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Abstract. The present study investigates the modeling of the vibration energy
localization from a nonlinear quasi-periodic system. The periodic system con-
sists of n moving magnets held by n elastic structures and coupled by a non-
linear magnetic force. The quasi-periodic system has been obtained by
mistuning one of the n elastic structures of the system. The mistuning of the
periodic system has been achieved by changing either the linear mechanical
stiffness or the mass of the elastic structures. The whole system has been
modeled by forced Duffing equations for each degree of freedom. The forced
Duffing equations involve the geometric nonlinearity and the mechanical
damping of the elastic structures and the magnetic nonlinearity of the magnetic
coupling. The governing equations, modelling the quasi-periodic system, have
been solved using a numerical method combining the harmonic balance method
and the asymptotic numerical method. This numerical technique allows trans-
forming the nonlinearities present in the governing equations into purely
polynomial quadratic terms. The obtained results of the stiffness and mass
mistuning of the quasi-periodic system have been analyzed and discussed in
depth. The obtained results showed that the mistuning and the coupling coef-
ficients have a significant effect on the oscillation amplitude of the perturbed
degree of freedom.
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1 Introduction

Over the last few years, energy harvesting from ambient energy has received increased
attention. Several research projects have been oriented towards the design and the
modeling of various harvesting systems. This trend of scavenging the ambient energy is
related to the reduction of the required power supply for such microsystems and to the
replacement of the battery which is limited by its life-time and requires maintenance.
The harvesting approach is considering as a promising approach for innovation,
miniaturization, respect for ecological issues and is part of the theme of renewable
energies as well.

Diverse ambient energy sources are available in our environment and their con-
version into electrical energy is a major challenge to increase the autonomy of isolated
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or abandoned systems. Each environment can correspond to one or more energy
sources such as sunlight, wind, thermal gradients, and mechanical vibrations. For each
of these sources, one or more conversion principles exist for generating electricity.
Mechanical vibration sources provide potential energy that can be scavenged for
charging self-powered systems. In several researches, design of mechanical to electrical
energy devices, based on different conversion mechanisms, has been attempted
(El-Hami et al. 2001; Erturk and Inman 2011; Cassidy et al. 2011; Yang et al. 2014).
Currently, the most existing solutions for vibration-to-electricity transduction are
accomplished by electrostatic (Roundy et al. 2003; Mitcheson et al. 2004), piezoelectric
(Anton and Sodano 2007), and electromagnetic applications (Yang et al. 2009).

The purpose of this study is to investigate and to analyze the modeling of a quasi-
periodic system. The effects of the mistuning and nonlinearities of the proposed system
are discussed. The damping factor of the quasi-periodic system was estimated exper-
imentally by the half-power bandwidth method (Papagiannopoulos and Hatzigeorgiou
2011). The geometric and magnetic nonlinearities introduced in the model as well as
the mistuning effect of the mechanical stiffness allow enlarging the bandwidth and
localize the energy.

2 System Modeling

The quasi-periodic system presented in this survey was inspired by existing published
works (e.g. The nonlinearity was inspired by Mann and Sims (2009), Mahmoudi et al.
(2014), Ping et al. (2015), and Abed et al. (2016) while the mistuning effect and the
vibration localization was inspired by Yoo et al. (2003) and Malaji and Ali (2015)).
However, the main drawback of the previous harvesting systems is mainly the large
mechanical damping factor. This significant damping is due to the friction of the lateral
surface of the center moving magnet with the inner surface of the coil holder which
affects directly the oscillation amplitude and then the harvested power.

The concept proposed in this paper uses quasi-periodic structure in order to take
advantage of the multimodal approach and the vibration localization, while the
mechanical and magnetic forces have been used to guide and couple the center moving
magnets as well as reducing the mechanical damping factor. The considered system is
composed of n + 2 magnets (two fixed magnets and n moving magnets). The poles of
the whole magnets have been oriented to repel each other. The center moving magnets
are mechanically attached to structure with a very low damping factor. The coils have
been placed next to the n moving magnets. The separating distance between the n + 2
magnets can be tuned via threaded mechanism in order to adjust the magnetic coupling
force as well as the linear resonance.

2.1 Magnetic Force

The resulting magnetic force has been estimated numerically by the 2D finite element
method (Meeker 2006) while varying the gap between the magnets. Figure 1a shows
the FEMM model for one degree of freedom while Fig. 2b shows the numerical
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estimation of the top and bottom of the magnetic force as a function of the separation
distance (gap d) between two magnets (Fig. 3).

The numerical results of the magnetic force estimated by FEMM have been fitted
for several values of gap d using a least-squares procedure. So, the total magnetic force
can be identified as:

FmgðxÞ ¼ kmg1 xþ kmg3 x3; ð1Þ

where kmg1 ¼ 2k1 þ 4dk2 þ 6d2k3 is the linear stiffness coefficient and kmg3 ¼ 2k3 is the
cubic nonlinear stiffness coefficient in which d is the gap between the magnets. x is the
displacement of the moving magnet. The FEMM result of the total magnetic force as a
function of the displacement of the mid magnet and the fitting data for the gap equal to
d = 40 mm as well as the magnetic linear stiffness kmg1 deduced from the fitting FEMM
data of different separating distance value.

The estimated parameters for the magnetic linear stiffness at d = 40 mm are
a1 ¼ 313:71 N m�1, a2 ¼ �4:1eþ 3 N m�2, and a3 ¼ 3:06eþ 3 Nm�3.

The accuracy of the fitted data has been checked by an overlay of the numerical
data. The magnetic field B of the permanent magnets has been obtained analytically by
the expression developed for ring magnets in reference (Camacho and Sosa 2013).
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where d stands for the gap between two magnets, rint and rout are the inner and outer
radius respectively.

Fig. 1. Equivalent model for two moving magnets.
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2.2 Governing Equations

In the present section, two center moving magnets are considered as illustrated in the
equivalent mechanical and electrical model (Fig. 4). The proposed harvesting devise is

Fig. 2. (a) The FEMM result and the fitting data for d ¼ 40 mm. (b) The linear stiffness kmg1
estimated by fitting the FEMM data for each separating distance value.

Fig. 3. Geometrical parameters of the magnet.
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modeled using two forced duffing equations. So, the governing equation of the
designed harvester can be written as:

m€xj þ c _xj þFme
j ðxÞþFmg

j ðxÞ ¼ �m€Y ; with j ¼ 1; 2; ð3Þ

where c stands for the mechanical damping factors respectively. Fme
j and Fmg

j are the

mechanical and magnetic forces for each moving magnet. €Y is the excitation acceler-
ation of the support as shown in Fig. 4. It is assumed that the two center moving
magnets have the same mass, mechanical and electrical damping.

€x1 þ 2nx1 _x1 þx2
1 1þ 2bð Þx1 � bx2 þ cx31 � bNLx

3
2 ¼ �€Y

€x2 þ 2nx1 _x2 þx2
1 aþ 2bð Þx2 � bx1 þ cx32 � bNLx

3
1 ¼ �€Y

�
; ð4Þ

2nx1 ¼ c
m
; b ¼ kLc

kme1
; bNL ¼ kNLc

m
;x2

1 ¼
kme1

m
; a ¼ kme2

kme1
;

where a and b are the stiffness mistuning and coupling coefficients, respectively.
The solving procedure uses the classical harmonic balance method combined with

the asymptotic numerical method (Cochelin and Vergez 2009). This technique allows
transforming the nonlinearities present in the governing equation (Eq. 4) into purely
polynomial quadratic terms.

3 Results and Discussion

In the present section, several numerical simulations have been performed in the case of
two moving magnets. These simulations enable us to highlight the importance of the
nonlinearity and mistuning of the designed harvesting device. The mistuning coeffi-
cients a represents the ratio of the mechanical linear stiffness of the second moving
magnet to the ones of the first moving magnet. It is assumed in the present simulation
that kmg = kc.

Figure 5 represents the frequency response for periodic and quasi-periodic struc-
tures with b = 0.0083 and an acceleration a ¼ 0:006 g. Stiffness of the first moving

Fig. 4. Equivalent mechanical and electrical model for two moving magnets.
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magnet is taken as nominal stiffness. The mistuning was achieved by varying the
stiffness of the second moving magnet. As shown in Fig. 5b, the amplitude of the
perturbed dof was increased significantly with respect to the first dof. In addition, the
bandwidth of the whole system was increased.

Fig. 5. Frequency response without (a) and with (b) stiffness perturbation.

Fig. 6. Effect of the variation of the mistuning coefficient a on the maximum amplitudes.
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Figure 6 shows the variation of the maximum amplitudes of the quasi-periodic
system due to the variation of the mistuning coefficient a with an acceleration a ¼
0:006 g and b = 0.0083. As shown in this figure, when the mistuning coefficient a is
less than 1, the amplitude of the perturbed dof increases with respect to the first dof.
However, when a > 1 the first dof represents an important amplitude compared to the
perturbed dof.

Figure 7 shows the variation of the maximum amplitudes of the present structure
due to the variation of the coupling coefficient b with an acceleration a ¼ 0:006 g and
a = 0.97. As shown in this figure, the coupling coefficient b has a significant effect on
the oscillation amplitude of the proposed system.

4 Conclusion

In this paper, we studied the effect of the mistuning and coupling coefficients as well as
the nonlinearity on the frequency response of a periodic structure. The obtained results
show that the perturbation of one of the moving magnet, the magnetic coupling
coefficient, and the nonlinearity increase the oscillation amplitude of the periodic
system and enlarge the bandwidth as well. Thus, we can take advantage of these
aspects to enhance the harvested power of a vibration energy harvesting mechanism.
The proposed approach can be generalized to a large-scale quasi-periodic system.
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Fig. 7. Effect of the variation of the coupling coefficient b on the maximum amplitudes.
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