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Abstract—Although efforts in this field are significant around
the world, real prognostics systems are still scarce in industry.
Indeed, it is hard to provide efficient approaches that are able to
handle with the inherent uncertainty of prognostics and nobody
is able to a priori ensure that an accurate prognostic model can be
built. As for an example of remaining problems, consider data-
driven prognostics approaches: how to ensure that a model will be
able to face with inputs variation with respect to those ones that
have been learned, how to ensure that a learned-model will face
with unknown data, how to ensure convergence of algorithms,
etc. In other words, robustness, reliability and applicability of
a prognostic approach are still open areas. Following that, the
aim of this paper is to address these challenges by proposing
a new neural network (structure and algorithm) that enhances
reliability of RUL estimates while improving applicability of
the approach. Robustness, reliability and applicability aspects
are first discussed and defined according to literature. On this
basis, a new connexionist system is proposed for prognostics: the
Improved-Extreme Learning machine (Imp-ELM). This neural
network, based on complex activation functions, enables to reduce
the influence of human choices and initial parameterization, while
improving accuracy of estimates and speeding the learning phase.
The whole proposition is illustrated by performing tests on a
real industrial case of cutting tools from a Computer Numerical
Control (CNC) machine. This is achieved by predicting tool
condition (wear) in terms of remaining cuts successfully made.
Thorough comparisons with adaptive neuro fuzzy inference
system (ANFIS) and existing ELM algorithm are also given.
Results show improved robustness, reliability and applicability
performances.

I. INTRODUCTION

With recent advances in modern technology, industrials and

researchers are progressing toward enhanced maintenance sup-

port systems that aim at improving reliability and availability

of critical engineering assets while reducing overall costs.

More precisely, it is nowadays assumed that adequate actions

(either maintenance tasks, either load profile changes) must

be performed in a timely manner so that, critical failures

that would lead to major breakdowns or huge wastes, can

be avoided. Within this framework, to fulfill such time crit-

ical needs of modern industry, condition based maintenance

(CBM) appears to be a promising activity that utilizes real

monitoring data to facilitate relevant indicators and trends that

depict the health of the system. The uses of CBM technology

enables to perform maintenance actions at the right time when

needed [1]–[6]. However, the question arises that, “how to

utilize the health monitoring data of an asset to determine or

predict its life time”? This enhanced application of CBM can

be achieved through prognostics approaches. According to ISO

13381-1, prognostic is defined as “the estimation of time to

failure and risk for one or more existing and future failure

modes” [7]. It is also called the “prediction of a system’s

lifetime” as it is a process whose objective is to predict the

remaining useful life (RUL) before a failure occurs given the

current machine condition and its past operation profile [3].

Prognostics should thereby enable avoiding failure risks and

inopportune spending [8].

According to literature, various approaches for prognostics

exist [3], [4], [6]. However, real prognostic systems to meet

industrial challenges are still scarce. This can be due to

highly complex and nonlinear operational environment of real

industrial systems, which makes it hard to establish effective

prognostics approaches, robust enough to tolerate uncertainty,

and reliable enough to show acceptable performance under

diverse conditions. Following that, a great attention is paid to

data-driven prognostics approaches (mainly techniques from

artificial intelligence - AI). Such methods aim at transforming

raw in situ data into appropriate information by performing

a non-linear modeling of real systems. But, the applicability

of data-driven approaches is also limited to industrial re-

quirements such as the complexity of implementation, human

choices like initial parametrization [9], [10]. Finally, huge

problems can be pointed out: robustness, reliability and ap-

plicability of prognostics approaches are still open areas that

need to be addressed. This is the global aim of this work.

More precisely, this paper emphasizes on the proposition of

an AI based approach for prognostics that, firstly is able to

face with challenges of robustness and reliability, and secondly

is applicable for real industrial cases. An improved-extreme

learning machine (Imp-ELM) algorithm is proposed, that is
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basically an extension of the existing ELM algorithm for single

hidden layer feed forward neural networks [11]. In addition,

due to potential benefits of ELM over its close counterpart

form AI domain, performances of the proposed connexionist

system are discussed by performing tests on a real industrial

case of cutting tools from a Computer Numerical Control

(CNC) machine for which various AI methods have already

been proposed before [10], [12], [13].

The paper is organized as follows. Section II addresses prog-

nostic modeling challenges. This enables to point out the

problems of robustness, reliability and applicability of prog-

nostics approaches, and to define them. Section III presents the

proposed Imp-ELM algorithm in context to potential benefits

towards enhanced prognostics. Lastly, in section IV the whole

proposition is illustrated by applying it to a real industrial case

of CNC machine for predicting life span (wear) of a 6 mm

ball-nose 3-flutes tungsten carbide milling cutters in a high

speed milling operation. Results of an Imp-ELM approach are

benchmarked with ELM and adaptive neuro fuzzy inference

system (ANFIS) in order to discuss performances of the

approach.

II. DATA-DRIVEN PROGNOSTIC MODELING - SOME

CHALLENGES

A. Background and limitations of data-driven prognostics

1) From data to robustness: Data-driven prognostic meth-

ods rely on the assumption that the statistical characteristics of

data are relatively unchanged unless a malfunctioning occurs.

These methods aim thereby at transforming raw monitoring

data into relevant information and behavior models (including

the degradation) of the system. Availability of data is therefore

a critical point.

However, real industrial systems are intrinsically not “perfect”

and the usefulness of gathered data is highly dependent on the

variability of phenomena, sensor nonlinearity, etc. Also, the

degradation of an asset can not always be directly measured,

so that indirect observations must be imagined. This all makes

difficult for understanding (and modeling) of complex and un-

certain behavior of real systems. Following that, it is obviously

difficult to provide a prognostic model that is insensitive to

uncertainty, and is capable of capturing dynamics of degrading

asset in an accurate manner. Robustness of prognostics models

appears to be an important aspect [14], and still remains a

critical issue [15].

2) From robustness to reliability: Besides that, even if an

approach appears to be robust enough to tolerate uncertainty,

it also should be reliable enough to be used in a context that is

slightly different from this one that has been considered during

the training phase. In other words, the prognostic model should

be able to face with variations related to the context, such

as, multiple operating conditions, geometric scale or materials

differences of components etc. Robustness and reliability of

a prognostic approach appear to be closely related [16], and

both should be considered as important to ensure the accuracy

of RUL estimates.

3) From reliability to applicability: Even if a prognostic

model fits with robustness and reliability criteria, it also

has to be chosen accordingly to implementation requirements

and constraints that restrict the applicability of the approach.

Mainly, these constraints can be related to the quality and

quantity of data, the generalization capability that is expected,

the complexity and computational time required by the model,

the human assumptions that clearly impact accuracy of results,

etc. [9], [17]. This applicability problem still remains a tech-

nical challenge.

4) Synthesis of challenges addressed: According to all

above, the accuracy of a prognostic model is related to the

ability to face with input variations, unknown data, as well

constraints that limit its applicability [9], [10], [14]. That is,

under such challenges performance of the prognostic approach

should be acceptable enough to accurately approximate and

predict the degradation of equipment. However, for prog-

nostics modeling, challenges like robustness, reliability and

applicability are not very clear, and practitioners still face it

hard to identify their links or to define them. Some definitions

are presented in next section.

B. Defining robustness, reliability and applicability

According to author’s knowledge, robustness, reliability and

applicability of prognostic approaches are still not clearly de-

fined in literature. Therefore, according to underlying concepts

of afore mentioned works, we define them as follows.

• Robustness can be defined as the “ability of a prognostic

approach to be insensitive to inherent variations of input

data”. In practice, a robust approach should be accurate

enough to capture dynamic behavior of a degrading

system, whatever the subset of the total learning frame is

used.

• Reliability can be defined as the “ability of a prognostic

approach to be consistent in situations when new or

unknown data are presented”. Reliability depicts how

informative is the model, either when the estimated data

has not been learned, either when data with different

geometrical scale are presented.

• Applicability can be defined as the “ability of a prog-

nostic approach to be practically applied under industrial

constraints”. Applicability can refer either to implemen-

tation requirements like the computation time, either to

theoretical limits of the approach, either to plausibility of

hypothesis.

Fig. 1 depicts the underlying dependencies among the three

concepts of robustness, reliability and applicability. Enhancing

prognostics should be obtained by trying to deal with all

of them simultaneously. However, it is difficult to a priori

ensure that an accurate prognostic model can be built. Also

authors recognize that the definitions proposed in this paper

for robustness, reliability and applicability, as well as their

underlying relationships, are still not enough clear. This must

be further investigated.
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Fig. 1. Enhancing prognostics - frame and expected performances

III. ENHANCING PROGNOSTICS - THE IMP-ELM

APPROACH

A. Data driven approaches for prognostics

Data driven approaches can also be referred as machine

learning or data mining methods. For such approaches, input-

output data is considered as the major source of information,

so that behavior models can be learned directly from routinely

monitored data. Indeed, data-driven approaches learn by exam-

ples and have good capability to capture complex relationship

among data that are hard to describe. Also such methods are

suitable for situations where physics based modeling is not

favorable to replicate behavior model, or the cases for which

there is an absence of prior knowledge or human expertise.

Regarding prognostics, these methods are increasingly applied

since they can efficiently capture nonlinear and complex rela-

tion among actual survival condition and measured condition

monitoring information.

Within this category of approaches, artificial neural networks

(ANNs) are currently the most widely used machine learning

methods in prognostic domain [18]. In brief, an ANN is a

parallel structure of data processing nodes (called as neurons),

and weighted connections. In simple words, an ANN can be

addressed as a multiple inputs and multiple output (MIMO)

function approximator that appears to a user as a black box.

In addition, this kind of systems must be tuned in order to fit

the studied problem thanks to a learning phase of parameters.

Although, ANNs have several advantages like simple network

structures or good approximation capabilities, practitioners

still have to face with several issues that may limit the

applicability of ANNs for real industrial scenario [19]. As for

examples, such problems can be like: hidden neurons selec-

tions, slow iterative tuning, imprecise learning rate, presence of

local minima, overfitting, generalization ability, etc. However,

such limitations can be overcome by recently proposed new

single layer feed forward neural network algorithm called as

the Extreme Learning Machine ELM [11]. Recent survey show

the superiority of ELM over previous ANNs approaches [20].

Note that ELM has not been explicitly employed before in

prognostic domain.

B. The Extreme Learning Machine

1) Benefits from ELM: ELM introduced by [11], is a new

learning algorithm for single hidden layer feed forward neural

networks (SLFNs), which is basically a structure composed of

three fully connected layers namely, the input layer, the hidden

layer and the output layer (see Fig.2). Previously, almost all

learning algorithms for such SLFNs required adjustment of

parameters that resulted dependence between different layers

of parameters like, weights and biases. Therefore, many it-

erative tuning steps were required by learning algorithms to

achieve better performance [21]. However, unlike traditional

algorithms for SLFNs, ELM algorithm avoids iterative slow

learning procedure and thus simply performs learning in

a single-step operation. According to that, ELM algorithm

requires less human involvement, because, it does not have any

control parameters to be manually tuned, except the number of

hidden neurons, which makes it suitable for real applications

[22]. Moreover, it has been shown that, ELM has the capability

to perform good enough in domain where data are scarce [23].

1 Lk

1x 2x jx

jo

 !,k kw b

parametersRandom  

methodLinear  

Output layer

Hidden layer

Input layer

 

Fig. 2. Basic architecture of ELM [11]

2) Architecture and mathematical perspective: Consider a

basic ELM architecture as shown in Fig.2, given N distinct

learning data samples (xi, ti), where xi ∈ ℜn and ti ∈ ℜm,

therefore standard SLFN with ”L” hidden nodes and an

activation function g(x), are mathematically expressed as:

Ñ
∑

k=1

βkg(wk.xj + bk) = oj , j = 1, 2, ...., N (1)

where the coloum vector wk ∈ ℜn, an input weight vector to

connect neurons of the input layer to kth neuron of hidden
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layer. In addition, wk and xj represent the inner product of

weights and the inputs and bk ∈ ℜ denotes the bias of kth neu-

ron of hidden layer. Lastly, βk = [βk1, βk2, ..., βkm]T ∈ ℜm,

is the weight vector to connect the kth neuron of hidden

layer and output neurons. According to that, to minimize the

difference between network output oj and given target tj ,

there exist βk, wk and bk such that:

Ñ
∑

k=1

βkg(wk.xj + bk) = tj , j = 1, 2, ...., N (2)

which can be expressed in matrix form as,

Hβ = T (3)

where

H (w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ )

=







g(w1.x1 + b1) . . . g(wÑ .x1 + bÑ )
... · · ·

...

g(w1.xN + b1) . . . g(wÑ .xN + bÑ )







N×Ñ

(4)

β =







βT
1
...

βT

Ñ







Ñ×m

O =







OT
1
...

OT

Ñ







N×m

T =







tT1
...

tT
Ñ







N×m
(5)

The least square solution of the linear system defined in eq. 3,

with minimum norm (magnitude) of output weights β is given

as:

β̂ = H†T (6)

where H† represents the Moore-Penrose generalized inverse

solution.

3) Learning principles: As explained before, the ELM is

composed of three layers (input, hidden and output layers). It

should be noted that, in ELM structure, there is no bias for

the output layer neuron, which is the only difference between

basic architecture of SLFN and ELM.

To begin single-step learning, the network parameters (weights

and biases) are randomly assigned without any training pro-

cedure, so that, there is no dependence among parameters and

input data. Consequently, after random assignment of input

weights and hidden layer biases, SLFN becomes a system of

linear equations. In this manner, the unknown weights linking

the hidden layer to the output layer can be obtained analyti-

cally by simply applying Moore-Penrose generalized inverse

operation on hidden layer output matrices [24]. Moreover, it

was argued that although there are several methods to obtain

generalized inverse matrix. However, singular value decompo-

sition (SVD) is preferred for all cases [25]. As a synthesis, with

such methodology ELM approach for SLFNs results faster

learning speed and good generalization ability, and shows

enhanced applicability as compared to other approaches for

SLFNs [21].

C. Proposition of an Imp-ELM for enhanced prognostics

1) Problem formulation: As mentioned in previous section,

the learning step of the ELM is quiet efficient as compared

to traditional methods for SLFNs. Also it only requires the

hidden neurons to be tuned. However, it has been shown that

the performances of the ELM algorithm are dependent from

the parameter initialization, and that this impacts the network

complexity. Accordingly to the expected performances of a

prognostics approach presented in section II, all this needs to

be addressed.

a) The ELM avoids slow learning procedures and randomly

initializes its input to hidden layer parameters. This, random

parameter initialization step may affect the performance of

ELM and is closely related to that [22]. Consequently, such

initialization procedure of ELM may require high number of

neurons in hidden layer for better performance [26]. Moreover,

random initialization of network parameters, and the training

of ELM with large number of hidden neurons may lead to

ill-condition. That is, in such situations, the algorithm is not

robust enough to capture variations in data and therefore, the

estimated solution is nowhere closer to actual solution [27].

Thereby, the parameters initialization is of key importance and

needs to be improved.

b) Considering the network complexity factor, i.e the number

of hidden neurons, it is necessary to carefully select hidden

processing node activation functions that have good capacity to

handle complexity, and that can result a compact architecture

of network [28]. In this context, the proposed improvements

of ELM algorithm are explained in next topic.

2) Improvement: To improve the performance of ELM

approach without compromising its advantages of faster speed

and generalization ability, the random weight initialization

procedure is replaced with well known Nguyen Widrow

(NW) method [29]. Here, the assumption is to provide a

good starting point by applying NW parameter adjustment

procedure. This method is a simple modification of random

initialization for input weights and hidden biases based on

their network architecture. It has be found that, in comparison

to other methods for random parameter initialization, NW

algorithm has shown better performance [30]. Following that,

to further optimize the performance of hidden processing

layer, a complex activating function is applied, rather than

traditional activation functions for ELM, i.e. sin, sigmoid,

etc. [11]. It has been shown in previous works that, with

complex activation functions, neural networks can perform

well in real and complex domains [25], [28]. In addition,

in these works, parameters of the network are also complex

values. However, in our case real valued parameters are used

for learning and a complex activation function in hidden

processing layer to achieve better performance. In brief, such

activation functions were initially proposed by Kim and Adali

for a complex neural network model [31]. As for examples,

consider the inverse circular function arcsinz =
∫ z

0
dt

(1−t)1/2

or the inverse hyperbolic functions arcsinhz =
∫ z

0
dt

(1+t2)1/2
.

With real-valued input data, this type of complex activation
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functions return real outputs.

Finally, the improved algorithm is based on the ELM

approach with NW algorithm for random initialization of

real values of input weights and hidden biases, and with a

complex activation function for hidden processing layer. The

learning procedure of the Imp-ELM can be synthesized as

follows.

Learning requires:

• N distinct learning data samples (xi, ti), where xi ∈ ℜn

and ti ∈ ℜm

• A complex activation function gc(x)
• Ñ number of hidden neurons

Imp-ELM algorithm:

Step 1: Parameter initialization

• Initialize small (random) input weights wt and hidden

neuron biases bt
• Adjust parameters by applying NW method

- calculate βfactor = 0.7× h
1

n

where h represent no. of hidden neurons and

n represent no. of input neurons

• Adjust parameters by dividing with their norms and

multiplying with βfactor, i.e.

- wt+1 = βfactor ×
wt(random)
‖wt(norm)‖

Step 2: Obtain the hidden layer output matrix H using eq. 3

Step 3: Find the output weight matrix β using eq. 6

IV. APPLICATION ON REAL INDUSTRIAL CASE: CNC

MILLING MACHINE

A. Industrial perspective

To achieve better productivity and cost-effective means to

manufacture products with high surface quality, high speed

machining process has become most important in manufactur-

ing industry [32]. In this manner, CNC high speed mchining

tools are most widely used in manufacturing process by

industry. However, it has been found that, statistically around

20% of the down-time of such machines is related to failure of

cutting tool components, which affects productivity and result

economic losses [33]. Mainly, during the cutting process, the

tool-wear increases due to discontinuous and varying loads on

flutes of a cutter that is repeatedly engaged and disengaged

with the cutting surface [10]. More precisely, the effect of cut-

ting tool flute wear may result imperfections in cutting surface

finish and dimensional accuracy of finished parts, and can also

cause damage to the work piece or machine [34]. Besides that,

due to complex nature of flute wear phenomena, inconsistency

and variability in cutting tool geometry/dimensions as well as

the uncertainties of machining tool condition, the modeling of

cutting tool performance is a difficult task to achieve [35].

Hence, it is desirable to accurately estimate the remaining

life of degrading cutting tool to ensure better productivity and

failure avoidance. In this paper, tool wear estimation in a high

speed CNC machine is carried to evaluate our proposed Imp-

ELM approach modeling performances.

B. Experimental Setup

Tests were made thanks to real data provided by Simtech

Institute in Singapore, where a high speed CNC milling

machine (Roders Tech RFM 760) with spindle speed 10360

rpm was used as a test-bed [12], [34]. In the machining test,

the material of work-piece used was Inconel 718. Mainly, 3

cutting tools of tungsten carbide with 6 mm ball-nose/3-flutes

were used in a high speed milling operation. The work-piece

was cut-off from the original stock and then to get rid of

its original skin layer with hard particles, the surfaces were

prepared via face milling process. While milling the feed rate

was 1.555 mm/min. The Y depth of cuts generated was 0.125

mm and Z depth of cuts was 0.2 mm. During the experimental

phase of cutting process, the authors of experiments recorded

monitoring data in terms of tool wear represented by force,

acoustic and vibration properties of cutting operation. This task

was performed after each cut by using dynamometer, acoustic

emission and accelerometer sensors. However, the cutting

force signal was used instead, because of its highly sensitivity

to cutting tool wear and good measurement accuracy [34].

Therefore, to measure force signals during cutting, the dy-

namometer was placed between the work-piece and machining

table to obtain cutting forces in form of charges and converted

them to voltages. The obtained voltage signal was sampled

by PCI 1200 board at 50 kKHz and directly streamed to the

hard drive of a computer. The collected date was composed

of 315 cuts made by 3 individual cutters during experiments.

The wear patterns of 315 cuts made by 3 cutting tools namely

C33, C18 and C09 are show in Fig. 3 in which the max wear

of all cutters is indicated by dotted line and a wear limit know

in advance is supposed. It should be noted that, cutters C33

and C18 are of same geometry but different coatings, while

cutter C09 has its own geometry design and coating. Lastly,

a total of 16 main features were extracted using force signals

against each cut for learning of prognostic models [12], [34].
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Fig. 3. Wear patterns with max wear and provided limit

C. Methodology of tool wear estimation

The growing imperfection in cutting surface finish form

worn cutters can lead to rework or scrapping the work-piece or
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even cause damage to the machine. Therefore, the main aim

of cutting tool wear estimation is to accurately predict the

remaining useful life of cutter during the machining process.

That is predicting the cutting tool condition (wear) in terms of

remaining cuts that could made successfully for a give wear

limit. Thereby, for this application the limit of 150.10−3 mm is

considered (see Fig. 3). Further, in order to conduct tool wear

estimation task, selected feature data and measured wear from

cutting tool are stored into database. Thus, dataset is composed

with a total of 3 cutters with 315 wear patterns from each cut-

ting tool. Due to inherent complexity of tool wear phenomena,

the simulation task is performed in a comprehensive manner

by considering inherent challenges of prognostic modeling. In

addition, the simulations aim to validate our proposed Imp-

ELM algorithm for a considered case, and to benchmark

it with ELM and ANFIS approaches. Therefore, learning

of prediction models is performed in order to analyze the

performances of these tools in terms of robustness, reliability

and applicability (as proposed in section II). Fig. 4) depicts the

whole procedure. Same data sets from cutting tool wear ware

used for the three models. Simulation settings of each model

are shown in Table I. During simulation phase, different tests
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Fig. 4. Methodology for cutting tool wear prediction

TABLE I
PREDICTION MODELS - SETTINGS

Imp-ELM Parameters Settings

In. / Hidden / Out. layer neurons 4 / 15 to 25 / 1
Hidden Act. function. arcsinh

ELM Parameters Settings

In. / Hidden / Out. layer neurons 4 / 70 to 80 / 1
Hidden Act. function. sin-sig

ANFIS-Parameters Settings

Input / Output layer neurons 4 / 1
Number / type of input memb. ftn 2 / Pi-shaped

FIS First order Sugeno
Training Algorithm Hybrid Method

are performed using learned models in order to analyze their

robust and reliable performance in terms of accuracy, as well

as to assess their applicability by considering time and network

complexity. The obtained results are mainly divided into two

different cases for better understanding.

D. Case A: Single tool model - Results and discussion

This case aim at evaluating the prediction accuracy of each

model by assessing their robust performance with a single

cutting tool to establish a model i.e., C33, C18 and C09.

Therefore, for learning purpose, training set from a particular

cutting tool is created by randomly selecting half of the data

samples, while rest of the data are presented in chronological

order to test the accuracy of the learned model. Performances

are assessed by computing the Mean Average Percent Error

of prediction (MAPE) that should be as low as possible, the

coefficient of determination (R2) that should be closer to 1,

and the computation time (T ime), that is the required time to

learn dataset. This procedure is repeated 10 times for each

model-cutting tool couple, that is creating random training

input data set and assessing its prediction accuracy against

varying input patterns. Further, the results obtained from 10

repetitions are averaged to accumulate model performance. A

comparison of tool wear prediction robustness and complexity

from all model-cutting tool couples is shown in Table II. One

TABLE II
TEST CASE A: ANALYZING ROBUSTNESS PERFORMANCE FOR

PREDICTIONS WITH SINGLE TOOL MODEL

Cutter 33
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 150/165 0.047 0.89 0.02

ANFIS Force 150/165 0.050 0.83 0.70
ELM Force 150/165 0.064 0.41 0.03

Cutter 18
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 150/165 0.064 0.95 0.02

ANFIS Force 150/165 0.081 0.92 0.69
ELM Force 150/165 0.121 0.75 0.03

Cutter 09
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 150/165 0.035 0.82 0.02

ANFIS Force 150/165 0.040 0.77 0.71
ELM Force 150/165 0.040 0.78 0.01

can note that, for all cutters with varying input data, Imp-ELM

model with compact architecture show robust performance as

indicated by its testing accuracy. Moreover, with given data

set ELM and Imp-ELM models can learn faster as compared

to ANFIS model. A comparative plot of tool wear prediction

from all models using cutter C18 are shown as an example in

Fig 5.

E. Case B: Multi-tools model - Results and discussion

This case investigates multi-tools model performances with

two different testing methodologies. Step 1. In this step, model
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Fig. 5. Tool wear predictions for a single tool model - robustness illustration

reliability performance is investigated by establishing a multi-

tools model. That is, half of the data sets for training are

selected from different cutters and rest of the data from one

of these cutters are presented in chronological order to test

the model. The main aim for this procedure is to analyze

the reliability prediction capabilities of the particular model

when it is learned with multiple cutting tools. The simulations

are repeated 10 times in similar manner like the previous

case and averaged to see accumulated response of the model.

A comparative analysis on reliability performance from all

models is summarized in Table III.

It can be observed from the above results that, although

the accuracy factor decreases for all models, but still the

performance of Imp-ELM model is good enough. In addition,

it can learn much faster as compared to ANFIS model, even if

the data size is increased or doubled. Tool wear prediction for

reliability performance by learning a model with 2-3 cutters

and testing on single cutting tool are shown in Fig 6.

TABLE III
TEST CASE B: ANALYZING RELIABILITY PERFORMANCE FOR

PREDICTIONS WITH A MULTI-TOOLS MODEL

Cutters 33-18(train)/Cutter 33(test)
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 300/165 0.052 0.83 0.02

ANFIS Force 300/165 0.063 0.77 1.4
ELM Force 300/165 0.069 0.43 0.02

Cutters 33-18-09 (train)/ Cutter 18 (test)
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 450/165 0.16 0.84 0.02

ANFIS Force 450/165 0.18 0.79 2.01
ELM Force 450/165 0.20 0.66 0.02

Step 2. In this step, reliability performance of each model

is evaluated by establishing a reference model through learn-

ing on two different cutters and testing its wear prediction
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Fig. 6. Tool wear prediction for reliability performance with 2-3 cutters

performances on another cutter that has not been learned. The

learning set is composed of all randomly selected data samples

from two different cutters, while testing data from a third

cutter is presented in a chronological order. Performances of

each multi-tools model build by learning cutter 33 and 09 and

testing on cutter 18 are shown in Table IV.

Imp-ELM shows better results on unknown data as compared

to other models. However, when cutters 33 and 09 are pre-

sented as unknown data to the prediction model (these results

are not given in the paper), the model decreases to a poor level.

Indeed, results of Imp-ELM for cutter 18 are better because

the scale of its wear pattern exist between cutters 33 and 09 as

wear increases (Fig. 3). In addition, as stated before, cutters

33 and 18 have same geometry while cutter 09 has its own

geometry. Eventually, comparative plots form this case using

cutter 18 are shown in Fig 7 that enables to see that reliability

has still to be improved.

TABLE IV
TEST CASE B: ANALYZING RELIABILITY PERFORMANCE FOR

PREDICTIONS ON UNKNOWN DATA

Cutters 33-09 (train) / Cutter 18 (test)
Accuracy

Method Feature Train/Test MAPE R2 T ime(s)
Imp− ELM Force 630/315 0.23 0.66 0.02

ANFIS Force 630/315 0.29 0.473 3.01
ELM Force 630/315 0.30 0.45 0.02

V. CONCLUSION

In this work the inherent challenges of prognostic model-

ing like robustness, reliability and applicability are explicitly

addressed and defined according to literature. On this basis,

a new Imp-ELM algorithm is developed for predicting the

cutting tool condition from high speed CNC machine. The

viability of Imp-ELM approach is evaluated using force-

based approach to build a prediction model. Simulations are

performed with limited data of three worn cutters form cutting

process. Comparative analysis show that with less complex
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network architecture, Imp-ELM performs better than ELM and

ANFIS algorithms in predicting tool condition with single and

muli-tool models. However, performances of learned models

were not good enough when unknown data is presented. Thus,

model reliability still needs to be improved.
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