which is both a competitive algorithm and performs well in
practice, as we show with a comprehensive simulation set (Section 5).

2 Related Work

We briefly position our contributions in comparison to the existing work, starting
with the offline case where the whole scheduling problem (both task dependences
and running times) is known beforehand.

Offline algorithms. Several schedulers for independent tasks on hybrid plat-
forms have been proposed. Bleuse et al. [8] designed a polynomial but expensive(
4
3 + 1

3k

)
-approximation. Low complexity algorithms, which are closer to our

work, have been studied in [5,11] and achieve approximation ratios respectively
equal to 2 and 2 +

√
2. For tasks with precedence constraints, Kedad-Sidhoum

et al. [18] provided a tight 6-approximation algorithm based on linear program-
ming. In a different setting, Raravi et al. [21] also consider the same platform
composed of two types of processors, on which the objective is to schedule a set
of chains of tasks, with each task having a release date and a deadline. They
design an algorithm that schedules the tasks of each chain on the same proces-
sor, under some assumptions such as the existence of a valid schedule on slightly
slower processors.



Online algorithms. When tasks with precedences are released over time, Gra-
ham’s List Scheduling algorithm [16] is 2-competitive on homogeneous processors
(note that this is also the best offline approximation for this problem). On our
model with two sets of processors, Imreh [17] and Chen et al. [13] proposed an
algorithm to schedule independent tasks with a competitive ratio smaller than 4.
Based on this work, Amaris et al. [2] exhibited an online algorithm for precedence
constraints, achieving a competitive ratio of 4

√
m/k.

Runtime strategies. Actual runtime schedulers usually rely on low-complexity
scheduling policies to limit the time needed to allocate tasks. For instance,
StarPU [4] builds a performance model of tasks that enables to predict their
processing times. When a new task is submitted, it is allocated to the resource
that will complete it the soonest (when using the dm policy, previously called
heft-tm in [3]), which corresponds to the classical Earliest Finish Time (EFT)
scheduling policy [19]. Other strategies have been proposed that take into ac-
count communication times, or precomputed task priorities, depending on the
descendants of each task. We include similar information in the design of the
lower bounds on competitive ratios (Section 3).

3 Lower bound on competitive algorithms

In this section, we provide a lower bound on the competitive ratio of any online
algorithm, as outlined in the following theorem. We also study how adding flexi-
bility to task processing or giving some knowledge of the graph to the scheduler
impacts this lower bound.

Theorem 1. No online algorithm has a competitive ratio smaller than
√
m/k.

Proof. We prove this result here only when τ =
√
m/k is an integer. The proof

for the general case can be found in the corresponding research report [10].
Consider an online algorithm A. We fix an integer n, which will later be made
as large as we want for the competitive ratio to get closer to τ . We use an
adversary proof: an adversary dynamically builds the graph depending on the
current schedule produced by A. This results in a graph composed of nm tasks
denoted by T ji , with j = 1, . . . , nτ and i = 1, . . . , kτ . Each task has a CPU
processing time of τ and a GPU processing time of 1.

The procedure consists of nτ phases. During the jth phase, kτ tasks are re-
leased (tasks T ji for i = 1, . . . , kτ), without dependences between these tasks.
The adversary selects the task that A completes the latest, breaking ties ar-
bitrarily. Let T j∗ be this task. The kτ tasks of the next phase are then made
successors of T j∗ . See Figure 1a for an illustration of the resulting graph.

We now show how to build an efficient (offline) schedule S of the resulting
graph. A bucket is defined as a set of processors, a starting time and a duration
time. We use buckets to book some processors for an amount of time, and sched-
ule a set of tasks in a given bucket. We consider n+ 1 buckets, as illustrated in
Figure 1b. Each bucket Bi for i = 1, . . . , n contains all m CPUs, has a duration



T 1
1 T 2

1 T 3
1 T 4

1 T 5
1 T 6

1

T 1
2 T 2

2 T 3
2 T 4

2 T 5
2 T 6

2

T 1
3 T 2

3 T 3
3 T 4

3 T 5
3 T 6

3

T 1
4 T 2

4 T 3
4 T 4

4 T 5
4 T 6

4T 1
iT 1
∗

T 2
iT 2
∗ T 3

iT 3
∗

T 4
iT 4
∗

T 5
iT 5
∗

(a) Graph built by the adversary.

CPU

GPU

B1

τ

B2

τ

B3

τ

B
nτ= 3τ

(b) Buckets used by S.

Fig. 1. Illustration of the graph and the buckets for τ = 2, k = 2, n = 3.

of τ , and starts at time iτ . Note that m tasks fit into each of these buckets. The
last bucket, B, contains one GPU, starts at time 0 and lasts for a time nτ . S
schedules the nτ tasks T j∗ successively on a single GPU, which fit into bucket
B. In parallel, S schedules the remaining tasks on CPU. More precisely, it puts
in bucket B` tasks T ji such that (`− 1)τ < j ≤ `τ , except for tasks T j∗ . They all
fit into the bucket as there are less than τ × kτ ≤ m such tasks. Moreover, task
T `τ∗ completes at time `τ . Therefore, every task T ji with (` − 1)τ < j ≤ `τ can
be started at time `τ , and thus can be scheduled into bucket B`. Therefore, S
achieves a makespan equal to (n+ 1)τ .

Now, we consider algorithm A, and we show that the makespan obtained is
at least nτ2. At each phase, the adversary reveals the next phase only when all
the tasks of the current phase are completed. If one task of the phase is scheduled
on CPU, it takes a time τ . Otherwise, all kτ tasks are scheduled on GPU, and
the last one completes at time at least kτ/k = τ . Therefore, A completes each
phase in time at least τ . As there are nτ phases, the whole graph cannot be
scheduled in time smaller than nτ2. The competitive ratio of A is then at least:

nτ2

(n+ 1)τ
−→
n→∞

τ. ut

It seems from the above proof that the main difficulty for this problem arises
from choosing on which type of resource (CPU or GPU) a given task should be
processed, and not to come up with the final schedule. This is indeed proven in
the following lemma, which states that given an allocation of the tasks to the
two types of resources, scheduling them among the m+ k resources can be done
with constant competitive ratio (for the proof, please refer to [10]).

Lemma 1. If each task can be processed on a single type of resource, then any
online list scheduling algorithm is (3− 1

m )-competitive, and no online algorithm
has a smaller competitive ratio.

The proof of Theorem 1 heavily relies on the fact that an online algorithm has no
information on the successors of each task. In practice, it is sometimes possible
to get some information on the task graph, for example by pre-computing some
information offline before submitting the tasks. For instance, offline schedulers



Table 1. Lower bounds for various combinations of flexibility in task processing and
knowledge given to the scheduler (BL stands for bottom-level).

Flexibility Knowledge Lower bound Special cases

None or Spoliation
None or BL

√
m/k if BL and k = 1: 1

2

√
m/k

BL + descendants 1
2
(m/k)1/4

Migration
None or BL 1

2

√
m/k if BL and k = 1: 1

4

√
m/k

BL + descendants 1
4
(m/k)1/4

usually rank available tasks with priorities based on the dependences. On homo-
geneous platforms, the bottom-level of a task is commonly used, and is defined
as the maximum length of a path from this task to an exit node, where nodes
of the graphs are weighted with the processing time of the corresponding tasks.
In the heterogeneous case, the priority scheme used in the standard HEFT al-
gorithm [25] is to set the weight of each node as the average processing time of
the corresponding task on all resources.

Knowing the bottom-level does not change the lower-bound of Theorem 1: it
is possible to transform the above proof using an adversary that submits tasks
with identical bottom-levels in each phase (see details in the corresponding re-
search report [10]). When there is exactly one GPU, the lower bound is decreased
to 1

2

√
m/k. An interesting component of this proof is that all the tasks are equiv-

alent (same CPU and GPU computing times) so other heterogeneous variants
of the bottom-level result in the same lower bounds.

When the online scheduler is given the knowledge of the number of descen-
dants of each submitted task in addition to their bottom-level, the lower bound
of Theorem 1 is reduced to 1

2 (m/k)1/4 when m/k is large enough, so no constant-
factor competitive algorithm exists. Note that all the tasks are equivalent in this
proof. The lower bound is thus also valid if the knowledge of the CPU and
GPU computing times of all the descendants is given to the scheduler and only
the pattern of precedence relations remains unknown. Note that, however, no
algorithm has been proposed that reaches this bound.

Another interesting question is whether adding flexibility on how tasks are
processed changes this bound. Allowing task spoliation (where tasks can be
canceled and restarted on any resource, as done in [5]) does not help, and allowing
task migration (where tasks can be preempted and resumed on any resource)
only halves the bounds. Table 1 summarizes the lower bounds obtained for all
combination of knowledge given to the scheduler and flexibility on the task
processing (for proofs, please refer to [10]).



4 Competitive algorithms

4.1 The Quick Allocation (QA) algorithm

Amaris et al. [2] designed an online algorithm named ER-LS, which is proved to
be 4

√
m/k-competitive. The results of Section 3 show that this ratio can only

be improved by a constant factor, as no online algorithm can be better than√
m/k-competitive. ER-LS applies the following processing to each available

task Ti:

1. (a) If Ti can be completed on a GPU before time pi, then assign it to GPUs.
(b) Else, if pi/pi ≤

√
m/k, then assign Ti to CPUs, else assign it to GPUs.

2. Schedule Ti as soon as possible on the allocated type of resource.

The main objective of Step 1a is to avoid allocating the first tasks on a slow
resource, which intuitively is desirable only on small graphs. Such a technique
enables a similar online algorithm to be constant-factor competitive for indepen-
dent tasks, see [13]. However, it actually increases the competitive factor with
precedence constraints. We propose to simplify the allocation phase by suppress-
ing Step 1a. The resulting algorithm QA (which stands for Quick Allocation) is
then defined by Steps 1b and 2. Along with a rigorous analysis, this simplifica-
tion allows us to reach a competitive ratio smaller than 2

√
m/k + 1, which is

almost tight, as outlined in the following theorems. The complete proofs of the
following results are available in [10].

Theorem 2. QA is
(

2
√
m/k + 1− (mk)

−1/2
)

– competitive.

Proof sketch. Consider a graph G and the schedule S obtained by QA, of
makespan Cmax . Let Wc (resp. Wg) be the sum of the processing times of the
tasks scheduled on CPU (resp. GPU) by S, and CP be the computing time of a
critical path of G, given the allocation of S. We first prove that:

Cmax ≤
Wc

m
+
Wg

k
+

(
1− 1

m

)
CP .

Now, focusing first on the workload in the optimal solution, and then on the
length of the critical path in the optimal solution, we can show the following
inequalities and conclude:

Wc

m
+
Wg

k
≤
(

1 +

√
m

k

)
OPT and CP ≤

√
m

k
OPT. ut

Theorem 3. The competitive ratio of QA is at least
(

2
√
m/k + 1− 1

k

)
.

Proof sketch. Let ε be a small processing time. Consider the graph composed of
the three groups of tasks below. The online instance will reveal the tasks in the
same order. The only dependence is from task ε to task d.
Group A k(k − 1) tasks with pi =∞ and pi = 1/k.



CPU

GPU

QA

A

1−1/k

B

p
m/k

ε

dp
m/k

CPU

GPU

OPT

A
1

B

ε d
1+2ε

Fig. 2. Schedule obtained by QA (left) and the optimal one (right).

Group B mk tasks with pi = (1 + ε)/k and pi = 1/
√
mk.

Group C Task ε, with pε = ∞ and pε = ε, and task d, with pd =
√
m/k and

pd = 1 + ε.
As depicted in Figure 2, QA will schedule groups A and B and Task ε on GPU,
then task d on CPU, for a total makespan equal to 2

√
m/k + 1 − 1

k + ε. The
optimal solution schedules only group B on CPU, for a total makespan equal to
1 + 2ε, hence the result. ut

The proofs of these two results give some intuition on why choosing a ratio
equal to

√
m/k is the best choice in Step 1b. With a smaller ratio (closer to 1),

more tasks would be allocated to GPU. This would allow tasks on the critical
path to be processed faster. However, the GPUs, which can be seen as a rare
resource (since m ≥ k), may be wasted on tasks that are not accelerated enough.
For instance, if the GPU computing time of the tasks of group B in the proof of
Theorem 3 were larger, such an algorithm would perform worse than QA. On
the opposite, with a larger ratio (closer to m/k), the GPU would not be wasted
on such tasks and the loads would be divided more equally on both types of
resources. But computing the critical path, such as task d in the example graph,
could be more expensive because such a task would be inefficiently executed on
CPUs. Intuitively, the geometric mean between these two bounds (1 and m/k)
is then the best solution.

4.2 A competitive algorithm that performs well in practice

Although the QA algorithm has the best known competitive ratio, the greedy
strategy EFT (see Section 2) actually leads to better schedules on most realistic
instances because it balances the load among the resources. However, its perfor-
mance can be 2 + (m− 1)/k times worse than the optimal solution (see [10] for
a proof of this result).

We propose a new tunable algorithm, named MixEFT that benefits both
from the performance of EFT on most instances, and from the robustness of
QA on the hardest graphs. The idea is to improve EFT by switching to a
guaranteed algorithm if EFT does not perform well enough. The algorithm is
composed of two phases. In the first phase, it is equal to EFT except that it also
simulates the schedule that QA would have produced on the same instance. If



the makespan obtained by EFT is more than λ times larger than the makespan
obtained by the simulated QA (for a fixed positive parameter λ), we switch to
the second phase, and MixEFT from this point behaves as QA. A small λ leads
to a smaller competitive ratio, but may degrade the performance of MixEFT
in practice.

The competitive ratio of this algorithm is in O(λ
√
m/k). Indeed, the first

phase cannot lead to a schedule more than λ times worse than QA, and the
second phase has the competitive ratio of QA. Therefore, the algorithm is (λ+
1)(2

√
m/k+1)-competitive (see [10] for more details). Note that this competitive

ratio is not tight. The worst performance observed so far is max(λ, 2
√
m/k+ 1).

5 Simulations

We now provide simulations to illustrate the performance of both competitive
algorithms and simple heuristic strategies on various task graphs.

5.1 Baseline heuristics

In addition to the four online algorithms discussed above (ER-LS from [2],
QA, EFT, and MixEFT, implemented with λ = 2 unless otherwise specified),
we consider two simple strategies that follow the same scheme as QA, with a
different allocation criteria: Quickest allocates each task to the resource type
on which its computing time is smaller; Ratio allocates a task on GPUs if and
only if its GPU computing time is at least m/k times smaller than its CPU
computing time. Intuitively, Quickest should perform well on graphs on which
the critical path is preponderant as it minimizes the execution time of each task.
On the opposite, Ratio should perform well on graphs with a high parallelism
throughout the execution, as it will execute more tasks concurrently on the
CPUs. We also used the offline HEFT algorithm [25], which is known to perform
well in practice, as a baseline to compare all online strategies.

5.2 Experimental setup

We used three types of instances: realistic DAGs corresponding to a linear alge-
bra application, namely the Cholesky factorization, random DAGs used in the
literature, and ad hoc instances designed to be difficult for this problem and
specifically for QA.

Cholesky factorization is a linear algebra application whose parallel imple-
mentation usually uses a blocked algorithm on a tiled matrix for performance
issues. We consider matrix sizes ranging from 2× 2 tiles to 15× 15 tiles, which
leads to DAGs with 4 to 680 tasks. Tasks correspond to four linear algebra ker-
nels: GEMM, SYRK, TRSM, and POTRF. Their respective processing times
on a CPU are set to 170ms, 95ms, 88ms, and 33ms, and on a GPU to 5.95ms,
3.65ms, 8.11ms, and 15.6ms, which corresponds to measures [1, 6] made using
the Chameleon software [12].



The random instances come from the STG set [23], which is often used in
the literature to compare the performance of scheduling strategies. We report
here the simulations made with 180 graphs of 300 nodes each. We consider that
the cost generated by the STG random generator is the processing time of the
corresponding task on a GPU. Based on the previous measures for linear algebra
kernels, we assume that the average speedup between CPU and GPU is around
15 with a large variance. Thus, to obtain the processing time of a task on CPU,
we multiply its cost on GPU by a random value with expected value 15 and
standard deviation 15. For that, we use a gamma distribution because it has
been advocated for modeling job runtimes [15], it is positive and it is possible to
specify its expected value and standard deviation by adjusting its parameters.

Finally, specific random instances have been designed to test the limitations
of QA. These ad hoc instances consist of a chain of tasks together with a set of
independent tasks, such that all cores are expected to finish simultaneously if a
GPU is dedicated to the chain and all independent tasks are load-balanced on
the other cores. The expected processing time of each task on a GPU is 1 (with a
standard deviation of 0.1). Each instance is parameterized by a number µ, which
represents the expected processing time on a CPU, and varies from (m/k)−1/4

to (m/k)5/4 (the standard deviation of the CPU processing times is equal to
10% of µ). For a given expected CPU cost µ, the number of tasks in the chain
is equal to d n

m/µ+k e, where n = 300 is the total number of tasks. Therefore, the

larger µ, the longer the chain.

We have performed simulations for various platform sizes, whose results are
available in [10]. As expected from the theoretical analysis, the behaviors of the
heuristics mainly depend on the value m/k. For the sake of brevity, we only
report here the results obtained for m = 20 CPUs and k = 2 GPUs, as it is
representative of the results for relatively large values of m/k. The code and
scripts used for the simulations and the data analysis are available online [9].

5.3 Results

Figure 3 depicts the performance of the six online scheduling algorithms. Except
when varying its parameter (Figure 3(d)), MixEFT performs exactly as EFT
(and is thus omitted for better readability). On Cholesky DAGs (Figure 3(a)),
EFT (and thus MixEFT) is always the best strategy. The only difference be-
tween QA and ER-LS concerns the first tasks (as we removed Step 1a in QA),
which explains why their behaviour is similar for large graphs. QA, ER-LS, and
Ratio all put POTRF tasks on the CPU, which leads to performance loss when
the graph is small because its parallelism is limited and the GPUs are often idle.
However, it is acceptable for larger graphs in which many tasks may be executed
in parallel on the GPUs. On the contrary, Quickest puts all tasks on the GPUs.
This is efficient for small graphs with low parallelism but it becomes worse than
Ratio for large graphs.

Figure 3(b) shows similar trends on the random graphs from STG set: EFT
(and thus MixEFT) gives the best results, followed by QA and ER-LS.



1.0

1.5

2.0

2.5

10 100

Number of tasks
(a) Cholesky DAGs

1.0

1.5

2.0

2.5

EFT QA ER-LS RatioQuickest

Algorithm
(b) DAGs from STG

1

3

5

7

9

1 10

Expected CPU cost µ
(c) Ad hoc instances

1

3

5

7

9

QA 0.8 1 1.2 1.4 EFT

MixEFT parameter λ
(d) Ad hoc instances

R
a
ti

o
to

H
E

F
T

Algorithm EFT QA ER-LS Ratio Quickest MixEFT

Fig. 3. Ratios of the makespan over HEFT for EFT, QA, ER-LS, Ratio, Quickest,
and MixEFT with m = 20 CPUs and k = 2 GPUs. Except in Figure (d), MixEFT
is not shown because it performs exactly as EFT. In Figure (d), ER-LS, Ratio, and
Quickest are discarded.

Figure 3(c) first shows that EFT (and MixEFT) is almost always the best
online heuristic for these ad hoc graphs. For extreme values of the expected
CPU processing time µ (significantly smaller than 1 or larger than m/k), all four
other heuristics are equivalent and perform well. Otherwise, when µ is slightly
larger than 1, the instance contains many independent tasks and Quickest is
almost m/k worst than HEFT because scheduling independent tasks on GPUs
is not efficient. Symmetrically, when µ is slightly smaller than m/k, the instance



contains a large critical path and Ratio shows poor performance, because it
schedules the critical path on CPUs. QA and ER-LS take the best of these two
strategies, and have a worst performance

√
m/k ≈ 3 times larger than HEFT,

when µ is close to
√
m/k.

Figure 3(d) shows that MixEFT behaves like QA when its λ parameter is
smaller than 1, and rapidly changes to mimic EFT when the parameter increases
and exceeds 1. Note that in all studied instances, EFT was never far from HEFT
and that there is no practical gain of using MixEFT rather than EFT. The main
advantage of MixEFT lies in its competitive ratio whereas EFT can lead to very
large makespans on specific instances.

6 Conclusion

In this paper, we have focused on the problem of scheduling task graphs on hybrid
platforms made of two types of processors, such as CPUs and GPUs. We have
studied the online case, when only the tasks whose predecessors are all completed
are known to the scheduler, and the graph is thus gradually discovered. We
proved that no scheduling algorithm can have a competitive ratio smaller than√
m/k, and studied how this ratio varies when more knowledge on the graph is

given to the scheduler and/or tasks may be migrated between processors. We
have proposed a (2

√
m/k+1)-competitive algorithm as well as a mixed strategy,

which is both Θ(
√
m/k)-competitive and performs as well as the best heuristics

in practice. This is demonstrated through an extensive set of simulations. Our
future work includes taking into account communication times when moving
data from/to the GPUs, and coping with inaccurate processing time estimates.

Data Availability Statement and Acknowledgments

The datasets generated during and/or analyzed during the current study are
available in the Figshare repository: https://doi.org/10.6084/m9.figshare.
6353456.

This work was supported by the SOLHAR project (ANR-13-MONU-0007)
which is operated by the French National Research Agency (ANR).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: IPDPS. IEEE (2016)

2. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Euro-Par 2017: Parallel
Processing. pp. 220–231 (2017)

3. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task schedul-
ing on multi-accelerator based platforms. In: ICPADS. pp. 291–298 (Dec 2010)

https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.6084/m9.figshare.6353456


4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Conc. and
Comp.: Practice and Experience 23(2), 187–198 (2011)

5. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Approximation proofs of a fast and
efficient list scheduling algorithm for task-based runtime systems on multicores and
GPUs. In: IEEE IPDPS. pp. 768–777 (2017)

6. Beaumont, O., Cojean, T., Eyraud-Dubois, L., Guermouche, A., Kumar, S.:
Scheduling of linear algebra kernels on multiple heterogeneous resources. In: HiPC
(2016)

7. Bleuse, R., Gautier, T., Lima, J.V., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: A new affinity based algorithm for heterogeneous archi-
tectures. In: Euro-Par 2014: Parallel Processing. pp. 560–571 (2014)

8. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurrency and Com-
putation: Practice and Experience 27(6), 1625–1638 (2015)

9. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Code for simulating online
scheduling of task graphs on hybrid platforms, figshare, code (2018), https:

//doi.org/10.6084/m9.figshare.6353456

10. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of task graphs
on hybrid platforms. Research report 9150, INRIA (Feb 2018)

11. Canon, L.C., Marchal, L., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. In: Euro-Par 2017: Parallel Pro-
cessing. pp. 232–244 (2017)

12. Chameleon, a dense linear algebra software for heterogeneous architectures. https:
//project.inria.fr/chameleon

13. Chen, L., Ye, D., Zhang, G.: Online scheduling of mixed CPU-GPU jobs. Int.
Journal of Foundations of Computer Science 25(06), 745–761 (2014)

14. Drozdowski, M.: Scheduling parallel tasks – algorithms and complexity. In: Leung,
J. (ed.) Handbook of Scheduling. Chapman and Hall/CRC (2004)

15. Feitelson, D.: Workload modeling for computer systems performance evaluation.
Book Draft, Version 1.0.1 pp. 1–601 (2014)

16. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM journal on
Applied Mathematics 17(2), 416–429 (1969)

17. Imreh, C.: Scheduling problems on two sets of identical machines. Computing 70(4),
277–294 (2003)

18. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: IEEE IPDPS Workshops. pp. 27–33
(2015)

19. Leung, J.Y.: Handbook of scheduling: algorithms, models, and performance anal-
ysis. CRC Press (2004)

20. Olivier, B., Lionel, E., Suraj, K.: Fast approximation algorithms for task-based run-
time systems. Concurrency and Computation: Practice and Experience https://

onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502, online Version of Record
before inclusion in an issue

21. Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for
two-type heterogeneous multiprocessors. Real-Time Systems 50(1), 87–141 (2014)

22. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: SBAC-PAD. pp. 112–119 (2014)

23. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multi-
processor scheduling algorithms. Journal of Scheduling 5(5), 379–394 (2002)

https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.6084/m9.figshare.6353456
https://project.inria.fr/chameleon
https://project.inria.fr/chameleon
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502


24. TOP500 Supercomputer Site, http://www.top500.org, List of November 2017
25. Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE TPDS 13(3), 260–274 (2002)

http://www.top500.org

	Online Scheduling of Task Graphs on Hybrid Platforms

