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Abstract—This paper addresses the design of ro-
bust controllers for interval systems. For that, the
H∞-standard approach is combined with interval tech-
niques in order to derive controllers that ensure
robust performances. The main advantages of the
proposed approach are: 1) the natural and ease of
modeling of the uncertain parameters thanks to inter-
vals, 2) the low order of the controller since it can be
lower than the order of the system, 3) and the fact that
the structure of the controller can be fixed a priori.
The paper is particularly focused on the design of a
robust PID controller to control systems with order
n. Experiments on a piezoelectric actuator (piezocan-
tilever) are carried out and show the efficiency of the
proposed method.

I. INTRODUCTION

Piezoelectric materials are very common in the devel-
opment of microsystems and microrobots. This recogni-
tion is due to the high resolution, high bandwidth and
the high force density they can offer [1]. A common
example of their applications is the piezoelectric micro-
gripper which is dedicated to manipulate or to assemble
small objects, i.e. to perform micromanipulation and
microassembly tasks [2], [3]. A piezoelectric microgripper
is composed of two piezoelectric actuators with cantilever
structure (also called piezocantilevers) each one able to
bend when a voltage is applied.

Despite the submicrometric resolution and the large
bandwidth (more than 600Hz) of piezocantilevers, they
exhibit strong nonlinearities (hysteresis and creep) and a
badly damped vibration. Furthermore, they are very sen-
sitive to environmental disturbances such as the manip-
ulated objects or the ambiant thermal variation. These
characteristics lead to a loss of the general performances
(accuracy, settling time, damping ratio) of the actuators
and thus finally make micromanipulation/microassembly
tasks fail. Another characteristic of piezocantilevers is
their fragility. Thus, during a micromanipulation or a
microassembly task, in case of breakage of a piezoelectric
actuator, it is often desired to replace it with a similar one
from the stock without re-identifying this new actuator
and re-computing a new controller. To account all these
characteristics and constraints, it has been demonstrated
that linear models with uncertain or varying parameters
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can be used to model piezocantilevers [4]–[6] and thus
robust controllers can be further designed to ensure the
performances.

H2, H∞ and µ-synthesis approaches are among the
existing robust control methods used to enhance the
performances of piezocantilevers [4]–[6]. These methods
provide a precise formulation and solution of the con-
troller synthesis problem for which the H∞-norm of a
prescribed transfer function is minimized. The effeciency
of these approaches has been proven in several kind
of piezoelectric actuators (SISO and MIMO). However,
the derived controllers (even reduced) are of high-order
comparatively to the available implementation setup
(embedded microsystems): controllers orders are more
than 10 whilst the setup is a classical PIC microcontroller
with a sampling time of 0.2ms. Thus, due to the time
consuming of the controllers, an unstability of the closed-
loop often occurs. To bypass this limitation, we demon-
strated in previous works [7]–[9] that combining intervals
to model the uncertainties with classical controller design
techniques may lead to low order controllers. Despite the
computation time slightly higher than in classical robust
control design approach (H∞ and its extension), these
proposed robust control design approaches based on
intervals are very promising for embedded microsystems
where the orders of the controllers are first essential.

Interval methods have been used to synthesize ro-
bust stabilizing controller for uncertain systems [10]–[12].
More than the robust stability, interval techniques can
also deal with controllers synthesis that ensure robust
performances. For instance, Chen and Wang [13] pro-
posed a method to design a robust controller for interval
systems in the state-space representation. In their work,
two controllers were necessary: a robust controller sta-
bilizing the feedback is computed first, then a pre-filter
is introduced to ensure the wanted performances. A PID
controller that ensures robust performances for paramet-
ric uncertain transfer functions was also proposed in
[14]. However, its numerical application becomes difficult
for high-order interval systems (numerically, it is limited
to second order models). The authors in [15] have
suggested a control algorithm prediction-based interval
model that was efficiently applied to a welding process.
In our previous works [7]–[9], robust control design
methods for interval systems were presented. These latter
works proved that interval analysis combined with a
given linear control theory can be very promising for
modeling and control piezoelectric microsystems where
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the models parameters are subjected to change during
functioning.

PID controllers have been widely used in many indus-
trial applications. Their popularity is due to their low-
order, simplicity and efficiency even for nonlinear and
for non-modelled systems. In this work, we propose an
approach to enhance the capabilities of PID controllers
to control piezocantilevers modeled by a transfer function
with a priori unknown parameters but are assumed to
lie within a given range. Interval modeling techniques
[16] are thus introduced to bound these uncertain pa-
rameters. Contrary to the previous works [7]–[9], the
approach in this paper is extended to the control of
interval systems with more general specifications which
can be easily transcribed into weighting functions during
the synthesis. For that, the proposed approach consists
to combine the standard H∞-approach with interval
techniques. Therefore, the approach allows to derive a
robust PID controller for systems with order n and that
ensures more generalized specified performances (track-
ing performances, input control limitation, etc.).

The paper is organized as follows. In section-II, pre-
liminaries on interval analysis and systems are first
presented. Section III is dedicated to the design of a
PID control for interval systems. In section IV, we
apply the proposed method to design a controller for
piezocantilevers. Finally, we present in section V the
controller implementation and some discussions relative
to the experimental results.

II. Preliminaries on intervals

A. Basic Terms and Concepts on intervals

A closed interval number denoted by [x] is a closed
bounded such as:

[x] = [x−, x+] =
{
x ∈ R/x− ≤ x ≤ x+

}
(1)

where x− and x+ are the left and right endpoints of
[x] respectively.

We say that [x] is degenerate if x− = x+. By conven-
tion, a degenerate interval [a, a] can be described with
the real number a.

The width of an interval [x] is given by w([x]) = x+−
x−. The midpoint of [x] is given by mid([x]) = x++x−

2

and the radius of [x] is defined by rad([x]) = x+−x−

2 .

B. Operations on intervals

The elementary mathematical operations can be ex-
tended to intervals. Let [x] = [x−, x+] and [y] = [y−, y+]
be two intervals and let ◦ ∈ {+,−, ∗, /} be a law. We can
write:

[x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} (2)

Table I gives the details of the above interval opera-
tions.

TABLE I

Classical arithmetic operations on intervals [10], [17].

Operation Definition
+ [x] + [y] = [x− + y−, x+ + y+]
− [x]− [y] = [x− − y+, x+ − y−]
∗ [x] ∗ [y] = [min{x− ∗ y−, x+ ∗ y−, x− ∗ y+, x+ ∗ y+},

max{x− ∗ y−, x+ ∗ y−, x− ∗ y+, x+ ∗ y+}]
/ [x]/[y] = [x] ∗ [1/y+, 1/y−], 0 /∈ [y]

C. Interval systems

Definition 2.1: An interval model denoted by
[G](s, [a], [b]) represents a family of systems:

[G](s, [a], [b]) =
[N ](s, [b])
[D](s, [a])

=

m∑
j=0

[bj ]sj

n∑
i=0

[ai]si

(3)

such as: [b] = [[b0], ..., [bm]] and [a] = [[a0], ..., [an]]
are two boxes (vectors of intervals) and s the Laplace
variable. The system [G] above generally represents a
model with uncertain parameters.

D. Vertex polynomials and vertex systems

Given an interval system [G](s, [a], [b]) defined as in
Definition 2.1 such that:

 [N ](s, [b]) = [b0] + [b1]s + [b2]s2 + ... + [bm]sm

[D](s, [a]) = [a0] + [a1]s + [a2]s2 + ... + [an]sn
(4)

Thus, the four Kharitonov vertex polynomials corre-
sponding to [N ](s, [b]) and [D](s, [a]) are:

N (1)(s) = b−0 + b−1 s + b+
2 s2 + b+

3 s3 + b−4 s4 + b−5 s5 + ...
N (2)(s) = b−0 + b+

1 s + b+
2 s2 + b−3 s3 + b−4 s4 + b+

5 s5 + ...
N (3)(s) = b+

0 + b−1 s + b−2 s2 + b+
3 s3 + b+

4 s4 + b−5 s5 + ...
N (4)(s) = b+

0 + b+
1 s + b−2 s2 + b−3 s3 + b+

4 s4 + b+
5 s5 + ...

(5)
and

D(1)(s) = a−0 + a−1 s + a+
2 s2 + a+

3 s3 + a−4 s4 + a−5 s5 + ...
D(2)(s) = a−0 + a+

1 s + a+
2 s2 + a−3 s3 + a−4 s4 + a+

5 s5 + ...
D(3)(s) = a+

0 + a−1 s + a−2 s2 + a+
3 s3 + a+

4 s4 + a−5 s5 + ...
D(4)(s) = a+

0 + a+
1 s + a−2 s2 + a−3 s3 + a+

4 s4 + a+
5 s5 + ...

(6)
respectively.
The sixteen Kharitonov (point) systems that corre-

sponds to the interval system [G] are the combination
of these vertex polynomials. These sixteen Kharitonov
systems are called vertex of [G]. We denote these sixteen
Kharitonov vertex by G(i), with i = 1 → 16.
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E. H∞-norm of an interval system

Theorem 2.1: Consider the interval system
[G](s, [a], [b]) defined in Definition 2.1. The H∞-
norm of [G] is the maximal among the H∞-norm of the
sixteen vertex, i.e.:

‖[G]‖∞ = max
i=1→16

∥∥∥G(i)
∥∥∥
∞

(7)
Proof: see [18], [19].

When the interval system [G] is weighted by a weigth-
ing function W (s) which is a point, it is not advised
to compute the multiplication W [G] first and compute
the H∞-norm of the resulting interval plant afterwards.
Indeed, developping the multiplication of the intervals
polynomials produces a multi-occurance of the parame-
ters and therefore a surestimation of the resulting inter-
vals. Thus, the H∞-norm of W [G] is defined as follows:

‖W [G]‖∞ = max
i=1→16

∥∥∥WG(i)
∥∥∥
∞

(8)

In Long-Wang [20], the H∞-norm of the sensitivity
function of an interval system [G](s, [a], [b]) is proposed.
The sensitivity of [G] is defined by [S] = 1

1+[G] = [D]
[N ]+[D] ,

where [N ] and [D] are the numerator and denominator
defined in Definition 2.1. It has been then demonstrated
that the sensitivity [S] has only twelve vertex instead
of sixteen vertex and thus its H∞-norm is the maximal
among the twelve norms:

‖[S]‖∞ =
∥∥∥∥ [D]

[N ] + [D]

∥∥∥∥
∞

= max
i=1→12

∥∥∥S(i)
∥∥∥
∞

(9)

III. Controller design method

In this section, we propose to design robust PID
controllers for interval systems. The robust performances
are achieved by using H∞-norm. For that, we combine
H∞-standard approach and the interval arithmetic.

A. Problem formulation

Consider the closed-loop pictured in Fig. 1, where
[G](s, [a], [b]) is a SISO interval system to be controlled.
[C](s) is the controller to be designed. [a] and [b] are the
interval parameters of the system. yc(t) is the reference
input, y(t) is the output signal and u(t) is the input
control signal.

 +

-cy y
[C](s) [G](s,[a],[b])

Uε

Fig. 1. Closed-loop control system.

We assume the family of system [G](s, [a], [b]) defined
by:

[G](s, [a], [b]) =

m∑
j=0

[bj ]sj

n∑
i=0

[ai]si

(10)

Such as: [a] = [[a0], ..., [an]] and [b] = [[b0], ..., [bm]],
and m ≤ n.

In the sequel, the designed controller is a PID con-
troller with adjustable parameters [θ] = [[Kp], [Ki], [Kd]]:

[C](s, [θ]) = [Kp] + [Kd]s + [Ki]
1
s

(11)

The objective is to find the set solution of PID pa-
rameters so that the closed-loop system respects some
given performances whatever the parameters ai and bj

ranging in their corresponding intervals [ai] and [bj ].
For that, the PID parameters will be properly adjusted
using H∞-criterion. Such criterion is defined as the H∞-
norm of some weighted transfer functions of the closed-
loop to be less than or equal to one. The basic idea of
our proposed method is therefore to combine the H∞-
standard approach with interval arithmetic.

B. Remind of the H∞-standard principle

The H∞-standard that considers the tracking per-
formances and the input control limitation [21], [22]
uses the standard block as pictured in Fig. 2-b. This
standard scheme is derived from the weighted closed-
loop in Fig. 2-a. The closed-loop control objectives are
achieved through appropriate weighting functions Wi(s)
chosen to shape some important transfer functions of
the closed-loop such as: the sensitivity function S(s) =
(1+C(s)G(s))−1 and the input transfer C(s)S(s). In the
figure, P (s) is called the augmented system. It contains
the system to be controlled with the different weightings.

P(s)

Fig. 2. Standard H∞ control scheme.

The H∞ problem consists to find a controller stabi-
lizing the closed-loop and achieving the following H∞-
criterion:
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‖Fl(P (s), C(s))‖∞ ≤ γ (12)

where γ is a positive scalar. If γ ≤ 1, the nominal
(specified) performances are achieved.

The linear fractionar transformation Fl(P (s), C(s))
is the transfer between the weighted outputs and the
exogenous inputs of Fig. 2-a. That is:

Fl(P (s), C(s)) = z(s).y−1
c (s) (13)

with z =
(

z1

z2

)
From Fig. 2-a Fl(P (s), C(s)) is given by:

Fl(P (s), C(s)) =
(

W1(s)S(s)
W2(s)C(s)S(s)

)
(14)

Applying the H∞ standard problem in (12) to (13) and
(14), we obtain the following conditions to be satisfied:{

‖W1(s)S(s)‖∞ ≤ γ
‖W2(s)C(s)S(s)‖∞ ≤ γ

(15)

C. H∞ approach for interval systems
In our case the system is an interval model

[G](s, [a], [b]), the controller to be designed is a PID con-
troller (11). Since the system is interval, the augmented
plant will also be interval: [P ](s, [a], [b]). Moreover, the
H∞-criterion ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖∞ ≤ γ is
given by: {

‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s, [θ])[S](s)‖∞ ≤ γ

(16)

In this case, if γ ≤ 1, the robust performances are
achieved.

The problem of finding the PID controller with tunable
parameters [θ] can be formulated as follows:

Find the set Θ of PID parameter vector for which H∞
performance holds for any positive number γ ≤ 1, i.e.,

Θ :=
{

θ ∈ [θ]
∣∣∣∣{ ‖W1(s)[S](s)‖∞ ≤ γ

‖W2(s)[C](s, [θ])[S](s)‖∞ ≤ γ

}
(17)

where [S](s) depends on the PID parameters [θ] and of
the boxes [a] and [b].

The problem given in (Eq.17) is known as a set-
inversion problem which can be solved using set inversion
algorithms. A set inversion operation consists to search
the reciprocal image called subpaving of a compact set.
One algorithm used to solve a set-inversion problem is
the SIVIA algorithm ( [10], [23]). By using SIVIA, it is
possible to approximate with subpavings the set solution
Θ described in (Eq.17). The subpaving Θ corresponds to
the controller parameters for which the problem (Eq.16)
is fulfilled. Table II presents the recursive SIVIA algo-
rithm. It requires a search box [θ0] also called initial
box. The subpavings Θ is initially empty. ε represents
the wanted accuracy of computation.

TABLE II

SIVIA Algorithm used to solve the set-inversion problem

(Eq.17).

SIVIA(in: ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖∞, γ, [θ], ε; inout: Θ)
1 if ‖Fl([P ](s, [a], [b]), [C](s, [θ]))‖∞ ≤ γ then

{Θ := Θ
S

[θ]} return;
2 if width([θ]) < ε then {Θ := Θ}; return;
3 bisect [θ] into L([θ]) and R([θ]);
4 SIVIA(‖Fl([P ](s, [a], [b]), [C](s, L([θ])))‖∞, γ, L([θ]), ε; Θ);

SIVIA(‖Fl([P ](s, [a], [b]), [C](s, R([θ])))‖∞, γ, R([θ]), ε; Θ).

However, the previous resolution requires the compu-
tation of the H∞-norm of each term in (Eq.17) which
are interval transfers. This computation can be done
by using the preliminaries in section-II. The H∞-norm
‖W1(s)[S](s)‖∞ is obtained by applying the definition in
(Eq.8) and (Eq.9). We have:

‖W1[S]‖∞ = max
i=1→12

∥∥∥W1S
(i)

∥∥∥
∞

(18)

On the other hand, the H∞-norm
‖W1(s)[C](s, [θ])[S](s)‖∞ is obtained by applying
the definition in (Eq.8) only, i.e.:

‖W1[C][S]‖∞ = max
i=1→16

∥∥∥W1M
(i)

∥∥∥
∞

(19)

where [M ] = [C][S] and M (i) (i = 1 → 16) are the
sixteen vertex of [M ].

Finally, contrary to the standard H∞ problem (for
point systems) where the optimal value of γ is found
by dichotomy, we directly impose in this paper its value
equal to one: γ = 1. The objective is to find directly
the controller parameters with which the specified per-
formances are respected.

IV. Application to piezocantilevers

The objective of this section is to apply the proposed
method to control the deflection of piezocantilevers used
in microgrippers. In this paper, we particularly consider
a unimorph piezocantilever made up of a piezoelectric
layer, often Lead-Zirconate-Titanate (PZT) ceramic, and
one passive layer. When a voltage U is applied to the
piezolayer, it expands/contracts resulting a global de-
flection (displacement) δ of the cantilever (see Fig. 3).
Besides, applying a force F at its tip also results a
deflection.

Piezocantilevers are widely used in micro/nano-
positioning applications where the displacements mag-
nitudes are small. These displacements must be highly
accurate relative to a reference position. However, the
behavior of piezocantilevers is uncertain due to their
sensitivity to the environments (thermal variation, ma-
nipulated objects, etc.). Furthermore, it is essential in
micromanipulation and microassembly to have a set of
piezocantilevers (with the same dimensions) in a stock
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U
support

passive layer

piezolayer

F
δ

Fig. 3. A unimorph piezoelectric cantilever.

such that one can quickly and easily do an exchange in
case of breakage during the tasks without calculating a
new controller. Despite that they have the same general
dimensions, differences at micrometric level still exist
due to the imprecision of the microfabrication used to
fabricate them. These micrometric differences make them
have non-negligible differences in their models. All these
characteristics and requirements lead to use models of
piezocantilevers with uncertain parameters [7]–[9].

In this example, we construct the interval model
[G](s, [a], [b]) using only two piezocantilevers instead of
several. In order to have a large interval model, the
lengths l1 and l2 of the two piezocantilevers are voluntar-
ily chosen to be significantly different. Thus [G](s, [a], [b])
can be derived from two models G1(s) and G2(s) corre-
sponding to the piezocantilever with lengths l1 and l2
respectively.

A. Presentation of the setup

The experimental setup is pictured in Fig. 4 and is
based on:
• a unimorph piezocantilever having dimensions of

18mm × 1mm × 0.45mm (length, width and thick-
ness),

• an optical sensors (Keyence LC-2420) with 10nm of
resolution used to measure the deflections,

• a computer-DSpace hardware and the Matlab-
Simulink software for the data-acquisition and con-
trol,

• and a high voltage (HV: ±200V ) amplifier.

B. Modeling and identification

The linear relation between the deflection at the tip
and the applied input voltage U is:

δ = G(s)U (20)

The two considered lengths of piezocantilevers are l1 =
16mm and l2 = 14mm. To identify the two models G1(s)
and G2(s) corresponding to the two piezocantilevers, a
step response is used. For that, a second order model
was chosen for each length of the piezocantilever. Indeed,
the first mode is sufficient for micromanipulation and

(a)

(b)

 

piezoelectric

cantilever

sensor

optical
sensor

amplifier

    HV

piezocantilever

Fig. 4. The experimental setup.

mciroassembly tasks. Using the output error method and
the matlab software, we obtain:

G1(s) = 0.6587
3.533× 10−8s2 + 2.152× 10−4s + 1
3.374× 10−8s2 + 8.171× 10−6s + 1

G2(s) = 0.45
3.336× 10−8s2 + 1.679× 10−4s + 1
2.119× 10−8s2 + 4.607× 10−6s + 1

(21)
Let us rewrite each model Gi(s) for i = 1, 2 as follows:

Gi(s) = ki
b2is

2 + b1is + 1
a2is2 + a1is + 1

(22)

such as: ki and b2is
2+b1is+1

s2+a1is+1 are the static gain and
dynamic part of the piezocantilever with length li (i =
1, 2).

C. Derivation of the interval model

The interval model [G](s, [a], [b]) that represents a
family of models is derived using the two point models
Gi(s). Considering each parameter of G1(s) and G2(s) as
an endpoint of the interval parameter in [G](s, [a], [b]),
we have:

[G](s, [a], [b]) = [K]
[b2]s2 + [b1]s + 1
[a2]s2 + [a1]s + 1

(23)

such as:
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[K] = [min(k1, k2),max(k1, k2)]
[b1] = [min(b11, b12),max(b11, b12)]
[b2] = [min(b21, b22),max(b21, b22)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]

(24)

After computation, we obtain:

[K] = [0.45, 0.6587]
[b2] = [3.336, 3.533]× 10−8

[b1] = [1.679, 2.152]× 10−4

[a2] = [2.119, 3.374]× 10−8

[a1] = [4.607, 8.171]× 10−6

(25)

In order to increase the stability margin, if a controller
exists, and to ensure that the interval model really
contains the models (21), we propose to extend by 10%
the width of each interval parameter in [G](s, [a], [b]).
This choice is a compromise. If the widths are too large,
it is difficult to find a controller that respects both the
stability and performances of the closed-loop. Finally, the
extended parameters used to compute the controller are:

[K] = [0.4395, 0.6691]
[b2] = [3.326, 3.542]× 10−8

[b1] = [1.655, 2.175]× 10−4

[a2] = [2.056, 3.436]× 10−8

[a1] = [4.428, 8.349]× 10−6

(26)

D. Specifications

Piezocantilevers are very resonant (more than 90%
of overshoot). Such overshoot is not desirable in micro-
manipulation and microassembly tasks. Moreover, it is
necessary to limit the applied voltage in order to avoid
any damage of the piezoelectric actuators. The following
specifications are therefore considered:
• closed-loop behavior with negligible (or without)

overshoot,
• settling time tr ≤ 8ms,
• static error |ε| ≤ 1%,
• limited input voltage U . We choose a maximal volt-

age Umax = 2.5V for each 1µm of reference.

E. Computation of the controller

In this experimental example, we consider a PI
(proportional-Integral), i.e. Kd is set to zero in the PID
structure:

[C](s, [θ]) = [Kp] +
[Ki]
s

(27)

where the tunable parameters are [θ] = [[Kp], [Ki]].
Fig. 5-a presents the closed-loop scheme for the con-

troller design, where weighting function W1(s) is for the
tracking performances and W2(s) for the input control
limitation.

From Fig. 5-a, we have:

-

+

yc y

21 zz

(a)

W (s)2W (s)1

[G](s,[a],[b])PID

2

1

[G](s,[a],[b])

PID

-

+

yc

z

z

u ε

(b)

W (s)1

W (s)2

Fig. 5. a) The closed-loop scheme with the weighting functions.
b) The standard scheme.

{
z1 = W1(s)[S](s)yc

z2 = W2(s)[C](s, [θ])[S](s)yc
(28)

Such as [S](s) = (1 + [C](s, [θ])[G](s, [a], [b]))−1 is the
sensitivity function.

From (28), the H∞ standard problem becomes:

|[S](s)| ≤
∣∣∣ γ
W1(s)

∣∣∣
|[C](s)[S](s)| ≤

∣∣∣ γ
W2(s)

∣∣∣ ⇔ ‖W1(s)[S](s)‖∞ ≤ γ
‖W2(s)[C](s)[S](s)‖∞ ≤ γ

(29)
where the aim consists to find the set-solution Θ of

the PID parameters that ensures the H∞ performance
in (29), i.e.:

Θ :=
{

θ ∈ [θ]
∣∣∣∣{ ‖W1(s)[S](s)‖∞ ≤ γ

‖W2(s)[C](s, [θ])[S](s)‖∞ ≤ γ

}
(30)

The weighting functions were chosen accordingly to the
specifications (see Section IV-D). We chose:

W1(s) = 0.002667s+1
0.002667s+0.01

W2(s) = 1
2.5

(31)

Now we set γ = 1 and we solve the set-inversion
problem in (30).

As described above, the problem (30) can be eas-
ily solved using the recursive algorithm presented
in the Table II. The computation of the H∞-norm
of the two weighted interval plants W1(s)[S](s) and
W2(s)[C](s, [θ])[S](s) is based on the methods presented
in [18]–[20].

Matlab-Software is used to implement the SIVIA al-
gorithm. We choose an initial box for the controller
parameters [Kp0] × [Ki0] = [0.4, 1.2] × [400, 1200]. The
resulting subpaving is presented in Fig. 6. The dark
colored subpaving Θ corresponds to the set parameters
[Kp] and [Ki] of the controller (27) that ensures the
performances defined by the H∞-criterion (30).
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Fig. 6. Set-solution of the parameters [Kp] and [Ki] ensuring the
wanted performances.

Remark 4.1: We notice that any choice of the param-
eters [Kp] and [Ki] within the dark colored subpaving Θ
(see Fig. 6) satisfies the conditions (30) and consequently
ensures the required performances.

Remark 4.2: If Θ = ∅ (i.e. no solution), the initial box
of the parameters [Kp0]× [Ki0] must be changed and/or
the specifications must be degraded and/or the structure
of the controller must be modified (increase the order for
example).

V. Implementation and experimental tests

The controller C(s) to be implemented is chosen by
taking any point parameters Kp and Ki within the set-
solution Θ. In this example, we test two point controllers.
We choose:

C1(s) = 0.8s+900
s

C2(s) = s+1000
s

(32)

In order to prove that the inequalities (29) is satisfied,
the magnitudes of the bounds

∣∣∣ 1
W1(s)

∣∣∣ and
∣∣∣ 1
W2(s)

∣∣∣ are
compared to the magnitudes of the sensitivity function
|[S](s)| and of the transfer |C(s)[S](s)| respectively (see
Fig. 7) when using the implemented controllers (32).

The obtained results in Fig. 7 prove that the magni-
tudes of [S](s) and C(s)[S](s) are effectively bounded by
that of 1

W1(s)
and 1

W2(s)
respectively for the both imple-

mented controllers Ci(s) (i = 1, 2). This fact confirms
that the specified performances are effectively ensured.

Now, we apply each controller Ci(s) (i = 1, 2) to the
piezocantilever when its lengths l = 16mm and when
l = 14mm. Fig. 8 shows the experimental results when
a step reference of 40µm is applied. As shown on the
figure, the controllers (32) have played their roles since
the closed-loop piezocantilevers satisfy the specifications.
Indeed, experimental settling times obtained with C1(s)
and C2(s) are about tr1 = 5.2ms when l = l1 = 16mm
(Fig. 8-a) and tr2 = 7ms when l = l2 = 14mm (Fig. 8-
b). The experimental overshoots and static errors are
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Fig. 7. Magnitudes of the bounds compared to the sensitivity
[S](s) and to the input transfer C(s)[S](s).

neglected (D1,2 ≈ 0, ε1,2 ≈ 0 < 1%). Furthermore, the
maximal voltages U applied to the both piezocantilevers
are less than 40× 2.5 = 100V , which should be the limit
for a displacement of 40µm. Indeed, the experiments
shows that the maximal input voltage is Umax = 97V .

0

10

20

30 experimental results with

C  (s)  (    ) and C  (s)  (    ) 

reference signal

1
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2
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5 10 15 20 25 30 35 40 45 50 550
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experimental results with

C  (s)  (    ) and C  (s)  (    ) 21

(a)

(b)

Fig. 8. Experimental step responses of the piezocantilever using
C1(s) and C2(s). a: Piezocantilever with length l = l1 = 16mm. b:
Piezocantilever with length l = l2 = 14mm.

VI. Conclusion

In this paper, interval techniques have been used
to model the parametric uncertainties in piezoelectric
actuators. Its main advantage is the ease and natural
way to bound these uncertainties. Afterwards, we pro-
posed to combine the H∞-standard method with interval
techniques to derive PID controllers that ensure the
performances for the interval model. The main advantage
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of the proposed control design is the possibility to derive
low-order controllers for robust performances objective.
The proposed approach was applied to piezocantilevers
and the obtained experimental results effectively proved
the efficiency of the approach.
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elling and robust position/force control of a piezoelectric
microgripper”, IEEE - CASE, (International Conference on
Automation Science and Engineering), pp:39-44, Scottsdale
AZ USA, Sept 2007.

[6] Micky Rakotondrabe, Yassine Haddab and Philippe Lutz,
’Quadrilateral modelling and robust control of a nonlinear
piezoelectric cantilever’, IEEE - Transactions on Control Sys-
tems Technology (T-CST), Vol.17, Issue 3, pp:528-539, May
2009.

[7] S. Khadraoui, M. Rakotondrabe and P. Lutz, Interval Model-
ing and Robust Control of Piezoelectric Microactuators, IEEE
Transactions on Control System and technology (T-CST),
DOI.10.1109/TCST.2011.2116789, 2011.

[8] S. Khadraoui, M. Rakotondrabe and P. Lutz, ”PID-Structured
Controller Design for Interval Systems: Application to Piezo-
electric Microactuators”, IEEE - ACC, (American Control
Conference), accepted, San Francisco, California USA, June-
July 2011.

[9] S. Khadraoui, M. Rakotondrabe and P. Lutz, ”Robust control
for a class of interval model: application to the force control of
piezoelectric cantilevers”, IEEE - CDC, (Conference on Deci-
sion and Control), accepted, Atlanta Georgia USA, December
2010.

[10] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Inter-
val Analysis. Springer, 2001.

[11] E. Walter, L. Jaulin, Guaranteed characterization of stability
domains via set inversion, IEEE Trans. on Autom. Control,
39(4), 886-889, 1994.

[12] Ye. Smaginaa, Irina Brewerb, Using interval arithmetic for
robust state feedback design, Systems and Control Letters, 46,
187-194, 2002.

[13] C.-T. Chen, M.-D. Wang, A two-degrees-of-freedom design
methodology for interval process systems, Computers and
Chimical Engineering, 23,1745-1751, 2000.

[14] J. Bondia, M. Kieffer, E. Walter, J. Monreal and J. Pict’o,
”Guaranteed tuning of PID controllers for parametric uncer-
tain systems”, IEEE Conference on Decision and Control,
2948-2953, 2004

[15] K. Li, Y. Zhang, Interval Model Control of Consumable
Double-Electrode Gas Metal Arc Welding Process, IEEE -
Transactions on Automation Science and Engineering (T-
ASE), 10.1109/TASE, 2009.

[16] Keel, L. H., Bhattacharyya, S. P., ”Control system design for
parametric uncertainty”, International Journal of Robust and
Nonlinear Control, Vol.4, 87-100, 1994.

[17] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood
Cliffs N. J., 1966.

[18] Sen-Jian An, Lin Huang, Enping Wang, On the parametric
H∞ problems of weighted interval plants, IEEE Transactions
on Automatic Control, Vol.45, 332-335, 2000.

[19] Sen-Jian An, Xiheng Hu, Branka Vucetic, Wanquan Liu, ”Ver-
tex results for parametric shifted H∞ performance of weighted
interval plants”, IEEE Conference on Decision and Control,
Vol.5, 4195-4196, 2000.

[20] Wang, L., H∞ Performance of Interval Systems, eprint
arXiv:math/0211013, Vol.1, 1-8, 2002.

[21] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control,
Prentice-Hall, 1996.

[22] Balas, G. J., Doyle, J. C., Glover, K., Packard, A. and Smith,
R., µ -synthesis and synthesis toolbox, The Mathworks User’s
Guide-3, 2001.

[23] L. Jaulin and E. Walter, Set inversion via interval analysis for
nonlinear bounded-error estimation, Automatica, 29(4), 1053-
1064, 1993.

ha
l-0

07
19

14
9,

 v
er

si
on

 1
 - 

19
 J

ul
 2

01
2


