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ABSTRACT 

At first, Prognostics and Health Management (PHM) was interpreted as a new trend of 
Condition Based Maintenance (CBM) to schedule, in a more effective way, preventive 
maintenance actions.   Lately,  PHM  is  being  used  in  operational decisions  like  choosing  
the  appropriate  mission  to  execute, planning logistics actions or defining the control 
parameters. In most of the previous studies,  a single Remaining Useful Life  (RUL)  value  was  
estimated  by  the  prognostic  module and integrated in the decision module regardless of 
the effect of already made decisions on the system health and consequently on its future RUL 
values.  Consequently, this paper presents a jointly maintenance and operational decision-
making approach for multi-component systems on a rolling decision horizon by iteratively 
integrating the new available RUL values to update the tasks schedule including maintenance 
interventions. The aim of this paper is to emphasize the need of integrating the feedback loop 
of the effects of already made decisions on the monitored system in the process of prognostics 
process. The obtained results are then compared to other methods of jointly scheduling 
operational and maintenance decisions like Moore algorithm combined with CBM. 
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1 INTRODUCTION   

The implementation of smart manufacturing systems in the industry 4.0 made human machine 
cooperation, monitoring and process control, and high reliability and availability of the 
machines, major assets of the modern factories. The digital transformation of the 
manufacturing industry triggered a high evolution in the production process and the 
maintenance process. Although these two processes are interdependent, the works that jointly 
optimize the production scheduling and the maintenance planning of the manufacturing 
systems are often focused on classical preventive maintenance. 

During the last decade, Prognostics and Health Management (PHM) has known an increased 
interest. It was designed to improve the link between failure occurrence and systems' life 
management. It was essentially used as a new trend of Condition Based Maintenance (CBM), 
which explains the similarity between the PHM process and the CBM system architecture as 
defined by Lebold and Thurston [1]. 

Post-Prognostics Decisions are the results of the decision making process of PHM. These 
decisions consist in integrating the prognostics information in the resolution of an optimization 
problem. Generally, the optimization problem is about maintenance schedule definition with 
the objective of minimizing the cost and avoiding failures. Several works in literature dealt 
with Post-Prognostics decisions. By considering the type of the proposed decisions, one can 
classify these decisions into three categories; 

1. Maintenance Decisions: the main idea is to choose which component/system needs to 
be maintained and at which moment depending on the remaining useful life of 
components or systems. Such kind of decisions is applied for several industrial domains: 
transport Rodrigues et al. [2], manufacturing Yang et al. [3], Tian and Liao [4], 
aerospace Balaban and Alonso [5], Wind-Turbines Lei and Sandborn [6]. 

2. Operational Decisions: Considering the prognostic information, one can also decide to 
change the way to use the systems. Three kinds of adjustments can be consider: 

a. Production and Tasks assignment: it consists in defining the good fitting 
between the tasks that should be realized and the system degradation levels. 
This was studied for manufacturing scheduling Skima et al. [7], path planning 
or for UAVs fleets De Medeiros et al. [8]. 

b. Automatic Control: if the system is controllable, one can monitor and modify 
the control parameters to adapt the system usage Pereira et al. [9], Grosso et 
al. [10]. 

c. Logistics: To fulfill its purpose and during its lifetime, any systems needs an 
amount of support in setting the right provisions of row materials, in-processing 
products and spare parts. These provisions and logistics movements are based 
on the systems health state and its estimated RUL in order to reduce the cost 
of unnecessary storage of row materials and spare parts Julka et al. [11], Cui 
et al. [12]. Therefore, the system obtains the right amount of row materials 
and/or spare parts according to its capacity to produce or its need to be 
maintained. 

3. Mixed Decisions: This category is the combination of the aforementioned categories. 
One can jointly optimize the mission assignment and the maintenance interventions 
like in De Medeiros et al. [13]. One can also find a compromise between producing and 
maintaining the machines as in Fitouri et al. [14].   

One can notice that most of the literature works focus on the maintenance decisions, and very 
few once studied the mixed decisions. Thus, one can say that the use of prognostics in mixed 
decisions is becoming a new trend in PHM context to fulfill the needs of the industry 4.0. In 
order to highlight the importance of such decisions, this paper will focus on jointly planning 
production activities and maintenance interventions based on prognostics information. 

In literature, the papers found concern various applications and consider different 
configurations of machines and different granularity levels. Some have considered multiple  
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machines systems. Jin et al. [15] proposed a framework for planning maintenance activities 
for a geographically distributed manufacturing system. Haddad et al. [16] proposed a new 
real-option model to optimize the maintenance of offshore turbines based on prognostic 
indications. Others considered single machine systems. Tian et Liao [4] considered the 
maintenance scheduling of a multiple components single system based on its the failure 
probability. Lei et Sandborn [6] optimized the maintenance decision-making based on PHM 
information for a single wind turbine. In this primary work, we are focusing on a specific 
configuration of system. We are interested in studying the case of multiple components in a 
single machine. Camci [17], proposed a method for scheduling maintenance actions on a 
similar system, with the assumption that the machine is running with the same production 
profile and in the same conditions. Van Horenbeek et Pintelon [18], studied a similar system 
to Camcis' [17] but they only supposed that the machine is running in the same production 
profile where the different operational conditions where modeled by the use of random failure 
thresholds that follows a Weibull distributions. The common point of these two papers is that 
they both only considered maintenance decisions. As for our case, we consider both 
maintenance and operational decisions on a multiple components single machine. By doing so 
the assumption of constant production profile and constants operational conditions are 
eliminated. 

The organization of the paper is as follows: the high inter-dependency between prognostics 
and decision-making is presented in Section 2. In sections 3, we describe the proposed 
framework its concept, its related definition and the developed algorithm. Then we present 
the application of this method on a case study, the different tests scenarios and results 
synthesis in section 4.  Finally, conclusions on this study and some future works are given in 
Section 5. 

2 LINKS BETWEEN PROGNOSTICS AND DECISION-MAKING   

Basically, in the context of PHM we have a system equipped with sensors to monitor either 
the system health or some components health. Sensors data will be first acquired and stored, 
then they have to be processed to clean errors and to extract features. This is done in the 
observation phase. Next, the obtained preprocessed data is feed into an analysis phase, where 
fault detection module, diagnosis module and most importantly prognostics module provide 
with the Remaining Useful Life (RUL) and/or Health Indicators. Based on these indicators a 
decision could be proposed in a decision support phase. This basic loop is presented in the 
full-line blue arrows in figure-1. The application of the chosen decision (the dashed-line 
orange arrow that represents the feedback of the decision on the system) will change the 
systems state and consequently the sensors signals (the dashed orange arrow). This will results 
in a different preprocessed data and thus a new RUL value (noted RUL'). With a new RUL value 
the set of possible decisions will change and thus this will result in a new decision (noted 
Decision'). And so on, each time when a new decision is made, the system state will change 
and new possible decisions are available. This proves the high inter-dependency between the 
prognosis and the decision-making modules. 

 

Figure 1: The natural PHM Process 

Most of the literature papers presents a decision making process based on a single RUL 
estimation. These papers propose the scheduling of maintenance activities or tasks assignment 
over a finite decision horizon using a static prognostic information. Which leads us to conclude 
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that this PHM is said to be an open loop process and it can be modeled by the block diagram 
presented in figure-2. A common problem with this approach is that the obtained results 
presents a high level of uncertainty caused by the unknown future loads of the system. In 
addition to that, the longer the decision horizon is the lower the prognostic precision becomes.  

 

Figure 2: The Ancient PHM Process 

To eliminate these drawbacks we fixed our objective to upgrade the PHM process from an 
open-loop process into a closed-loop one. The new process is supposed to dynamically estimate 
the RUL values and emphasize the relation between the prognostics and the decision-making 
modules. 

3 FRAMEWORK OF THE PROPOSED APPROACH   

3.1 Definitions 

To guarantee the consistency of the approach, we first define the following terms: 

 Rolling Horizon: To study the influence of already made decision on the system, we 
are going to work on a rolling decision horizon. In this case, at each RUL estimation, 
we schedule tasks and maintenance action for the duration of the rolling horizon. By 
the next RUL prediction, the rolling horizon is shifted and the schedule is updated by 
adjusting the remaining tasks in the decision, scheduling the new available tasks and 
the possible maintenance interventions as shown in figure-3. 

 Elementary Decision: it is a single decision that could be either an operational one by 
choosing which task to execute next with which parameters, or a maintenance 
intervention by selecting the components to maintain. 

 Partial Decision: it is the sequence of executed elementary decisions between two 
consecutive predictions of remaining useful life. 

 Global Decision: it is the sequence of planned elementary decisions over the rolling 
horizon. 

 Step: it is defined as the moment when new data is available, the prognostic module 
is run to estimate the new value of RUL, and a new schedule is elaborated. 

 Period: The decision horizon is divided into smaller time units. These time units are 
called periods. They can be a day, a week or a month depending on the studied system 
and its specifications. 

 

Figure 3: Illustration of the terms 
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Figure-3 shows an illustration of the predefined terms. Elementary decisions are represented 
by the orange boxes. At step-1, i.e. the first RUL prediction, a first global decision is 
constructed over the rolling decision horizon. This global decision is then executed until a 
second RUL value is estimated at step-2. Between step-1 and step-2 a part of the first global 
decision is executed; this part is called partial decision. At step-2, the rolling horizon is shifted 
and a second global decision is constructed by updating the remaining elementary decision of 
the first global decision and by adding the new available tasks. 

3.2 Concept 

First we considered the dynamic aspect of the RUL estimation by periodically execute the PHM 
process. At each step, we are going to build global decision over a predefined decision horizon 
out of elementary action. Therefore, the proposed approach consists in iteratively building 
and updating global decisions by integrating newly available prognostics information. The 
iterative aspect of the approach is represented by the physical loop in red in figure-4.  

 

Figure 4: Physical and Decisions Loops of the Proposed Approach 

Global decisions are built by scheduling operational tasks with their corresponding parameters 
and eventually maintenance actions if needed. The obtained schedule is based on the system 
capability to fulfil the proposed elementary actions. Our proposed approach consists in adding 
inside the prognostic phase a simulator that is able evaluate the evolution of the system 
degradation for the available decisions. Once the task to execute, i.e. the elementary 
decision, is selected, the virtual system (simulator) state is updated. Then the next possible 
actions is evaluated and so on until the duration of the rolling horizon is reached. The output 
of the decision building is a global decision defined as a sequence of elementary decision with 
their corresponding degradation evolution. This decision loop was represented in green 
double-lines in figure-4. The resulted global decision and the actual RUL value and/or health 
indicators (i.e. the value estimated by the prognostic module) are then jointly feed to the 
decision making process that will apply the sequence of elementary decisions on the system. 
Thus the red feedback of the decision making process on the system. 

3.3 Algorithm 

As defined by Goebel et al. [19], a decision-making process is an optimization problem. This 
can be explain by the fact that usually there are many possible actions that could be taken, 
where each action has a cost, a way of implementation and an effect on the system. The 
objective of a decision support module is to choose the most adequate actions that satisfies 
the problem constraints and that optimizes a predefined objective function. To solve these 
optimization problems we can use different techniques like exact algorithms (like linear 
programming, branch and bound procedure) or heuristic algorithms (like evolutionary 
algorithms - genetic algorithm, ant colony optimization or particle swarm optimization). 

In our case, we need to construct a global decision out of elementary ones by taking into 
consideration and by anticipating the effect of the selected ones on the system. Each time we 
select a new elementary decision the set of possible next elementary decision changes. Also, 
the global decisions can contain various number of elementary decisions. These two features 
lead us to eliminate the genetic algorithms approach. Optimal branch and bound algorithms 
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are known to give exact solutions but they are also known for their exponential computation 
time for solving NP-hard problems. Then we proposed to use a modified Ant Colony 
Optimization approach to build our global decisions. It is based on the Ant Colony Optimization 
algorithm defined by Dorigo and Caro [20]. 

Figure-5 represents the algorithm used for this approach. At each step we are going to initiate 
the ant colony. Then each ant will consider all possible elementary actions from the current 
state of the system. They will evaluate the system’s capability to fulfil the possible actions 
i.e. they will run a simulation of the system with the considered action and check if the final 
state degradation level. Each ant will then select a random local decision of its list and update 
its virtual system state. The ant repeat the same actions until all of the ants reach the end of 
the decision horizon. Then we will increment the number of cycles, select the best global 
decision and update the pheromone quantities on the local decisions. We check then if the 
number of cycles have reached the predefined limit or not. If not the ants are set to go through 
another cycle, otherwise the algorithm is stopped and the best global decision is transmitted. 

 

Figure 5: The process of the used algorithm 

4 APPLICATION   

The previous approach was applied on a production scheduling problem. 

4.1 Motivation 

Camci [17], scheduled the maintenance activities for a single machine system over a finite 
decision horizon. The studied machine has several components that were subject to 
degradation. The computed schedule contained more than one maintenance action for each 
considered component. These actions were scheduled based on a single prognostic information 
with the implicit assumption that the system is always running with the same production 
profile in the same operational conditions. Even if such assumptions were true the fact of 
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executing a maintenance activity over the system can change the end-of-life prediction of the 
systems and so the next scheduled maintenance activities can be either a premature 
maintenance or a late maintenance. Although the influence of the decision on the system are 
obvious, Camci didn't consider that in his work. As does most of the papers in literature that 
studied the post-prognostic decisions. This is proved since all the works were based on a single 
RUL value. Which means that decisions over a long horizon were built based on the assumption 
that decision making will not affect the current RUL. On the other hand, Van Horenbeek et 
Pintelon [18] considered, the feedback of the decisions on the system. This was demonstrated 
by re-planning the obtained schedule whenever a new prognostics information are available 
and by considering a rolling decision horizon. Since the various possibilities of systems 
configurations and granularity levels, we choose to start working on a system similar to Camci's 
and Van Horenbeek and Pintelon's. So for this primary approach, we are going to consider the 
case of single machine composed of L non-identical components. Such systems are considered 
complex where the contained components can be characterized with three types of 
dependencies: structural dependency, economic dependency and stochastic dependency by 
Nicolai and Dekker [21]. Structural dependence is when a component stops due to 
maintenance or failure all the dependent components stops. Economic dependence signifies 
that maintaining dependent components together will cost less than maintaining them 
separately. Stochastic dependence is when a component fails/degrades causes the 
failure/degradation of all dependent components. Compared to Camci [17] and Van 
Horenbeek and Pintelon [18], we supposed that the system can operate with different 
operational profiles. The operational profiles can be related to one or more parameters of the 
system (for example the speed of a motor can be used to defines operational profiles for the 
motor). This assumption allows us to demonstrate the effects of changing operational profiles 
on the systems RUL evolution. Each of the system component has a degradation model. In the 
aforementioned papers these models are supposed to be influenced only by the machine 
activity if it's working or not. To bring closer the degradation evolution to reality we assumed 
that the degradation is influenced by the task to execute and its size and the operational 
profile with which the task will be executed. The degradation of a component is, also, related 
to the execution of a task, i.e. when the system is idle the degradation level is assumed to be 
stable. 

4.2 Problem statement 

Classically, PHM problems were based on minimizing the cost of maintenance because post-
prognostic decisions back then mostly considered only maintenance schedule. Lately and with 
PHM becoming more involved in operational decisions the PHM problem soon became a 
multiple objectives optimization problem. For example, Zhang et al [22], integrated 
prognostics information in path planning applied on a rover that experiences a reduced 
remaining charge of its battery. In this example, the cost function of the optimization problem 
considered three factors; mission duration, terrain difficulty and the degradation of the 
battery. The objective is to get to a finish point while minimizing a cost function influenced 
by one or more factors. 

In this paper, we are going to consider a mixture between maintenance and operational 
decisions applied to an industrial manufacturing system. This explains the high influence of 
the industrial context on the problem statement. Our objective is to find the best compromise 
between producing with different speeds and maintaining the machine in order to maximize 
the factory benefits. Thus, we consider the scheduling problem of I production orders on a 
multiple components single manufacturing machine system. The machine is composed of L 
serials components  i.e. when a component fails the whole system fails. In this application, 
only structural dependencies are considered. Each production order i has a quantity Qi of a 
certain product type to produce, a release date ri, a due date di and a deadline Di. The orders 
are available at their release date and no preemption is allowed. The machine is able of 
producing J different products where each product j is characterized by its sell price Pj per 
unit, a coefficient of influence sj

l on component's l degradation and a lateness penalty per 
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time unit LPj if the order containing the product j is delivered after its due date di and before 
its deadline Di. The machine has K possible production profiles. Each profile k is characterized 
by a cost Cj

k of producing one unit of product j for j ∈ J and a duration of producing one unit 
with this profile (regardless the type of the product). 

The elementary decisions are either produce a production order i with a profile k or a 
maintenance action for part l. The main objective, as described in equation (1), is to schedule 
elementary decisions in the way to maximize the benefits of the factory over an M-Steps 
simulation horizon. 

𝑚𝑎𝑥 ∑ 𝐵𝑚𝑚∈𝑀 = 𝑚𝑎𝑥 ∑ 𝐺𝑚 − 𝐶𝑚𝑚∈𝑀  (1) 

Where: {
𝐺𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑡ℎ 𝑠𝑡𝑒𝑝 𝑖𝑡𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 2 𝑎𝑛𝑑 3

𝐶𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑡ℎ 𝑠𝑡𝑒𝑝 𝑖𝑡𝑠 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑 𝑖𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 4 𝑎𝑛𝑑 5
 

The global decision’s gain of the mth step :  

𝐺𝑚 =  ∑ 𝐺𝑛𝑛  (2) 

With 𝐺𝑛 the gain of the nth elementary decision is defined as :  

𝐺𝑛 =  {
𝑄𝑖 ∗ 𝑃𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

0 𝑓𝑜𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒
 (3) 

The global decision’s cost of the mth step :  

𝐶𝑚 =  ∑ 𝐶𝑛 𝑛 + 𝐿𝑂𝑃 ∗ (𝐴 − 𝑈 − 𝑀) (4) 

With A is the duration of the rolling horizon, U is the time used for production, M the time 
used for maintenance and LOP is a penalty on the lost opportunity and Cn the cost of the nth 
elementary decision is defined as follows : 

𝐶𝑛 =  {
𝑄𝑖 ∗ 𝐶𝑗

𝑘 +  𝑢𝑖 ∗  𝑄𝑖 ∗ 𝐿𝑃𝑗 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

∑ (𝑀𝑙 +  𝑃𝑅𝑈𝐿𝑙 ∗ 𝑅𝐸𝑃𝑙)𝑙∈𝑃𝑀  𝑓𝑜𝑟 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒
 (5) 

With :  

𝑢𝑖 =  {
1 𝑖𝑓 𝑖 𝑖𝑠 𝑙𝑎𝑡𝑒
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

𝑅𝐸𝑃𝑙 =  {
𝑅𝑈𝐿𝑡ℎ −  𝑅𝑈𝐿𝑙  𝑖𝑓 𝑅𝑈𝐿𝑡ℎ  <  𝑅𝑈𝐿𝑙  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

𝑃𝑅𝑈𝐿𝑙 is a penalty on the not used portion of the maintained component. 

4.3 Approach comparison 

If we consider the problem without prognostics information, then the cost of an elementary 
decision will be defined as following : 

𝐶𝑛 =  {
𝑄𝑖 ∗ (𝐶𝑗

𝑘 +  𝑢𝑖 ∗ 𝐿𝑃𝑗)    𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

∑ 𝑀𝑙  𝑙∈𝑃𝑀      𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒
 (8) 

With the gain of an elementary decision remains unchanged as defined in equation (3), in this 
case, we can consider minimizing the cost of the decisions as an objective to optimize the 
objective equation (1). As defined in equation (8), the only variable we can affect by modifying 
the schedule is the ui, i.e. if the order is tardy or not. Thus we need to minimize the number 
of tardy jobs. In this context, Moore [23] developed an algorithm that minimizes the number 
of tardy tasks in the case of a single machine with non-preemptive tasks.  

Since our objective is to manage the system life and health, it is important to add maintenance 
decisions. That's why we combined Moore algorithm with a classic CBM algorithm. Where at 
the start of each period we check if there is a necessity to schedule a maintenance action for 
the system or not. The need for a maintenance action is determined by comparing the actual 
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degradation level of each component with a threshold. If one or more degradation level 
exceed the threshold for maintenance a maintenance action is scheduled at the beginning of 
the period then the rest of the duration is scheduled with Moore algorithm to obtain the global 
decision, otherwise we directly schedule production. If the system fails before the next health 
inspection a corrective maintenance action takes place. Corrective maintenance costs more 
that scheduled maintenance and takes more time. This Algorithm will be noted MCBM in the 
rest of this paper. 

4.4 Problem generation 

For this numerical application we assumed that the machine is capable of producing four 
product types with three different production profiles (i.e. Low, Medium and High speed).  
Each of the component has a degradation model, for simulation purposes, we supposed that 
the degradation model follows an exponential function. Equation (9) represent the 
degradation model of component l while executing the task i with the production profile k. 

𝐷𝑙,𝑖,𝑘(𝑥) =  𝑎𝑙 ∗ (𝑒𝑏𝑙∗𝑥∗𝑆𝑖
𝑙∗𝑃𝑃𝑘 − 1)  (9) 

Where al and bl are two parameters related to the component they define the evolution of the 
exponential function. Si

l is the coefficient of the task i severity on component l. PPk is a 
coefficient that represents the influence of production profile k on the component 
degradation. It is supposed that the production profile influence the different component with 
the same rate. An example of this degradation model is shown in figure 6. 

 

Figure 6: Example of a degradation evolution for a component under different 
production profiles 

The defined algorithm for the proposed approach is influenced by some parameters related to 
the input data. Of these parameters, we choose the following ones to variate into different 
test cases: 

 The degradation profile of the components: Three cases were considered; rapidly 
degrading components where the RUL of a new component is less than 4000 product, 
normally degrading components where the RUL of a new component is between 4000 
and 10000 products and slowly degrading components with RUL is more than 10000 
products. 

 The initial state of the system: Randomly generated initial degradation levels for each 
component. 
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 The quantity to produce in the orders and consequently the number of orders per time 
unit: Three categories were considered; small tasks where Qi ∈[10, 50], medium tasks 
with Qi ∈ [30, 100], and large tasks where Qi ∈[100, 200].  

To evaluate the approach different cases and combinations of these parameters were 
considered. 

5 RESULTS   

This section will be divided into two subsections. In the first subsection, we will compare the 
two proposed algorithms, i.e. the approach and the MCBM, over only one decision horizon. In 
the second subsection, we will present the results over the simulation duration. 

5.1 The proposed approach vs the MCBM 

To compare the proposed approach to the MCBM algorithm we defined some performance 
indicators. For instance, we will use the Cost of a decision over the rolling horizon and the 
benefit of the global decision. Since the Moore algorithm is supposed to minimize the number 
of tardy jobs, we will then compare the number of delayed orders, and we will compare the 
number of missed orders. To compare the performance of the maintenance planning we will 
monitor the number of corrective maintenance. To compare the general performance of the 
considered algorithm we will follow the evolution of the utilization of the machine (noted  
U(%)) and the produced quantity (noted QP). 

The above-mentioned indicators are measured over one-step of global decision construction 
for 100 test case. The obtained results are divided according the test type i.e. small, medium 
and large tasks. In addition to that, the indicators are evaluated in terms of minimum, average 
and maximum values. A summary of the results is given in table (1). 

   

Table 1: Single Step Performance Comparison. 

 Small Tasks Medium Tasks Large Tasks 

Proposed 
A. 

MCBM Proposed 
A. 

MCBM Proposed 
A. 

MCBM 

Cost 

Min 1209 1354 1235 1541 1190 1470 

Avg 1489 1739 1486 1754 1717 1830 

Max 1811 2534 1776 2925 2310 3765 

Benefit 

Min 4767 3807 4769 3930 3790 2939 

Avg 5508 4869 5654 4783 5851 4481 

Max 6149      5504 6523 5923 7739 6257 

Delayed 
Orders 

Min 25 30 9 9 3 4 

Avg 30.12 35.66 12.26 13.75 4.53 6.5 

Max 37 42 15 18 7 9 

Missed 
Orders 

Min 8 5 3 2 1 2 

Avg 14.75 8.94 5.82 4.27 2 2.52 

Max 19 15 8 7 4 4 

Corrective 
M. 

Min 0 0 0 0 0 0 

Avg 0 0.7 0 0.75 0 0.64 

Max 0 2 0 2 0 2 

U(%) 

Min 91 72 96 79 94 76 

Avg 96.8 85 97.9 87.5 97 85 

Max 99.6 90.6 99.9 92.66 99.58 92 

Quantity 
Produced 

Min 1375 1304 1407 1434 1389 1367 

Avg 1475 1532 1498 1574 1592 1533 

Max 1613 1631 1633 1668 1884 1656 

In table 1, we can notice that in every case the cost of the schedule obtained by the proposed 
approach is lower than the one provided by the MCBM. According the equations (4) and (5), 
the cost of a global decision is influenced by the following reasons: 
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 The Produced Quantity: The produced quantity intervene directly in the definition 
of the cost of a decision. In addition, we can here notice that in the cases of small 
and medium orders the produced quantity by the proposed approach is lower than 
those produced by MCBM. In the case of large tasks, the quantity produced is higher 
than those produced by the MCBM but the cost is still lower and this is caused by the 
other factors. If we compare the quantity produced and the cost of decision in the 
case of large tasks to the cases of small and medium tasks, we can easily see the 
influence of the produced quantity on the cost. 

 Tardy Orders: The number of tardy orders has a direct influence on the cost of the 
decision. Although the Moore algorithm is developed to minimize the number of 
tardy orders, still the number of tardy jobs in the schedules of the proposed 
approach is lower than the one obtained by the MCBM. The extra tardiness in the 
MCBM results are caused by the unplanned maintenance actions. Also the fact that 
the approach consider different operational profiles in the other hand the MCBM 
operates with only the average profile. 

 Maintenance Cost: The maintenance cost in this studied case is influenced by two 
reasons: 

o Corrective Maintenance: Corrective maintenance tends to be more costly 
than planned maintenance actions. From the table we can see that the MCBM 
solutions presents a high risk of corrective maintenance compared to the 
proposed solutions that does not contain unplanned maintenance. 

o Premature Maintenance: Premature maintenance is when a component is 
maintained while it can still produce. For instance, figures 7 and 8 represent 
respectively the evolution of the degradation level of component 3 in one of 
the tests. At this level, we are only interested in the degradation level when 
the maintenance is performed. In the case of MCBM the maintenance was 
done at 0.84 while in case of the proposed approach we reached 0.94 of 
degradation before maintenance. 

o Machine Utilization: The time spent where the machine is available but idle 
for lack of jobs is considered as a lost opportunity. The use of an operational 
profile that takes more time to produce will extend to time needed to fulfill 
an order and this will reduce the time spend when the machine is ready to 
produce but no order is available or the remained time before the end of the 
period does not allow the execution of an order. Moreover, in all the 
presented cased we reached a level of utilization more important than the 
one obtained by the MCBM. 

 

Figure 7: The degradation of component number 3 under the MCBM method 

 

Figure 8: The degradation of component number 3 under the Proposed Approach 

In addition, we notice that the benefits of each of the cases is higher using the proposed 
approach. As the benefits defined as the difference between the gain and the cost of a 
decision, a part of the explanation of this results is that MCBM solution are more costly. The 
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other part is the value of the gain. As mentioned in the problem statement, each product j 
has a different sell price. The MCBM is developed in a way to indirectly minimize the cost by 
minimizing the number of tardy jobs, but the algorithm does not consider the type of the 
product, the quantity of the order or at which price the order will be sold. On the other hand 
the ant colony algorithm consider these facts and has an objective to prioritize orders with 
the higher gain and then to figure out how to produce them at lower cost. 

As for the missed orders, the number is higher with the proposed approach in the cases of 
small and medium tasks. Although the larger the tasks the lowest the number of missed orders 
until we reach a lower number than the one obtained by the MCBM in case of large tasks. This 
has to do with the consideration of different operational profiles. In the proposed approach, 
it is better to produce smaller number of orders with low speed and deliver them in time then 
to produce more orders ending up by causing many tardy jobs and causing more degradation 
to the machine. The use of different profiles allows us to manage better the health of the 
machine. This can be seen by comparing figures 7 and 8 where in the case of the proposed 
approach we reached the 0.84 degradation level at approximately the double of products 
needed to get the component at the same degradation level with the MCBM. 

In this subsection, we showed one-step results comparison between the proposed approach 
and the MCBM. As a conclusion, the proposed approach is more interesting in term of benefits 
cost in every case. It has a drawback of the number of missed orders when it is about small or 
medium tasks. When the approach presents it full performance at large tasks. 

5.2 Synthesis 

After comparing the two algorithms over one-step of simulation, we will now study the 
cumulative effect on the obtained results. In that order, figure 9 presents the different 
evolution of benefits obtained by the proposed approach and those obtained by MCBM over 
the duration of the simulation. Through this figure, one can easily notice that the integration 
of prognostics information in the decision process with a closed loop approach guarantee a 
more important benefits than using the MCBM.  One notes that the larger the tasks the bigger 
the difference between the benefits of the approach and those of the Moore algorithm.   

 

Figure 9: General evolution of benefits 

Table 2 presents a summary of the average obtained results. All the three scenarios presents 
a higher machine utilization rate with the proposed approach and a lower maintenance and 
lost time rates compared to the MCBM. In the case of small and medium tasks the number of 
products made under the proposed approach is slightly less than the number produced with 
Moore combined with CBM. While in the case of large tasks, the number produced with the 
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proposed approach is much bigger than the total production using the modified Moore 
algorithm. 

 

Table 2: Summary of the obtained results 

Task size Method 
Machine 

Utilization (%) 
Maintenance (%) Lost Time (%) 

Quantity 
Produced 

Small 
Tasks 

Proposed A. 97.33 0.97 1.7 25244 

MCBM 84.65 1.78 13.57 25349 

Medium 
Tasks 

Proposed A. 98.1 1 0.9 26049 

MCBM 87.96 1.7 10.34 26903 

Large 
Tasks 

Proposed A. 96.42 1.28 2.3 28025 

MCBM 83 1.72 15.28 25200 

 

The Obtained results are in coherence with the results of the previous subsection. We can 
conclude that the proposed approach allows us to better manage the health of the machine 
through controlling what is to produce and with which speed. Although this approach provides 
good results on the small and medium tasks, it is better to use it in case of large production 
orders. Finally, it is important to integrate the prognostics information in the scheduling of 
production in a closed loop style by considering the future loads and how they will effects the 
system in question. 

6 CONCLUSION 

In this paper, we presented a new approach in integrating the RUL of a machine in the decision 
making process. The approach is based on an iterative decision making process where at each 
step the new evolution of the systems' RUL is considered. The closed loop approach was 
applied on multiple components in a single machine and was evaluated in terms of cost-
benefits. The obtained results were compared to a modified Moore algorithm combined with 
a classic CBM approach. They show that our approach overpasses classical ones. 

As future work, we plan to generalize this approach on the different systems configuration 
and granularity levels, on one hand. The upgrade from single machine to a multiple machines 
system is challenging for the computational capacity of the proposed algorithm. On the other 
hand, the proposed approach has two key decision variables; the duration of the rolling horizon 
and the duration of the partial decision compared to the rolling horizon. It is in our plans to 
optimize these variables.   
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