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Abstract. In many areas images can be corrupted by various types of
noise and therefore image denoising is a prerequisite. For example, med-
ical images like the 4D-CT or ultrasound ones, are prone to noise and
artifacts that can affect diagnostic confidence. Remote sensing is another
field for which image preprocessing is mandatory to improve the quality
of source images. Synthetic Aperture Radar (SAR) images are typically
corrupted by multiplicative speckle noise. In this paper, a deep neural
network able to deal with both additive white Gaussian and multiplica-
tive speckle noises is developed, showing also some blind denoising ca-
pacity. The experiments on noisy images show that the proposal, which
consists in a encoder-decoder, is efficient and competitive in comparison
with state-of-the-art methods.

Keywords: Image denoising, Additive and multiplicative noises, Deep
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1 Introduction

In today’s digital world, an increasing amount of digital images is produced every
day. Nevertheless, the visual quality of an image is not guaranteed, since different
sources of noise can influence the pixel values. A main source is the acquisition
process and particularly the presence of defaults in the capturing device: noise
can be produced by the sensor, misaligned lenses, and so on, but noise can also
be added during its edition, storage or transmission. As a result, different types
of noise can appear in a digital image, such as Gaussian noise, Salt-and-pepper
noise, etc., and at different levels. For an observer, the impact of noise can range
from isolated speckles up to images that seem to show nothing but noise.

To recover as precisely as possible a clean image y from a noisy version x
that is the outcome of an arbitrary stochastic corruption process n: = n(y), an
efficient image denoising method is needed. Formally, the goal of image denoising
is thus to find a function f that approximates as well as possible the inverse
function of n:

f= arg]{nin Ey || flz)—yl3. (1)



It should be noticed that additive white Gaussian noise is often targeted, in
which case the corruption process can be rewritten as x = y + N (0, o) where o
is the standard deviation.

To solve this problem, there are two main categories of methods: model-
based optimization methods and discriminative learning methods. The objective
of the former methods is to directly solve the optimization problem, but, as
this problem is usually complex, they are time consuming. On the other hand,
discriminative learning methods try to learn a set © of parameters defining
a nonlinear function f that approximates n~' by minimizing a loss function
according to a data set that consists of clean-noisy images pairs. In that case,
the previous problem can be expressed as follows:

1S,
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where z; is the noisy version of y; and NV is the size of the data set. Compared to
model-based methods, discriminative ones are less flexible since they are usually
trained to deal for a specific underlying model of corruption.

Typical examples of model-based methods are BM3D [4] and WNNM (7],
while neural networks are representatives of the discriminative family. Obvi-
ously, even if the MLP has been investigated [2], with the current rise of deep
learning, deep neural networks are now the most actively studied discriminative
methods. One of the first deep network proposal was made by Xie et al. [18] in
2012, it consisted in a stacking of auto-encoders where each auto-encoder was
trained one after the other. In 2014, Long et al. [10] introduced the Fully Convo-
lutional Networks (FCN) for semantic segmentation, an architecture that allows
to produce segmentation maps whatever the image size and faster than with
patch classification approaches. A work that has led to the widespread use of
deep networks in which the fully connected part is dropped for dense predictions.

Image denoising is such a dense prediction task, whose objective is to recover
for each pixel its original gray level value. Consequently, among the various deep
networks that have recently been investigated to tackle the image denoising prob-
lem, almost all of them have adopted the FCN paradigm. However, even if these
networks belong to the same family, differences among them can be observed.
First, a FCN can be trained to recover directly the clean image or to predict a
residual image that is subtracted from the noisy input one [19]. Second, a central
problem when using a CNN for image denoising (or segmentation) is due to pool-
ing layers. Indeed, a pooling layer usually performs a spatial downsampling and
as the input and output images must have the same size, it means that an up-
sampling process is needed. On the one hand the pooling permits to enlarge the
field of view, but on the other hand the aggregation throws away useful spatial
information. To address this issue, several different architectures have emerged:
architectures without pooling layers and the encoder-decoder architecture.

The proposal is presented thereafter throughout the following sections. Sec-
tion 2 starts with a discussion on related existing discriminative denoising meth-
ods and more specifically deep learning ones. An overview of the proposed deep



neural network design with its main characteristics is given in the following sec-
tion. Section 4 is dedicated to the experiments, showing the relevance of the
proposed approach. Finally, some concluding remarks are given in Section 5.

2 Related Works

A first example of architecture for image denoising that only has convolutional
layers is the deep network called DnCNN (Deep network CNN) proposed by
Zhang et al. [19] considering a residual learning formulation. The CNN is com-
posed of layers with three different convolutional blocks using a unique con-
volution kernel size of 3 x 3: Convolution+ReLU for the first layer, Convolu-
tion+BatchNorm+ReLU in the intermediate layers, and only Convolution in
the final layer. It has a receptive field whose size depends on the network depth
and which is correlated with the effective patch size of other denoising methods.
In fact, most of the denoising methods such as BM3D, WNNM, MLP, and so on
operate on patches. The authors have thus chosen to increase the receptive field
through a large depth. The networks of 17 and 20 layers that they trained for
additive Gaussian denoising, respectively for a specific noise level and for blind
denoising, outperformed slightly both BM3D and WNNM on the BSD68 data
set of grayscale images. A recently proposed alternative to an increased depth
or to increasing filter sizes is the use of dilated kernels, also known as atrous
convolution. Indeed, convolutional layers that only use 3 x 3 kernels but with
multiple atrous rates perform an analysis of the image at multiple scales without
needing a large depth. This approach has also been studied by Zhang et al. in
another work [21], leading to similar denoising performances.

Zhang et al. have finally introduced another architecture [20] to handle a
wide range of noise levels and spatially variant noise. This architecture, called
FFDNet for fast and flexible denoising convolutional neural network, consists of
a CNN similar to the one of DnCNN, but that does not predict the noise. The
CNN receives as input four sub-images obtained from the initial input image
using a reversible downsampling operator (factor is set to 2) and a tunable
noise level map. As output it produces four denoised sub-images which are then
upsampled to recover the final output image. For Additive White Gaussian Noise
(AWGN) removal, the experiments show that DnCNN is better for low noise
levels (o < 25), whereas for larger values FFDNet becomes gradually slightly
better with the increase of noise level. This result is all the more interesting as
it is the version of DnCNN trained for a specific noise level that is considered,
whereas FFDNet is trained in a blind context with noise level o € [0; 75].

An encoder-decoder is quite different. The encoder consists of convolutional
layers that successively downsample the input image into small abstraction maps
from which the noise is removed as the process goes deeper. The decoder is then
fed by the final abstraction map in order to reconstruct a clean image thanks
to deconvolutional layers. The reconstruction by the decoder is clearly the most
difficult part since image details might be lost during the features extraction per-
formed by the encoder. To mitigate this problem, a common approach is to adopt



the skip connection method. In this work we have considered an encoder-decoder
with such connections. A similar architecture, but considering a residual learning
pattern, has been investigated by Gu et al. in [6] for SAR image despeckling.
Compared to SAR-BM3D and DnCNN, this Residual Encoder-Decoder NET-
work (RED-NET) has given improved denoising performances.

3 The Proposed Deep Network for Image Denoising

3.1 Network Architecture

Our network is similar to a generator architecture introduced by Isola et al. [8]
in their investigation of conditional adversarial networks to solve image-to-image
translation problems, an architecture which is itself an adaptation of one issued
from [14]. The generator we consider is the U-Net [15] version corresponding
to an encoder-decoder having skip connections between mirrored layers in both
encoder and decoder stacks. The encoder extracts salient features preserving the
detailed underlying structure of the image, while simultaneously removing the
noise, whereas the decoder produces a clean version of the input image by recov-
ering successive image details as it progresses through its layers in a bottom-up
way from the bottleneck layer of the encoder. Each skip connection allows to
directly shuttle the information from an encoder layer to its corresponding de-
coder one, and this is appealing since the input noisy image and output clean
version share large parts of the low-level information like the location of promi-
nent edges. In fact, skip connections allow to remember different levels of details
that are useful to reconstruct the final output image.

Symmetric skip connections are very interesting because they facilitate the
training and improve image recovery. On the one hand, skip connections allow
to solve the vanishing gradient problem by backpropagating the signal directly
and, on the other hand as both input and output images have the same content,
the recovery of the clean version can benefit from the details appearing in the
corrupted one. Thus, better results are usually obtained with skip connections.

From an architecture point of view, following the specification given in [§],
the encoder is almost exclusively composed of Convolution-BatchNorm-ReLLU
layers, a typical choice in CNN, except the first layer that does not undergo the
batch normalization. Let us notice that, as illustrated in the previous section,
this kind of convolutional block is also the one used in many FCN that do not
have an encoder-decoder architecture. For its part, the decoder consists of a
mixing of this kind of layer and a variant of it integrating a dropout rate of
50% before the ReLLU activation. Neither pooling nor unpooling operations are
used, because aggregation induces some losses of details which, in the context
of image denoising, can be awkward. Since convolutions and deconvolutions use
4 x 4 kernels with stride 2, each encoder and decoder layer will produce feature
maps which are downsampled and upsampled, respectively, by a factor of 2.
The last top decoder layer is mapped back to the output clean image with a
deconvolution followed by a tanh activation. Our code is available on GitHub!.

! https://github.com/rcouturier /TmageDenoisingwithDeepEncoderDecoder
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Fig. 1. Schematic diagram of the proposed deep encoder-decoder network architecture.

Figure 1 shows the detailed structure of the proposed encoder-decoder. The
symmetric u-shape of the network can be in particular noticed, with the con-
tracting path which consists of the encoding layers (left-right arrows) on the
top part, while the expansive path on the bottom part is made of the same
number of decoding layers (right-left arrows). Each light blue box represents a
set of feature maps issued from an encoding layer and each greenish-blue box
with horizontal line pattern one from a decoding layer. Obviously, the size of the
input image defines an upper bound on the number of layers in the encoder and
decoder. The x-y size of the feature maps, as well as their number, is provided
on the top (encoding part) or bottom (decoding part) of each box. For example,
in the case of the decoder, 4% x 512 x 2 means that there are 1024 maps of size
42, where 512 maps are the result of the decoding of the bottleneck layer and
the other 512 ones the higher resolution features map copied from encoder. The
different arrows denote the different operations. On the one hand convolution
operations are represented by left-right arrows and on the other hand deconvolu-
tion ones by right-left arrows. The respective TensorFlow module implementing
each operation, namely conv2d and conv2d_transpose, are used in the labels.



3.2 Loss Function

A factor that has a major impact on the obtained neural network is obviously the
loss function used to drive the training process. Despite its importance, the choice
of this function is hardly ever discussed in most research works. Usually the
choice simply consists in deciding whether to use the L1—norm or the L2—norm,
the latter being the most popular option. However, even if properties of the
L2—norm explain why it is the default choice, in the case of image restoration
tasks and particularly for image denoising it is disputable. First, the key objective
of image denoising is to improve the visual quality from a human observer’s point
of view and the L2—norm is clearly not correlated with this desirable objective.
Second, it is known that the Euclidean metric is optimal when white Gaussian
noise is encountered, but for other noise schemes alternative metrics should be
considered [5]. Therefore, a loss function that is based on a metric reflecting the
visual quality should be investigated.

Such an investigation can be found in [22], a paper in which the authors
compared several losses considering two state-of-the-art metrics for image qual-
ity: the Structural SIMilarity (SSIM) index [16] and the MultiScale Structural
SIMilarity (MS-SSIM) index [17]. They compared both norms, SSIM, MS-SSIM,
and their own loss function that is a combination of MS-SSIM and L1—norm on
different image restoration tasks, among which joint denoising and demosaicking
of color image patches (31 x 31 pixels) using a FCN of three layers with PReLU
activation in the first two ones. We independently came up with the same idea
to investigate a loss function that combines the losses £ and £99'M denoted
by LEMHSSIM in the following. It should be noted that the work presented in
[22] focuses on the analysis of loss functions and not on the design of a FCN for
image denoising. Formally, £ and £557M losses are defined by:

L1 SSIM 2papy + C1 204y + O

L (CL’y ||Z|SIJ y|£ (xy 1_HEH¢+M§+010§+05+02

®3)
where x is the noisy version of the clean image y and u, o, are means and
standard deviations that depend on pixel p. Both are computed using a Gaussian
filter with standard deviation og. C; = (K1L)? and Cy = (K3L)? are two
constants, where L is the dynamic range of the pixel values (1 in our case due
to normalization in [0;1]), K7 « 1 and Ky « 1. In fact, the SSIM index is a
similarity measure that combines three comparison functions measuring different
kinds of changes between images: luminance, contrast, and structure, but thanks
to a simplification it can be expressed as a product of two terms.

pex peX

4 Experimental Results

4.1 Data Set and Network Training

For image denoising, images from the Berkeley Segmentation Data Set (BSD
or BSDS)? [13] are widely used for training and testing. For example, in [12]

2 https://www?2.eecs.berkeley.edu/Research /Projects/CS /vision/grouping/segbench /



they used the 300 images from BSDS300 to generate patches for training and
200 images for testing (the 200 fresh images from BSDS500). In [19], Zhang et
al. followed [3] and hence trained their image denoising model DnCNN using
400 BSD images considering three different noise levels. More precisely, for each
noise level they cropped 128 x 1,600 patches of size 40 x 40. In [20], they used
a similar approach to train FFDNet for AWGN denoising in grayscale images.

However, it is admitted that the training of deep networks can benefit from
a large data set and therefore the question of extending the routinely used small
BSD training set arises. Hence, in their most recent works [20, 21], Zhang et al.
not only considered 400 images from BSD, but also selected 400 images from the
validation set of ImageNet database and 4, 744 images of Waterloo Exploration
Database [11]. According to their experimental study in [21], the training with
an enlarged data set does not improve the denoising performance. In a first
evaluation we do not consider the BSD data set, neither for training, nor for
testing. We used as data set a subset of the 10,000 gray images of 512 x 512 pixels
provided by the BOSS database [1]: the first 3,000 images of the database are
used, with 2,800 images for training and the 200 remaining ones for testing.

A network is trained during 50 epochs for a specific type of noise, using the
Adam optimizer [9]. The traditional SGD is replaced due to the observation of
Mao et al. [12] that Adam provides a faster training convergence of their encoder-
decoder networks. The computations have been completed on a NVIDIA Tesla
Titan X GPU, with a training time for a given noise level of about 5 hours.

4.2 Denoising Performance

A measure used to assess the denoising performance of an approach is the Peak
Signal-to-Noise Ratio (PSNR), even if it is known to be a poor quality metric
when the purpose is to compare the images as perceived by the human visual
system. Indeed, a high PSNR value and good visual quality do not necessarily
go together [16]. It is rather the simultaneous taking into account of PSNR and
mean SSIM index which is a good indicator of the visual quality: when both
metrics have high values, the quality is regarded as high.

Quantitative Results Table 1 shows the quantitative results gained for AWGN,
including noise levels o € {10, 30, 50, 70, 80}, and speckle reduction on the test
set of 200 images. The speckle noise is modeled as a multiplicative noise that
follows a Gamma distribution I'(L, 1) of unit mean and variance %, where L = 1.
In each case the average PSNR and SSIM values of the noisy input images are
given, as well as the corresponding outcomes produced by BM3D, and those
issued by the proposed encoder-decoder and DnCNN. The results of DnCNN
have been obtained by using directly network models provided by the authors
in the GitHub® of their Matlab implementation. For the speckle case, the BM3D
values have not been computed since the corresponding SAR version should
have been used, while DnCNN is dropped due its focus on Gaussian denoising.

3 https://github.com/cszn/DnCNN



Table 1. Average PSNR (dB) / SSIM obtained for AWGN and speckle.

AWGN EL1+SSIM
N91sy input BM3D Encoder DnCNN
images decoder

10 28.37 / 0.5798(36.97 / 0.9282 36.07 / 0.9273 37.23 / 0.9304
30 19.17 / 0.2002|31.02 / 0.8284 32.06 / 0.8626 31.11 / 0.8334
50  15.10 / 0.1052|27.56 / 0.7591 29.97 / 0.8181 27.45 / 0.7613
70 12.64 / 0.0664|24.97 / 0.7091 28.48 / 0.7865 24.55 / 0.7041
80  11.69 / 0.0545(23.76 / 0.6882 27.99 / 0.7743

Speckle

-1 10.24 / 0.1441 27.86 / 0.7852

Table 2. Average PSNR (dB) obtained by Zhang et al. [20] for AWGN on BSD68.

AWUGN BM3D WNNM MLP DnCNN FFDNet
15 31.07  31.37 - 31.72 31.63
25 28.57  28.83 28.96 29.23 29.19
35 27.08  27.30 27.50 27.69 27.73
50 25.62  25.87 26.03 26.23 26.29
75 24.21 24.40 24.59 24.64 24.79

As can be seen, the encoder-decoder can achieve satisfactory denoising results
and outperforms almost systematically BM3D and DnCNN. Indeed, except for
AWGN with ¢ = 10, in which case the encoder-decoder gives high values but
slightly lower than those of BM3D and DnCNN, better PSNR and SSIM results
are obtained. Moreover, the noisier the images, the more advantageous it is to
use the encoder-decoder to recover clean images. For the speckle case, a com-
parison with the RED-NET results [6] shows that the proposal achieves a nearly
similar performance for L = 1. Finally, we can notice that the encoder-decoder
is able to deal with AWGN and speckle noise, once trained on the targeted noise,
an important feature which is looked for in the perspective of blind denoising.
Overall, the residual learning strategy adopted by DnCNN seems interesting for
low noise levels, but as the noise increases the reconstruction of a clean image
as performed by the proposed network is clearly more appropriate.

To further highlight the suitability of the encoder-decoder, it might be in-
teresting to have an idea of the denoising performance given by other methods.
Therefore, in Table 2 are shown the behaviors observed by Zhang et al. on BSD68
set [20] for AWGN removal with BM3D [4], WNNM [7], MLP [2], DnCNN, FFD-
Net. It can be seen that DnCNN and FFDNet outperform other methods. Even
if these results are obtained on a different data set, considering the performances
of BM3D and DnCNN in both tables as reference, the proposed encoder-decoder
appears as a valuable competitor for state-of-the-art approaches.

We have also completed a preliminary evaluation of the encoder-decoder blind
denoising ability for AWGN. To train the network, the first thousand image from



data set are used, where for each image its corresponding noisy versions with
o = 10,30,50, and 70 are computed. The training set size is thus increased by
43% (4,000 images), as is the computation time (7.2 hours). Once trained, this
blind denoiser yields the following results for o = 80: a PSNR of 27.50 dB and
0.7564 for SSIM value. Obviously, these values are inferior to the ones obtained
with the network trained specifically for ¢ = 80 shown in Table 1. But they
are slightly better than those given by the network trained only for o = 70: a
PSNR of 27.33 dB and 0.7542 for SSIM value. These results are encouraging but
a deeper investigation is needed to confirm that the proposed network can be
suitably trained to deal simultaneously with different unknown noise levels.

Visual Results Images (a) to (g) of Figure 2 illustrate the visual results of
BM3D and the proposed deep network, considering a same image, for AWGN
with ¢ = 30 and 70. It can be seen that the encoder-decoder preserves sharp
edges and finer details as the noise level increases. This point is clearly high-
lighted through the comparison of images (f) and (g), since the clock on the left
shaded part of Big Ben appears far blurrier with BM3D. Furthermore, even if for
o = 30 the PSNR result is better for BM3D, the neural network yields an image
with a better visual quality: a look on the cloudy upper left part in the images
(c) and (d) is convincing in our opinion. This observation is further supported
by the SSIM value which is equal to 0.9021 for the clean image recovered by the
encoder-decoder, whereas the one for BM3D is equal to 0.8929.

Figure 2 also shows the denoising results on two different images with noise
level 70 given by DnCNN. In both cases the proposed network recovers a clean
image with far more details and a better visual quality. This is again confirmed
by the higher values of PSNR and SSIM: for Big Ben the values obtained from the
image recovered by the encoder-decoder are, respectively, 25.01 dB and 0.8204
versus 24.11 dB and 0.7875 for DnCNN, while for the image with the bird they
are 21.86 dB and 0.7162 versus 21.24 dB and 0.6547. In the case of the speckle
noise presented in Figure 3, despite the huge corruption interesting details are
brought out, especially in the shaded part of the building.

5 Conclusion

In this paper, a fully convolutional network that consists in an encoder-decoder
with skip connections has been proposed for image denoising. The great lines
of the network have been presented and the choice of the loss function used to
carry out the training discussed. The results obtained on grayscale images show
that the network can remove AWGN and multiplicative speckle noise, provided
that it is suitably trained for the targeted noise. Moreover, compared to some
competing approaches for image denoising, the network appears to be able to
produce state-of-the-art denoising results. Finally, a preliminary evaluation of its
ability to address blind Gaussian denoising has yielded favorable performance.



(a) Ground-truth (b) Noisy (o = 30) (c) BM3D (d) Proposal

(18.83 dB) (29.54 dB) (29.06 dB)

(e) Noisy (o = 70) (f) BM3D (g) Proposal (h) DnCNN
(12.46 dB) (24.36 dB) (25.01 dB) (24.11 dB)

o »

(i) Noisy (¢ = 70) (j) Ground-truth (k) Proposal (1) DnCNN
(21.86 dB) (21.24 dB)

Fig. 2. AWGN denoising results (PSNR) of an image with noise level o = 30: (a)-(d)
and two images with noise level o = 70: (e)-(h) for Big Ben and (i)-(1) for the bird.

(a) Ground-truth (b) Noisy (L =1) (c) Proposal
(7.18 dB) (24.54 dB)

Fig. 3. Speckle denoising results (PSNR) of one image with L = 1.
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