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Abstract: The aim of this paper is to study a conservative wave equation coupled to a diffusion
equation : this coupled system naturally arises in musical acoustics when viscous and thermal
effects at the wall of the duct of a wind instrument are taken into account. The resulting equation,
known as Webster-Lokshin model, has variable coefficients in space, and a fractional derivative
in time. The port-Hamiltonian formalism proves adequate to reformulate this coupled system,
and could enable another well-posedness analysis, using classical results from port-Hamiltonian
systems theory.
First, an equivalent formulation of fractional derivatives is obtained thanks to so-called
diffusive representations: this is the reason why we first concentrate on rewriting these diffusive
representations into the port-Hamiltonian formalism; two cases must be studied separately,
the fractional integral operator as a low-pass filter, and the fractional derivative operator as a
high-pass filter.
Second, a standard finite-dimensional mechanical oscillator coupled to both types of dampings,
either low-pass or high-pass, is studied as a coupled pHs. The more general PDE system of a
wave equation coupled with the diffusion equation is then found to have the same structure as
before, but in an appropriate infinite-dimensional setting, which is fully detailed.

Keywords: energy storage, port-Hamiltonian systems, partial differential equations, fractional
derivatives, diffusive representation

1. INTRODUCTION

The dissipative model which describes acoustic waves trav-
elling in a duct with viscothermal losses at the lateral
walls is a wave equation with spatially-varying coefficients,
which involves fractional-order integrals and derivatives
with respect to time. This model is first rewritten in a
coupled form; then the fractional integrals and derivatives
are written in their so-called diffusive representation; es-
sentially, the fractional-order time kernel in the integral is
represented by its Laplace transform.

The main idea of the present work is to put the Webster-
Lokshin fractional PDE into the port-Hamiltonian frame-
work, in order to take advantage of this setting. To do so,
a preliminary work is necessary, that is using diffusive rep-
resentations of both fractional integrals and derivatives in
order to imagine the ad hoc Hamiltonian formulation. The
coupling between conservative and dissipative subsystems
is then easily tackled in this setting; but for the PDE, as
usual, some care must be taken with the functional setting.

The outline of the paper is as follows: in § 2, diffusive rep-
resentations are introduced in order to replace fractional
integral and derivative operators by input-output repre-
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context of the French National Research Agency sponsored
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http://www.hamecmopsys.ens2m.fr/.

sentations, and state-space representation, which prove
compatible with first order dynamical systems. In order to
set up a Hamiltonian formulation of both these operators,
a finite-dimensional toy-model is first studied in § 3: ad
hoc discrete energies are being defined, skew-symmetric
and symmetric structural matrices J and R are identified,
and the standard port-Hamiltonian stucture of dissipative
systems is recovered. Finally, the fully infinite-dimensional
case is presented in § 4: the Webster-Lokshin model is
recast in the setting of port-Hamiltonian systems with
dissipation.

2. A PRIMER ON DIFFUSIVE REPRESENTATION

In this section, we focus on the causal solution of a fam-
ily of first-order ordinary differential equations (ODEs).
Hence, the mathematical setting is the convolution algebra
D′

+(R) of causal distributions.

2.1 An Elementary Approach

Consider the numerical identity, valid for δ > 1:
∫ ∞

0

dx

1 + xδ
=

π
δ

sin(πδ )
.

Letting s ∈ R+
∗ and substituting x = ( ξs )

1

δ in the above
numerical identity, we get:
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∫ ∞

0

sin(πδ )

π

1

ξ1− 1

δ

1

s + ξ
dξ =

1

s1− 1

δ

Finally, performing an analytic continuation from R+∗ to
C \R− for both sides of the above identity in the complex
variable s, and letting β := 1 − 1

δ ∈ (0, 1), we get the
functional identity:

Hβ : C \ R
− → C

s $→
∫ ∞

0
µβ(ξ)

1

s + ξ
dξ =

1

sβ
, (1)

with density µβ(ξ) = sin(β π)
π ξ−β .

Applying an inverse Laplace transform to both sides gives:

hβ : R
+ → R

t $→
∫ ∞

0
µβ(ξ) e−ξ t dξ =

1

Γ(β)
tβ−1 . (2)

2.2 Input-output Representations

Let u and y = Iβu be the input and output of the causal
fractional integral of order β, defined by the Riemann-
Liouville formula y = hβ % u =

∫ t
0 hβ(t − τ)u(τ) dτ in

the time domain, which reads Y (s) = Hβ(s)U(s) in the
Laplace domain.

Using the integral representations above, together with
Fubini’s theorem, we get:

y(t) =

∫ ∞

0
µβ(ξ) [eξ % u](t) dξ ,

with eξ(t) := e−ξ t, and [eξ % u](t) =
∫ t
0 e−ξ (t−τ) u(τ) dτ .

Now for fractional derivative of order α ∈ (0, 1) in the
sense of distributions of Schwartz, we have ỹ = Dαu =
D[I1−αu], and a careful computation shows that:

ỹ(t) =

∫ ∞

0
µ1−α(ξ) [u − ξ eξ % u](t) dξ .

2.3 State Space Representation

In both input-output representations above, introducing a
state, say ϕ(ξ, .) which realizes the classical convolution
ϕ(ξ, .) := [eξ % u](t) leads to the following diffusive realiza-
tions, in the sense of systems theory:

∂tϕ(ξ, t) =−ξ ϕ(ξ, t) + u(t), ϕ(ξ, 0) = 0 , (3)

y(t) =

∫ ∞

0
µβ(ξ)ϕ(ξ, t) dξ ; (4)

and

∂tϕ̃(ξ, t) =−ξ ϕ̃(ξ, t) + u(t), ϕ̃(ξ, 0) = 0 , (5)

ỹ(t) =

∫ ∞

0
µ1−α(ξ) [u(t) − ξ ϕ̃(ξ, t)] dξ . (6)

These are first and extended diffusive realizations, respec-
tively. The slight difference between (3)-(4) and (5)-(6),
marked by the˜notation, lies in the underlying functional
spaces in which these equations make sense: ϕ belongs to
Hβ := {ϕ s.t.

∫ ∞
0 µβ(ξ)|ϕ|2 dξ < ∞}, whereas ϕ̃ belongs

to H̃α := {ϕ̃ s.t.
∫ ∞
0 µ1−α(ξ)|ϕ̃|2 ξ dξ < ∞}, see e.g.

(Haddar et al., 2008, ch. 2).

3. A FINITE-DIMENSIONAL HAMILTONIAN
FORMULATION FOR INTEGRAL AND

FRACTIONAL DERIVATIVES.

In this section, we first consider a classical mechanical
oscillator with fluid damping in § 3.1, then we use the
velocity as input of two different types of damping models:
a low-pass diffusive subsystem (such as a discretized frac-
tional integral) in § 3.2, or a high-pass diffusive subsystem
(such as a discretized fractional derivative) in § 3.3.

3.1 Harmonic oscillator

We start with the port-Hamiltonian formulation of the
single finite dimensional harmonic oscillator. Dynamic
equation is usually written in the form:

mẍ + εẋ + κx = 0 (7)

where x(t) ∈ R and m, ε,κ are positive constants. By using
as state variables the energy variables (ı.e. the position and
the momentum) and defining the Hamiltonian H0 as the
total energy of the system, i.e.:

X :=

[
q = x,
p = mẋ

]
and H0(X) =

1

2m
p2 +

1

2
κx2 ;

it is possible to rewrite (7) in the form of a port-
Hamiltonian system:

d

dt
X =

[
0 1
−1 −ε

]
∂XH0(X) = (J − Rε) ∂XH0(X) .

where ∂XH0(X) =

[
κx = κx

1

m
p = ẋ = v

]

and:

J =

[
0 1
−1 0

]
and Rε =

[
0 0
0 ε

]

J is full rank n = 2 and skew-symmetric , whereas Rε is
symmetric positive (ε > 0), with rank equal to 1, thus not
positive definite.

3.2 Coupling with a low-pass diffusive system, such as a
fractional integral

The damping model is now given by the coupling with
another dynamical system, the input of which is the
velocity v := ẋ, and the output of which is y, a positive
linear combination of first-order low-pass subsytems, as
follows:

mẍ + y + κx = 0, with y =
K∑

k=1

µkϕk

where ϕ̇k =−ξk ϕk + v, for 1 ≤ k ≤ K .

Hence, with HΦ := 1
2

∑K
k=1 µk ϕ

2
k, and ∂ϕk

HΦ = µk ϕk,
the global system can be described by an extended state
X = (x, p,Φ) and a global Hamiltonian H := H0 + HΦ.

d

dt
X =





0 1 0
−1 0 − T

0 −diag(
ξk

µk
)



 ∂XH(X) = (J−R) ∂XH(X) .
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In this case, matrices of size (2 + K) × (2 + K) are given
by:

J =




0 1 0
−1 0 − T

0 0



 and R =






0 0 0
0 0 0

0 0 diag(
ξk

µk
)




 .

It can easily be checked that J is skew-symmetric with
rank 2 only, and R is symmetric positive (ξk > 0, µk > 0),
but not positive definite (its rank is K); its structure is
simply diagonal.

Remark 1. Note that the relation between v and y comes
from a possible discretization of a diffusive system, the
general structure of which would be given by the following
transfer function, namely:

H(s) =

∫ ∞

0
µ(ξ)

1

s + ξ
dξ rather than HK(s) =

K∑

k=1

µk
1

s + ξk
.

As particular and noteworthy case, if µβ(ξ) = sin(βπ)
π ξ−β ,

then Hβ(s) = 1
sβ is recovered, which is nothing but the

fractional integral of order β ∈ (0, 1), a low-pass filter.

3.3 Coupling with a high-pass diffusive system, such as a
fractional derivative

The damping model is now given by the coupling with
another dynamical system, the input of which is the
velocity v := ẋ, and the output of which is ỹ, a positive
linear combination of first-order high-pass subsytems, with
a feed-through term, d :=

∑L
l=1 νl, as follows:

mẍ + ỹ + κx = 0, with ỹ =
L∑

l=1

νl
˙̃ϕl

where ˙̃ϕl =−ξl ϕ̃l + v, for 1 ≤ l ≤ L .

Hence, with H
Φ̃

:= 1
2

∑L
l=1 νl ξl ϕ̃

2
l , and ∂

ϕ̃l
H
Φ̃

= νl ξl ϕ̃l,
the global system can be described by an extended state
X = (x, p, Φ̃) and a global Hamiltonian H := H0 + H

Φ̃
.

d

dt
X =





0 1 0
−1 −d T

0 −diag(
1

νl
)



 ∂XH(X) = (J−R) ∂XH(X) .

In this case, matrices of size (2+L)× (2+L) are given by:

J =

[
0 1 0
−1 0 0
0 0 0

]

et R =





0 0 0

0
L∑

l=1

νl − T

0 − diag(
1

νl
)





It can easily be checked that J is skew-symmetric with
rank 2 only, and R is symmetric positive (ξl > 0, νl > 0),
but not positive definite (its rank is at most L); its
structure is not that simple, but a block computation

shows that XT R X =
∑L

l=1

(√
νl p − 1√

νl
ϕ̃l

)2
≥ 0.

Remark 2. Note that the relation between v and ỹ comes
from a possible discretization of a diffusive system, the
general structure of which would be given by the following
transfer function, namely:

H(s) =

∫ ∞

0
ν(ξ)

s

s + ξ
dξ rather than HL(s) =

L∑

k=1

νl
s

s + ξl

As particular and noteworthy case, if να(ξ) = sin(απ)
π ξα−1,

then Hα(s) = sα is recovered, which is nothing but the
fractional derivative of order α ∈ (0, 1), a high-pass
filter.

4. A HAMILTONIAN FORMULATION FOR
WEBSTER-LOKSHIN MODEL

Let now consider the Webster-Lokshin (cf. Polak (1991);
Hélie et al. (2006)) equation in PHS format. It is given in
the usual PDE form:

∂2
t w +

(
εz ∂

1/2
t + ηz ∂

−1/2
t

)
∂tw −

1

r2
z
∂z

(
r2
zw

)
= 0 (8)

Here, coefficient εz > 0 is conversely proportional to
the radius rz , and the proportionality constants involved
are linked to the square roots of lv and lh, that are
the characteristic lengths of visous and thermal effects,
respectively.

Using the diffusive representation of § 2, Equation (8) can
be written:

∂2
t w + (εz ỹ + ηz y) −

1

r2
z

∂z

(
r2
zw

)
= 0 (9)

With, for the fractional integral

y =

∫ ∞

0
µ(ξ)ϕdξ

where
∂tϕ = −ξϕ+ ∂tw

and, for the fractional derivative

ỹ =

∫ ∞

0
ν(ξ)∂tϕ̃dξ =

∫ ∞

0
(−ν(ξ)ξϕ̃ + ν(ξ)∂tw) dξ (10)

with
∂tϕ̃ = −ξϕ̃+ ∂tw

We choose as state variables the energy variables:

x1 = r2∂zw(t, z), x2 = r2∂tw(t, z),
x3 = ϕ(t, z, ξ), x4 = ϕ̃(t, z, ξ)

with

• x1, x2 ∈ L2((a, b), R),
• x3 ∈ L2((a, b), Hµ) with Hµ :

∫ ∞
0 µ(ξ)x3

2(ξ, .) dξ <
∞,

• x4 ∈ L2((a, b), H̃ν) with H̃ν :
∫ ∞
0 ξ ν(ξ)x4

2(ξ, .) dξ <
∞

The Hamiltonian function H(x1, x2, x3, x4) can then be
expressed as:

H =
1

2

∫ b

a

(
x2

1 + c2x2
2 + ηz

∫ ∞

0
µx2

3 dξ + εz

∫ ∞

0
ν ξx2

4 dξ

)
dz

In order to define the co-energy variables, we need to define
the variational derivative of the Hamiltonian.

Definition 1. (Variational derivative of smooth function).
Consider a functional

H[x] =

∫ b

a
H

(
z, x, x(1), · · · , x(n)

)
dz
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where H is a smooth function. The variational derivative
of the functional H, denoted by δH

δx or δxH is such that:

H[x + εδx] = H[x] + ε

∫ b

a

δH
δx

δx dz + O(ε2)

for every ε ∈ R and smooth real function δx(z) such that:

δx(i)(a) = δx(i)(b) = 0, i = 0, · · · , n .

In the case when H depends only on x and not on its
derivatives:

δH
δx

=
∂H

∂x

In the case of the Webster-Lokshin model the co-energy
variables are then defined by:

e1 = δx1
H = ∂zw, e2 = δx2

H = ∂tw,
e3 = δx3

H = ηz µϕ e4 = δx4
H = εz ν ξ ϕ̃

Equation (9) is then ”formally” equivalent to:




ẋ1

ẋ2

ẋ3

ẋ4



 =





0 ∂z 0 0

∂z −
∫ ∞

0

εzν(ξ). dξ −
∫ ∞

0

.dξ

∫ ∞

0

. dξ

0 1 −
ξ

ηzµ(ξ)
0

0 1 0 −
1

εzν(ξ)








∂zw
∂tw
ηµϕ

ενξϕ̃





(11)

Remark 3. In equation (11), we split the integral of equa-
tion (10) into two terms that are not well defined, in fact
one must understand the term (εz

∫ ∞
0 (ξϕ̃− ∂tw) ν(ξ) dξ)

as non separable.

From a geometrical point of view, the dynamical system
(11) can be then written in the form:

f = (J −R) e (12)

with e ∈ E = H1([a, b], R) × H1([a, b], R) × L2([a, b],H) ×
L2([a, b], H̃), f ∈ F = L2([a, b], R) × L2([a, b], R) ×
L2([a, b],H)×L2([a, b], H̃) and operators J and R defined
as follows:

J =





0 ∂z 0 0

∂z 0 −
∫ ∞

0
. dξ 0

0 1 0 0
0 0 0 0




,

and

R =





0 0 0 0

0

∫ ∞

0
εzν(ξ). dξ 0 −

∫ ∞

0
. dξ

0 0
ξ

ηzµ(ξ)
0

0 −1 0
1

εzν(ξ)





.

Remark 3 applies to the second line of operator R.

The bond space B defined as B = E × F is equipped with
the natural power product:

〈(e1, e2, e3, e4), (f1, f2, f3, f4)〉 =
∫ b

a

(
e1f1 + e2f2 +

∫ ∞

0
(e3f3 + e4f4) dξ

)
dz . (13)

Lemma 1. J is formally skew-symmetric and R is sym-
metric positive i.e.:

J = −J ∗ and R = R∗,R ≥ 0

Proof 1. Let’s first consider the skew-symmetry of J :

〈e′,J e〉 = 〈
(

e′1 e′2 e′3 e′4
)

,





0 ∂z 0 0

∂z 0 −
∫ ∞

0

. dξ 0

0 1 0 0
0 0 0 0








e1

e2

e3

e4



〉

=

∫ b

a

(
e′1∂ze2 + e′2∂ze1 +

∫ ∞

0

e′3e2 dξ − e′2

∫ ∞

0

e3 dξ

)
dz

=

∫ b

a

(
−∂ze′1e2 − ∂ze′2e1 +

∫ ∞

0

e′3e2 dξ − e′2

∫ ∞

0

e3 dξ

)
dz

= 〈−J e′, e〉 .

The adjoint operator of J is equal to −J and then J is
formally skew-symmetric. In a similar way, one can prove
that R is symmetric i.e.

〈e′,Re〉 =
(

e′

1
e′

2
e′

3
e′

4

)





0 0 0 0

0

∫
∞

0

εzν. dξ 0 −

∫
∞

0

. dξ

0 0
ξ

ηzµ
0

0 −1 0
1

εzν








e1

e2

e3

e4





=

∫
b

a

(
e′

2

∫
εzνe2 dξ − e′

2

∫
∞

0

e4 dξ +

∫
∞

0

e′

3

ξe3

ηzµ

−e′

4
e2 + e′

4

1

εzν
e4 dξ

)
dz

= 〈Re′, e〉 .

Moreover, the positivity of R can be proved as follows:

〈e, Re〉 =

∫
b

a

∫
∞

0

(
e2εzνe2 − e2e4 + e3

ξe3

ηzµ
− e4e2 + e4

1

εzν
e4 dξ

)
dz

=

∫ b

a

∫
∞

0

(
ξ

ηz µ
e2

3
+ (

√
εzνe2 −

1
√
εzν

e4)2 dξ

)
dz ≥ 0 .

Of course, R is not even positive definite, thus never
coercive. !

System (12) can be written in the form of an extended
system with closure equation related to the dissipation by

using the extended operator Je with

(
f
fe

)
= Je

(
e
ee

)

with ee = Sfe, where:

Je =





0 ∂z 0 0 0 0 0

∂z 0 −
∫ ∞

0
. dξ 0 −

∫ ∞

0
. dξ 0 0

0 1 0 0 0 −1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0





,

and

S =





εzν 0 1

0
ξ

ηzµ
0

1 0
1

εzν




,

and ee ∈ Ee = H1([a, b], R) × L2([a, b],H) × L2([a, b], H̃),

fe ∈ Fe = L2([a, b], R) × L2([a, b],H) × L2([a, b], H̃) and
operators J and R.

One can check that Je is formally skew-symmetric and S
positive i.e. :

J ∗
e = −Je ans S = S∗ ≥ 0

ha
l-0

08
03

34
4,

 v
er

si
on

 1
 - 

21
 M

ar
 2

01
3



We now consider systems with non zero boundary flow.
One can naturally extend the effort and the flow spaces to
include the boundary, by defining:

E = E × Ee × R
2

F = F × Fe × R
2

We define a symmetric pairing from the power product by:

〈(e, e∂ , f, f∂), (ẽ, ẽ∂, f̃ , f̃∂)〉+ = 〈(e, f̃)〉 + 〈(ẽ, f)〉
−〈(ẽ∂ , f∂)〉 − 〈(e∂ , f̃∂)〉

(14)
with (e, e∂ , f, f∂) and (ẽ, ẽ∂ , f̃ , f̃∂) ∈ B = F × E .

In order to define a Dirac structure we need to define
appropriate boundary port variables with respect to the
considered differential operator and symmetric pairing.
In Haddar et al. (2008) is given a parametrization of
boundary port variables in the case of non full rank
linear differential operators. This parametrization can be
adapted to our case study as follows:

Definition 2. Considering the following decomposition of
Je:

Je =

(
Σ2 02,5

05,2 05,5

)
∂z + P0

with Σ2 =

(
0 1
1 0

)
, the boundary port variables associated

with the differential operator Je are the vectors f∂ , e∂ ∈
R2 given by:(

f∂
e∂

)
=

1√
2

(
Σ2 −Σ2

I2 I2

) (
I2 02,5 02,2 02,5

02,2 02,5 I2 02,5

) (
e(b)
e(a)

)

The definition of the boundary port variables gives rise to
the definition of the associated Dirac structure.
Theorem 1. The subspace DJe of B defined as:

DJe =









f
f∂

e

e∂



 |f = J e and

(
f∂

e∂

)
=

1
√

2

(
Σ2 02,5 −Σ2 02,5

I2 02,5 I2 02,5

)(
e(b)
e(a)

)}

is a Dirac structure.

Proof 2. We used the parametrization proposed in Ville-
gas et al. (2006) to define some boundary port variables
such that the symmetric pairing (14) is non degenerate
and DJe is a Dirac structure, i.e.

DJe = D⊥
Je

Such parametrization arises from the integration by part of
the skew differential operator, the projection of the image
space and the definition of the inner product. !

5. CONCLUSION

In this paper, we propose a port-Hamiltonian formulation
of systems arising from the coupling of a wave equation
with a diffusion equation related to acoustic phenomena.
The considered diffusion equation contains a fractional
derivative in time and physical coefficients variable in
space. First we consider the finite dimensional approxima-
tion of the integral and fractional derivatives. It is based
on a diffusive representation of integral and fractional
derivatives. In a second instance, we consider the Webster-
Lokshin equation that is made up by the coupling of the

wave equation and the aforementionned diffusion term.
From the definition of the energy variables, Hamiltonian
function and power conjugate flow and effort vectors, we
propose the definition of some appropriate boundary port
variables in order to define a Dirac structure. This Dirac
structure allows to connect the internal energetic behavior
of the system with the power flow at the boundary. This
first work on the geometrical formulation of such system
will open to the use of functional analysis tools that have
been previously derived in the context of differential sys-
tems with dissipation in Zwart et al. (2011). Nevertheless
a particular care will have to be taken on the characteri-
zation of functional spaces, particularly in the case of the
diffusion function for which the domain is not separable,
as already taken care of in Haddar et al. (2008).
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