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Abstract— Nanosciences have recently proposed a lot of
proofs of concept of innovative nanocomponents and especially
nanosensors. Going from the current proofs of concept on this
scale to reliable industrial systems requires the emergence of a
new generation of manufacturing methods able to move, posi-
tion and sort micro-nano-components. We propose to develop
’No Weight Robots-NWR’ that use non-contact transmission
of movement (e.g. dielectrophoresis, magnetophoresis) to ma-
nipulate micro-nano-objects which could enable simultaneous
high throughput and high precision. This paper focuses on
developing a 2D robotic control of the trajectory of a micro-
object manipulated by a dielectrophoresis system. A 2D dy-
namic model is used to establish an open loop control law
by a numerical inversion. Exploiting this control law, a high
speed trajectory tracking (10 Hz) and high precision positioning
can be achieved. Several simulated and experimental results
are shown to evaluate this control strategy and discuss its
performance.

I. INTRODUCTION

This article deals with the robotic control of a non-contact
dielectrophoresis system which can be considered as an
original robotic structure compared to the current industrial
robot. The first industrial robot UNIMATE [1] based on
standard joints was commercialized in 1961 (see figure 1).
Nowadays more than one million of robots are in use all over
the world. In the 1980’s the use of compliant structures in
robotics [2] was started to enable high precision positioning
making them, at present, the most widely used structure
for microscale robots [3], [4]. However, transmission of
movement in such robots is obtained via the movements
of mechanical parts which largely limits throughput due to
inertial effects. In the 2000’s, LightWeight Robots [5], [6]
have been developed by KUKA[7] to reduce robot inertia.
However, the impact of inertia is still important in the
small scales (micro-nano) where the inertia of the object
is highly negligible compared to the one of the robots. We
propose to develop robots that use non-contact transmission
of movement to manipulate micro-nano-objects. Besides
eliminating the inertia of a robotic structure, this approach
also eliminates friction and adhesion (between the tweezer
and the component) which are highly detrimental to a robot
performance and life time.

These ’No Weight Robots’ NWR are at the cross-road
between parallel robot and current non-contact manipulation.
Firstly, NWR consists of moving components by applying
forces coming from several physical field sources which
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have a similar effect to parallel robotics [8], [9] where the
platform is moved by several mechanical forces coming
from several robotic legs. The use of non-contact forces,
rather than mechanical forces, changes the robot design
drastically. In this regard, existing robotic approaches
cannot be transferred to NWR. Secondly, current non-
contact manipulation has been achieved mostly by open
loop for object positioning or self-assembly [10-17] .
The only exception concerns laser trapping which has
been experimented in closed-loop by Arai et al. [16],
[17]. However, laser trapping induces forces around tens
of picoNewtons limiting the achievable throughput. The
dielectrophoresis proposed in this paper generate forces
around thousand times higher [18], [19]. Providing robotic
control strategies will enable active and reprogrammable
trajectory control and guarantee the final position of a
manipulated object.

This paper introduces a numerical model of a micro-bead’s
behavior in a dielectrophoresis system in the next section.
The 2D trajectory control based on an inverted model is
described in the fourth section and experimental validation
is presented in the last section.
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Fig. 1. Movement transmission used in robotics: (i) standard joints used in
a majority of robots; (ii) compliant joints based on mechanical deformation
used in high precision positionning systems; (iii) the third alternative:
movement transmission based on non contact forces
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II. DIRECT DYNAMIC MODEL OF A
DIELECTROPHORESIS-BASED SYSTEM

In this section, we present a 3D dielectrophoretic force
simulator applied on a micro-bead, which will be used as
reference system. Secondly, a 2D direct dynamic model
based on the 3D dielectrophoretic force simulator, will be
presented and used to establish a 2D control law presented
in the next section.

A. Dielectrophoresis force similator

In order to compute the electric field and then the dielec-
trophoretic force applied to a micro-object in an electrode
structure, a numerical simulator is needed. This numerical
simulator must be able to compute the dielectrophoretic force
generated by very complex geometries in a very short time.
For one hand, corresponding analytic equations are very
complex and hard to be established. For a second hand,
the finite element modeling (FEM) solution is limited to a
long computation time and specially when electric voltage
changes frequently. Thus, we propose to use the hybrid
numeric simulator proposed in [13] gathering the ability of
the FEM solution to simulate complex electrodes geometry
and the short computation time of the analytical equations.
According to [20], the dielectrophoretic force

−→
F DEP applied

to the micro-bead’s center X(x, y, z) with respect to the
electric field

−→
E (X,U) can be written as:

−→
F DEP (X,U) = 2πεmr

3Re[K(ω)]∇(
−→
E 2(X,U)), (1)

where

K(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

, (2)

and ε∗p and ε∗m are respectively the complex permittivity of
the particle and the medium with:

ε∗ = ε+ j
σ

ω
, (3)

ε is the relative permittivity, σ is the conductivity and ω
is the angular velocity of the electric field. Thus, if we
consider a configuration of n electrodes, by applying n− 1
sinusoidal electric voltages identified by there magnitudes
U = [U1, ...Un−1] and there angular velocity ω, the electric
field

−→
E (X,U) can be computed using the hybrid method

described in [13]. This hybrid method consists in computing
the electric field

−→
E (X,U) by integrating the surface charge

density on the electrodes. In fact the electric charge density
Q and the magnitudes of the applied voltages U on the
electrodes are linearly related:

Q =

n−1∑
i=1

(CiUi), (4)

where Ui is the magnitude of the applied voltage on the
ith electrode and Ci is the elementary inter-capacitance
between the electrodes influenced by the ith electrode.
The inter-capacitance between the electrodes depends on
only the geometric shape of the electrodes and the electric
permittivity of the medium. The Ci is simulated using FEM

software. These simulations are executed in preprocessing
which reduces the total time of the force computation. If
we consider the planar electrodes drawn in the figure 2 (red
lines), the number of electrodes n is equal to 4 and they are
placed in the x, y plane.

To compute the electric charge density Q with respect
to the applied voltages U = [U1, U2, U3], n − 1 = 3
FEM simulations are required. The figures 2(a) and 2(b)
show the elementary inter-capacitances C1 and C3. The
figure 2(c) shows how the electric charge density Q is
analytically computed with respect to the applied voltages
U = [75V, 0, 75V ] and the elementary inter-capacitances C1

and C3.

(a) Elementary inter-
capacitance C1.

(b) Elementary inter-
capacitance C3.

(c) The computed charge density C = 75×C1 +
75× C3.

Fig. 2. The electric charge density computed on the electrodes by applying
the following electric voltages: U = [75V, 0, 75V ].

Once the matrix of the electric charge density Q is
computed, the electric field can be calculated analytically
in a point X(x, y, z) in the medium. In fact, with each value
Qi,j of the computed matrix Q corresponds a xi,j , yi,j point
on the electrodes (zi,j = 0 because of the electrodes are in
the x, y plane). Thus, the expression of the electric field

−→
E

at the point X(x, y, z) is:

−→
E (x, y, z) =

∑
i

∑
j

Qi,j
−→r

4πεm‖−→r ‖3

 , (5)

where r = [x − xi,j , y − yi,j , z], and the DEP force can be
also computed analytically with respect to (1). The figure
3 resumes the DEP modeling simulator (DMS) block. The
block’s inputs are the geometric shape of the electrodes, the
applied voltages and the micro-bead’s current position. This
block generates the computed x, y and z components of the
dielectrophoretic force applied to the micro-bead in its center.
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Fig. 3. DEP modeling simulator (DMS).

B. 3D direct dynamic model

The dynamic of a micro-bead in motion under dielec-
trophoretic force field, in a liquid medium is ruled by the
following dynamic equation:

−→
F DEP (X) +

−→
F Drag +

−→
P = m

−→̈
X, (6)

where X is the space coordinates of the micro-bead’s center
X(x, y, z), Ẋ is its velocity, Ẍ its acceleration,

−→
F DEP (X)

is the applied dielectrophoretic force on the center of the
micro-bead,

−→
P is its apparent weight (sum of the weight

and the buoyancy), m is its mass and
−→
F Drag is the viscosity

friction created on the micro-bead. Generally, in the micro-
scale, micro-manipulation in a liquid medium with dynamic
viscosity ν is characterized by a Reynolds number much
smaller than 1. In this case the micro-bead’s inertia impact
is very small compared to the viscosity friction

−→
F Drag. Thus

the inertia term m
−→̈
X can be neglected and the dynamic

equation becomes:
−→
F DEP (X) +

−→
F Drag(Ẋ) +

−→
P = 0. (7)

In the micron scale the Stokes approach of the viscosity
friction is valid,

−→
F Drag(Ẋ) becomes:

−→
F Drag(Ẋ) = −6πνR

−→̇
X, (8)

where ν is the dynamic viscosity and R the radius of the
micro-bead. The dynamic equation is thus:

−→̇
X =

−→
F DEP (X) +

−→
P

6πνR
. (9)

The diagram in the figure 4 illustrates the 3D direct dy-
namic modeling. Having the applied electric voltages and the
electrodes geometry as input, the direct modeling simulator
computes the corresponding micro-bead’s trajectory. In gen-
erally, the micro-bead’s behavior in dielectrophoretic force
field is characterized by its high dynamics and nonlinearity.
This numeric simulator is experimentally validated in [13]
where we have shown that the dynamics are very high
and the time response of the micro-bead is less than 3ms.
Moreover the behavior of the micro-bead is subjected to

a high nonlinearity and especially when the micro-bead
approaches the electrodes.

Fig. 4. A dynamic modeling and DMS are used to compute the micro-
bead’s 3D trajectory.

C. 2D simplified dynamic model

In order to reduce the complexity of the computation,
we will consider that the electrodes surface is planar in
the x, y plane. The 3D dielectrophoretic dynamic modeling
simulator is designed to run on a classic PC with high
performance (typically GHz) and it is not optimized to
be integrated directly into a controller card with lower
calculation performance (typically MHz). Thus, a reduction
of the 3D simulator in 2D is proposed. We assume that the
micro-bead will move only in a 2D horizontal plane parallel
to the electrodes surface at a height equal to its radius R. The
impact of this assumption is going to be discussed at the end
of the paper. The 2D simulator uses a similar approach to
the 3D DMS presented above. In this 2D model, a database
of the elementary spacial force is created. This database
links the 2D dielectrophoretic force directly to the applied
voltages, which will reduce sufficiently the computation time.
Using the linear relationship between the electric field

−→
E

and the applied voltages V , the dielectrophoretic force can
be written as a second order equation with respect to the
electric voltages. Using the following electric voltages vector
(see in figure 5) :

V = [−uy, Uref − ux, uy, Uref + ux]; (10)

the 2D dielectrophoretic force [FDEPx
, FDEPy

] can be
written as the following:

FDEPx
= f11u

2
x + f12u

2
y + f13uxuy

+ f14Urefux + f15Urefuy + f16U
2
ref

FDEPy
= f21u

2
x + f22u

2
y + f23uxuy

+ f24Urefux + f25Urefuy + f26U
2
ref . (11)

Uref is a reference voltage, ux and uy are the varying
voltages and fi,j are spacial functions in x and y essentially
dependent on the electrodes geometries. Discrete values of
these functions will be computed in a x, y grid points
using the 3D simulator and stored in a database and a
quadratic interpolation is used to evaluate these functions
in an arbitrary (x, y) point. Using this 2D numeric model,
the 2D direct dynamic model becomes:[

ẋ
ẏ

]
=

1

6πνR

[
FDEPx

FDEPy

]
(12)
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Fig. 5. Geometry of the electrodes and applied voltages: definition of
control parameters ux and uy .

The weight
−→
P has been removed as its projection on the x, y

plane is null.
Consequently, the computation time is reduced and few
arithmetic iterations are executed in a very short time, even
with the interpolation procedure. Indeed, 40 CPU clock
cycles are needed to compute the 2 components of the dielec-
trophoretic force in a grid point, and 180 CPU clock cycle
in an interpolated position. In the other hand, using the 3D
dielectrophoretic force computation, at least 104 CPU clock
cycle are needed. Thus if we consider that the micro-bead’s
time response is 3ms and for a successful tracking at least 10
control sequence are generated, a controller card with 1MHz
clock takes 0.2ms to compute the dielectrophoretic force
using the 2D model. The same controller card may takes
more then 10ms when using the 3D dynamic modeling.

III. 2D TRAJECTORY TRACKING

To control the micro-bead’s trajectory in a 2D dielec-
trophoretic local periodic structure, an elementary control
law for tracking trajectories is presented in this section where
a micro-bead moves in one structure. The behavior of a
micro-bead in a dielectrophoretic system is characterized
by its high dynamics as presented in [13] and the nonlin-
earity with respect to the applied voltages as shown in the
equation (11). This elementary control law must takes into
consideration this two problematics. Consequently a simple
proportional integrator control is not sufficient especially
when the micro-bead approaches the electrodes where the
nonlinearity becomes very high. The analytic inversion of
the 2D model (12) is not possible due to the strong coupling
between the control variables ux and uy . One way to solve
this problem is to use the Newton-Raphson numeric method
which is able to find the values of the control variables, ux
and uy to follow a reference trajectory.

A. 2D Inverse dynamic model

Newton-Raphson is a method for finding successively
better approximations to the roots of a real-valued functions.
By sampling the 2D dynamic model (12) and knowing the
trajectory [x̂(t), ŷ(t)] with respect to the time we are able
to compute the appropriate control variable ux(t) and uy(t)
using the Newton-Raphson method as illustrated in the figure
6:

[x̂(t)

ŷ(t)] Invers dynamics
(Newton-Raphson)

[u (t)x

u (t)y
]

3D
simulator

[x(t)
y(t)]

Fig. 6. The Newton-Raphson method is used to find the control variables
ux and uy

By sampling the dynamic equation (12) using a sampling
period T we obtain:[

x̂k+1

ŷk+1

]
=

T

6πνR

[
FDEPx(uxk, uyk

)
FDEPy

(uxk, uyk
)

]
+

[
xk
yk

]
(13)

where x̂k+1 and ŷk+1 are the next trajectory point at the date
kT . Applying the Newton-Raphson method to this model
consists in finding iteratively a series of ux and uy . At the
date kT we have:

[
uxk+1

uyk+1

]
=

[
uxk

uyk

]
− J(uxk

, uyk
)−1

[
F (uxk

, uyk
)

G(uxk
, uyk

)

]
where ux0

and uy0
are the last computed control variable, J

is the jacobin matrix:

J(uxk
, uyk

) =

 ∂F (ux,uy)
∂ux

∣∣∣
uxk

,uyk

∂F (ux,uy)
∂uy

∣∣∣
uxk

,uyk

∂G(ux,uy)
∂ux

∣∣∣
uxk

,uyk

∂G(ux,uy)
∂uy

∣∣∣
uxk

,uyk


(14)

and

F (ux, uy) = FDEPx
(ux, uy)− 6πνR(x̂k+1 − xk)

G(ux, uy) = FDEPy
(ux, uy)− 6πνR(ŷk+1 − yk) (15)

The iterations clasically stops when:

‖uxl+1
− uxl

‖ 6 δu and ‖uyl+1
− uyl

‖ 6 δu

where δu is an error threshold.

B. Numeric application and experimental results

Considering the electrodes geometry presented in the
figure 7 submerged in a ultra pure water, where the trajectory
of a micro-bead made of silica will be controlled. The
table I contains the numeric values of the system physical
parameters.

Firstly, we are tracking a square reference trajectory with
1s period, presented in the figure 8(a).

Applying the Newton-Raphson method, a series of ux
and uy control variables are computed and presented in the
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Fig. 7. Experimental electrode used to apply the dielectrophoretic motion.
The square presents the reference trajectory.

physical parameters notations values
vacuum permittivity ε0 8, 85 · 10−12CV −1m−1

particle permittivity εp 8, 4 · ε0
particle conductivity σp 10−12Sm−1

medium permittivity εm 80ε0
medium conductivity σm 4.10−6Sm−1

water volumlic density Rm 1000Kgm−3

frequency f 10KHz
Clausius-Mossotti Re[K(ω)] −0.42

TABLE I
NUMERICAL APPLICATION

0.25s 0.5s 0.75s 1s

100µm

-100µm

x(t) y(t)

(a) x̂(t) and ŷ(t) low speed trajectory.

0 0.2 0.4 0.6 0.8 1
−50

0

50

time (s)

vo
lt
es
(V
)

ux

uy

(b) The computed ux and uy values for tracking the
low speed trajectory.

Fig. 8. The control variable ux and uy computed for tracking the low
speed trajectory.

figure 8(b). These computed electric voltages are transmitted
to a digital-analogic convertor, then they are amplified and
applied to the electrodes where the particle is placed (see
figure 7). The micro-bead’s position is captured by a high
speed camera acquisition at 300 images per seconds.

The figure 9 shows the real trajectory of the micro-bead
when applying the ux and uy series already computed. The
relative error between the real trajectory and the reference
is less then 8%. This results shows the ability to control the
trajectory of a micro-bead in dielectrophoretic system using
open loop control strategy.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

x (µm)

y
(µ
m
)

reference

experiment

Fig. 9. The real trajectory made by the micro-bead when applying the
computed ux and uy for the low speed trajectory.

IV. DISCUSSION

In order to show the limitation of our current control law a
second experiment with a trajectory 10 times faster is studied
(figure 10(a)). The 2D controller computes a new series of
ux and uy presented in the figure 10(b).

The figure 11 shows the real trajectory of the micro-bead
when applying the new ux and uy series. As this figure
shows, the real trajectory does not follow the reference and
the error is bigger then 50%. This is essentially due to the
limitation of the 2D controller where the dynamic model is
limited to 2D.

In reality the micro-bead moves in the three directions
x, y and z but in the 2D dynamic mode, it supposes to
move in a horizontal plane. The main difference between
both experiments is the applied voltages ux and uy . In the
second case, the computed voltage is greater then 50V .
When applying these voltages, experiments show that the
height of the micro-beads is significantly different from the
plane assumed in the 2D dynamic model. Thus, in the first
experiment, the real height of the micro-bead is very close
to the plane of the 2D dynamic modeling consequently the
error between the real trajectory and the reference is less
then 8%. In the second experiment, the micro-bead’s motion
is 100µm higher than the plane of the 2D dynamic model,
consequently the error between the real trajectory and the
reference is bigger then 50%. However, the object trajectory
computed using the 3D dynamic model is very close to the
experimental measurement (see figure 11). This indicates that
our 3D simulator is reliable and could be used to develop an
new 3D control law based on a new simplified 3D dynamic
model.
The current method proposed in this paper has shown its
relevance for low altitude trajectories, the extension of this
approach in 3D will be developed in future works.

V. CONCLUSION

In order to control the trajectory of a micro-object for
long distance and high speed, an elementary open-loop
positioning control for a micro-bead is presented using
dielectrophoresis. A 3D dielectrophoretic force simulator
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25ms 50ms 75ms 100ms

100µm

-100µm

x(t) y(t)

(a) x̂(t) and ŷ(t) high speed trajectory.

0 0.02 0.04 0.06 0.08 0.1
−100

−50

0

50

100

time(s)

vo
lt
s(
V
)

ux

uy

(b) The computed ux and uy values for tracking the
high speed trajectory.

Fig. 10. The control variable ux and uy computed for tracking the high
speed trajectory.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

x(µm)

y(
µm
)

reference

experiment

3D simulator

Fig. 11. The real trajectory made by the micro-bead when applying the
computed ux and uy for the high speed trajectory.

has been firstly presented. We have shown that the full
3D dynamic model is too complex to be introduced in a
controller card. Thus a reduced 2D dynamic model based
on the 3D dynamic model was developed. This model is
then used to establish a 2D control law. We have shown
that inverting this model cannot be done in an analythic way
and we have proposed to use the Newton-Raphson numerical
method, in order to compute the appropriate control variable
with respect to a reference trajectory. Two experiments was
presented including two reference trajectories with different
speeds. Experiments have shown that the 2D controller has
succeeded to track the low speed trajectory, and failed to
track the high speed trajectory. This difference has been also
discussed. Experiments also have confirmed that the original
3D dynamic modeling is reliable, and could be used in
developing a new control law dedicated to 3D trajectories.
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