
Toward a 2D Modular and Self-Reconfigurable Robot for Conveying
Microparts

Sebastian Möbes, Benoı̂t Piranda, Guillaume J. Laurent, Julien Bourgeois, Cédric Clévy, Nadine Le Fort-Piat

Abstract— This paper describes the design, prototyping and
control of a 2D modular and self-reconfigurable robot for
conveying microparts. The elementary block is designed to
have a package dimension under 1cm3 and will include the
actuators, the electronics and the micro-controller. Electro-
permanent (EP) magnets are used for both the linkage and
the traveling system to avoid any power consumption during
the linkage. Some prototype blocks have been realized and show
a well working of the motion and a sufficient holding force. The
paper presents also an algorithm, common to all blocks units,
allowing to reconfigure a set blocks from a spatial configuration
to another one. This algorithm is implemented in a simulator
software showing in real-time the reconfiguration of the robot.

I. INTRODUCTION

Conveyors are usually designed as monolithic entities
solving one problem at a time. Furthermore, if monolithic
design fits the need of fixed types of environments and/or ob-
jects, it lacks reactivity to environment changes and failures
that occurs at small scales [1]. Our idea is to build a modular
conveyor composed of hundreds of similar blocks that can
detect objects, move and communicate with each other to
form a flexible conveying path. This modular conveyor can
be used to transport small objects but also to recognize and
to sort the objects. A further possibility is that the conveyor
will be able to automatically replace blocks that have failed
with working ones which adds a self-healing characteristic.
Building this conveyor is the focus of the Smart Blocks
project.

In order to move very small objects as the green cylinder
shown in figure 1, each block will embed arrayed-MEMS
actuators on its upper face. Miniaturization of the block is
therefore one of the key aspects of the project. The final
system edge length is foreseen to be of 10 mm, including
everything from supplying the MEMS array and connecting
the blocks but also to move them. The focus of this article is
the design of the linkage and motion system, which should be
fast, precise and energy-saving while requiring the smallest

This work was partially supported by the Smart Blocks ANR (French
National Research Agency) project (ANR-2011-BS03-005).

S. Möbes, G. J. Laurent, C. Clévy and N. Le Fort-Piat are with the
Automatic Control and Micro-Mechatronic Systems Department, FEMTO-
ST Institute, Université de Franche-Comté, ENSMM, CNRS, Besançon,
France, S. Möbes is also student at the Ilmenau University of Technology,
Ilmenau, Germany. guillaume.laurent@ens2m.fr

B. Piranda is with Université de Franche-Comté, Laboratoire LASELDI,
équipe Outils et Usage Numériques (OUN), Montbéliard, France,
benoit.piranda@univ-fcomte.fr

J. Bourgeois is with Computer Science Departement , FEMTO-ST
Institute, Université de Franche-Comté, CNRS, Montbéliard, France,
julien.bourgeois@univ-fcomte.fr

Fig. 1. Example of using reconfigurable blocks for conveying objects.

possible space. Another goal is to achieve a high level control
of the spatial configuration of the conveyor to be able to form
any shapes. This article describes an original solution which
consists of a linear electromagnetic motor that enables blocks
to glide on each other and presents a shape transformation
algorithm of the conveying path.

II. RELATED WORKS

Several projects have influenced our work, but the first
thing to mention is the Smart Surface Project1 which is our
direct predecessor. It has been developed different hardware
and software systems to produce an air cushion in order
to move small, flat objects. One of these, a tilted-air-jet
surface, reached a size of 9mm×9mm and gave therefore the
target system dimensions for the Smart Blocks Project [2].
Additionally, there were algorithms developed in order to
control multiple sensor-actuator units with their own pro-
cessor in a decentralized way [3]. Other interesting ideas
comes from the modular robot field. The projects like M-
TRAN [4], Superbot [5], Roombots [6] and Molecube [7]
have already shown motions of autonomous parts and self-
assembly albeit in bigger dimensions. The miniaturization of
their mechanical connection systems is complex and does not
seem to be the right solution for a smaller system. Another
connection system has been realized by Neubert et al. [8]
using a Fields Metal solder, melting at 60◦C. This principle
uses electrical heating of the contact area where the solder
is deposited, to melt it and to let it solidify again. The
reached connection is very strong and can also be used for
power or data connections. The problem is that there is no

1http://www.smartsurface.cnrs.fr

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2

Author manuscript, published in "2nd Workshop on Design, Control and Software implementation for distributed MEMS;
dMEMS'12., Besançon : France (2012)"

http://hal.archives-ouvertes.fr/hal-00720243
http://hal.archives-ouvertes.fr


attraction force to move the modules. In terms of connection
and attraction, the most inspiring work comes form Robot
Pebbles [9] using small cubes (12mm×12mm), capable of
forming two dimensional shapes using electro-permanent
(EP) magnets. The advantages of EP magnets is that they
are able to keep their polarity after a short energizing. But
because it is planed as a kind of stochastic self-reconfigurable
matter with motion from outside self-motion has not been
studied.

In this paper, we propose to use EP magnets to design
a linear motor able to move 1cm3 cubes. Using this motor,
the blocks can glide one each others and can be stopped in
every state keeping a strong connection without any power
consumption. This means that after the system has formed
its optimal configuration by linear motion of the blocks in
respect of each other, it can perform its conveyor function
using no other resources for the linkage.

III. HARDWARE

A. Electro-permanent (EP) magnets

The basic part of the motor unit is the EP magnet. It
consists of a coil with an permanent magnet core, like
AlNiCo. This material, made from aluminum, nickel and
cobalt, is an alloy with a specific material characteristics.
It has a remanence like neodymium magnets around 1.2T,
but a relatively weak coercive field strength around 50 to
100kA m−1 in contrast to neodymium magnets with over
1000kA m−1. A qualitative diagram of this characteristics
can be seen in [9]. The result is a big magnetic force
(depending on the remanence), but also the ability of a very
easy magnetization and demagnetization (depending on the
coercive field strength). Wrapping a coil around the AlNiCo,
a magnetic field can be generated to switch the magnet
polarity in a very short time. The result is a bistable system,
able to have an attraction or a repulsion mode to a permanent
magnet pole.

B. Linear Motor Unit

To achieve the highest possible force, the air gap in the
magnetic circuit has to be as small as possible. Therefore U-
formed core designs produce a much higher attraction force
but the installation space is bigger. We decided to save space
and use three parallel EP magnets in front of two permanents
magnets (cf. Fig. 2).

To build the EP magnets, the AlNiCo core which is 1mm
in diameter and 3mm in length has been wrapped by 60 turns
of 0.1mm enameled copper wire.

The resulting coils have a size of nearly 2mm in diam-
eter. The counterpart are two cylindrical, 1mm by 1mm
neodymium magnets. Every block has two active layers, on
for each direction of the plan. Each layer contains three EP
magnets and two permanent magnets. To be able to move the
magnets in a chosen direction, the distance between the two
neodymium magnets has to be 50% bigger than the distance
between two EP magnets on the opposite side.

In regards to a standard linear motor, we are using just two
states in every EP magnet, so we do not use an off-state as

(a) 3D view

(b) Sectional view
of the lower
magnet layer

(c) Sectional view
of the upper
magnet layer

Fig. 2. Design of the block with the configuration of the EP and the
neodymium magnets. The block is a 10mm cube and consists of two parts,
an upper and a lower part, to make the final assembly easier.

Fig. 3. State diagram of the linear motor showing the 6 different states
of the EP magnets and their caused position in respect to the passive sides
of two blocks. The magnetic poles are marked with S and N for South and
North.

well as some intermediate states with another remanence in
the AlNiCo as the chosen maximum. Most electric motors
are using a sinusoidal control to reach a smooth motion,
while we are using a kind of block commutation to get
a bistable effect. The state transition and its effect on the
movement can be seen in Fig. 3. Because every block has
two permanent magnets on each of its passive sides, six state
changes enable to move the three EP magnets of an active
block side 10mm far.

C. Electronics and Power supply

To change the polarity of the EP magnets, high current
pulses have to be done in both directions. Because the

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



Fig. 4. Schematics of the electronic for driving one coil.

resistance of the coil is very low, a 15V difference causes
more than 15A current in the coils with is sufficient to
magnetize the AlNiCo core. Therefore a 100µF capacitor
is used to buffer and a resistor to uncouple the system from
the power supply.

To supply the EP magnets with current in both directions
and to reduce the components to a minimum in order to save
space, a shared H bridge structure using MOSFETs has been
designed. As it can be seen in Fig. 4, every EP magnet has
its own half bridge, allowing the choice of the direction of
the current. Additionally there is a fourth half bridge, able
to decide which chosen current direction should be powered.
Every half bridge consists of two MOSFETs, a P-channel for
the upper side and a N-channel for the lower side. If both
transistors have their Gate on the supply voltage level, the
lower side is opened and the upper side closed, connecting
this end of the EP magnet to the ground. By giving a 5V
signal to the 2N2222A bipolar transistor it opens and pulls
down the MOSFET gates to ground, which causes an opening
of the upper side and a closing of the lower side transistor,
connecting this end of the EP magnet to the supply voltage.

The blocks will be powered externally via the ground
surface. The housing of the other electronic parts in the block
is possible. Tantalum capacitors with 100µF and 20V can
be found with the dimensions 7.3mm×4.3mm×2.9mm. The
eight half bridges for two motor units in each block will
consist of eight Fairchild Semiconductor FDME1043CZT
with a size of 1.6mm×1.6mm×0.55mm including each the
necessary N- and P-channel MOSFET. Bipolar transistor and
resistor can also be reduced to very small size. However, we
build the first test electronic on a breadboard with standard
components.

D. Processor

To drive the bridges, we used a Microchip dsPIC30F4011.
We needed four output pins to give the signal to the half
bridges and one analog-to-digital converter (ADC) input to
measure the capacitor voltage. In the final solution, we will
need 8 I/O pins for running two motor units. The data
connection between the blocks is planned but not imple-
mented yet. Furthermore, an algorithm for sensing the block

position with the EP magnets is possible, using the different
inductance in different positions. Seven additional ADC ports
will be necessary for this future self-sensing purpose. A
corresponding IC from Microchip would be the 28 pin
PIC16F723A in QFN design with a size of 4mm×4mm. The
magnets and the capacitor will use most of the space of the
block but the microcontroller could also be integrated in the
available space.

E. Motion control

To produce the motion described in Fig. 3, we develop
a program to generate the appropriate sequence of pulses.
Fig. 5 shows the timing diagram of I/O pins of the micro-
controller.

For example, if the polarization of the motor unit is NSN
(S stands for south and N for north). The next state must
be SSN. So, the first two half bridge bipolar transistors
will get a 5V signal, opening the upper side transistor. The
third one will stay with no signal and an opened low side
transistor. Because the fourth half bridge has got no signal
and connects therefore all EP magnets on one end to ground,
the current will flow from the two first upper sides over the
corresponding magnets mainly to the fourth low side and to
ground. Hence the first two magnets have been powered but
not the last one. For this, the fourth half bridge needs to be
switched, whereby only the third EP magnet will be powered.
The result is that two shots has to been done successively if
the switching of all magnets is necessary.

As we can see on Fig. 5, the capacitor needs some time
to recharge after a shot. This time depends on the voltage
supply, the resistor in front of the capacitor and the duration
of the last shot. The capacitor voltage will therefore be read
over a one to ten voltage divider with an ADC channel, so
that the next shot can be started as soon as the sufficient
voltage is reached (i.e. 15V).

IV. EXPERIMENTAL RESULTS

A. Construction

All the manufacturing has been done in our lab, from
the fabrication of the block housing over the EP magnets
assembly to the soldering of the components.

The block housing, seen in Fig. 2a, has been made by
rapid prototyping with a fused deposition modeling machine.
The final assembly has been done by placing and gluing all
magnets in the lower part of the block, before gluing the
upper part on it. The separate parts and the final assembly
can be seen in Fig. 6.

B. Measurement of the attraction force

Before we build the first motor unit, we measured the
attraction force for different magnetizing voltages between
one EP magnet and one permanent magnet. After a proper
demagnetizing, we changed the polarity of all magnets using
two shots. To measure the force, we used weights, hanging
them carefully on a special build anchor with a hook, until
the connection broke. We made each experiment five times
to guaranty a good result.

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



Fig. 5. Timing diagram showing the signals coming from the IC. The I/O PIN are labeled from 0 to 3. Additionally, the voltage of the capacitor and the
displacement of the block are shown.

Fig. 6. Rapid-prototyped parts of the block (on the left), one assembled
with EP magnets (on the middle) and two with permanent magnets (on the
right).

The result can be seen in Fig. 7, showing until a voltage
of 6V that there is not enough field strength to start a proper
magnetization. From 7V up to 16V is a linear region of
the AlNiCo and over 17V the maximal force seems to be
reached. This result shows that a voltage over 15V is not
really able to increase the strength but to reduce the speed
of the system. Therefore to charge to 18V instead of 15V
takes 66% longer but increasing the attraction force just by
10%.

The next test was to check how a shorter or longer pulse
influences the attraction force. Therefore the magnets were
demagnetized as before and then magnetized with a shorter
or longer 15V shot.

We found out that it makes no sense to increase the
shot time over 25µs, because while the coil is powered, the

 

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35

F
o

rc
e

 i
n

 m
N

Voltage in V

Fig. 7. Magnetic force between the three EP magnets of the active side
and the two neodymium magnets of the passive side according to the
magnetizing voltage (using two shots).

voltage of the capacitor is shrinking, causing a gradually
lower current in the coil. Actually after 25µs the current
seems to be too low to polarize the magnet any further.

C. Motion and energy consumption

Fig. 8 shows a image sequence of the motion of the blocks.
The block is jumping from one state to another. The motion
can be further appreciated in the video clip accompanying
this paper. The mean speed is 14mm/s.

After a shot, the drop of voltage of the capacitor does not
exceed 8V. Knowing the capacitance value (100µF), we can
deduce that the magnets consume less than 10mJ for one
shot. As we need twelve shots to move the block for one to
another, a 10mm move consumes about 120mJ.

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



State 1, t = 0s State 4, t = 0.32s

State 2, t = 0.08s State 5, t = 0.48s

State 3, t = 0.24s State 6, t = 0.56s

Fig. 8. Snapshots of the blocks during the motion.

Fig. 9. Captured Image from the simulator software showing blocks with
conveyor on the top. The floor is cover by tracks that guide the blocks
during their displacement.

V. BLOCKS RECONFIGURATION ALGORITHM

A. Operating principle of the blocks

In this paper we present an algorithm common to all
blocks units allowing to reconfigure a set of blocks from
a 4-connected organization to another one. This algorithm
is implemented in a simulator software showing in real-time
the displacements of blocks (see Fig. 9).

The algorithm is based on exchanges of messages be-
tween neighboring blocks, where each message may contain
transmitted data. In order to write this algorithm for blocks
reconfiguration, blocks are considered as entities with their
own memory, able to execute a set of instructions to manage
this memory. Each block is connected with 1 to 4 neighbors
and communicates using messages. The algorithm presented
requires only data stored within each block, which can run
independently in autonomous units of computation.

One of the blocks is chosen to propagate the actions of
the reconfiguration algorithm to the other blocks. We call
this block Master, it is connected to an external module that
manages the reconfiguration.

The desired configuration is stored in a 4-connected map,

Fig. 10. Some steps of the reconfiguration algorithm : a) a goal map; b)
an initial configuration of blocks; c) the distance from each block to the
closest empty space; d) the path from one block to a free cell.

where the number of cells to fill corresponds exactly to the
number of blocks that receive the card. Fig. 10.a shows an
example of a map where the cells to fill are drawn in green.

B. Steps of the algorithm

The algorithm for blocks reconfiguration is divided into
four major stages:

A preliminary step, executed only once for the whole of
the reconfiguration consists in transmitting the map describ-
ing the desired configuration to each block. In order to save
memory, it is possible not to transmit the entire map to every
block. A solution is to decompose the map into several parts
and distribute these sub-maps over the sets of blocks. In this
first paper, we will transmit the entire map to each block, this
optimization will be the subject for future enhancements. The
propagation algorithm of the map to all blocks is detailed in
paragraph V-C. Fig. 10.b shows the result of transmission of
a map to a set of blocks, blocks can obtain boolean value
from the map for the cell they cover (green for true and
orange otherwise).

After this preliminary step, we will repeat three successive
stages for evolving the current configuration to the desired
solution: calculating the distance between blocks and empty
areas, defining the direction of movement, and the motion of
the blocks.

1) Calculating distance between blocks and empty areas:
The first phase is to search for each block the shortest
distance (in following 4-connected blocks) which separates
it from a free position in the card as shown. For example,
the value placed over each block in Fig. 10.c is the distance
from the block to the closest empty cell.

First we initialize all distances stored in the blocks to the
infinity value, then we search which blocks are in contact
with empty places. Since each block has a copy of the map
in its own memory, it can check if in one of its sides : there
is no neighbor block and the corresponding position in the
map shows an empty place. In this case it receives a distance
value equal to 1.

Every block must have a distance corresponding to the
minimum distance from their neighbors plus 1. Then, to
determine the distance value for each block, when a neighbor
updates its distance, it will propagate this information to its
neighbors as a message containing its distance. When a block

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



Fig. 11. Algorithm for determining the direction of simultaneous displace-
ments of many blocks.

receives a message from a neighbor, it compares its value to
the one received in the message, and corrects its value if it
is greater than that received plus 1.

2) Defining the direction of movement: When all the
distances are memorized in the blocks, we search the block
Bmax that admits the greatest distance and placed on a cell of
the map that must be emptied. This block is easy to identify
because it is surrounded by neighbors whose distance is less
than its.

From this block Bmax, we have to find a path to a block
close to an empty cell by following the decreasing values of
distance as shown in Fig. 10.d.

To do this, we seek the neighbor of Bmax that admits the
smallest distance. To choose the direction where distances
are equal values we follow the order: West, North, East, and
South (WNES is here a convention). The relative position
of this neighbor defines the direction of movement for the
block, this direction is stored in the ’direction’ variable.

The two previous steps can be repeated as there is blocks
that have not been used for a movement (they are marked
with ∞ on Fig. 11). In order to avoid deadlocks, we set the
distance stored in these moving blocks to the infinity value.
Thus, each block can only participate to one reconfiguration
at a time but many movements of blocks are possible
simultaneously.

3) The motion of the blocks: This step of the algorithm
consists in starting the physical displacement of the blocks
and waiting for them to reach their destination before
performing the next sequence. This movement is made
by successive small motion taking into account that when
two successive neighbors don’t have the same direction of
displacement, the first block must wait for the end of the
displacement of the second one before beginning to move.

C. Details on the use of messages.

We recall that the same program is charged on each block.
The program behaves like a finite state machine where the
evolutions of states are triggered by receiving messages.

The first step of the program is to send the map to each
block. The block ’Master’ receives the first message from
an external module.

The algorithm detailed below allows to start a treatment
on all blocks by diffusing the order of starting, step by step
with the guarantee that it will be applied only once per
block. At the end of treatment, the initial block receives
an acknowledgment stating that the treatment has been
performed on all blocks.

For each type of information conveyed to the blocks
we define a dedicated message. For example, the message
MAP MESSAGE used to send data on the card contains the
following parameters:

• the pointer to the transmitter (which is necessarily a
neighbor of the receiver),

• the size of the card,
• and the bit array indicating whether each cell must be

filled or not.
• The transmission time is added to the message in order

to simulate the transfer delay.
When a block receives a message type MAP MESSAGE,

two actions are possible:
1) if there is already a map stored in the block, then

it returns an ACQ MAP MESSAGE message to the
sender;

2) else, it copies the card into its local memory and
sends a new message MAP MESSAGE containing the
card data to each of its neighbors except to the one
who sent him. Moreover it memorizes the sender of
the message (in a variable sender) and the number
of neighbors to whom he sent this message (in the
variable waitedAnswers).

When a block receives a message ACQ MAP MESSAGE,
it decrements the variable waitedAnswers of 1. If waitedAn-
swers is null, which indicates that all his neighbors have
responded, then the block sends an acknowledgment to the
’sender’ block in sending a message ACQ MAP MESSAGE.

Similar kinds of messages are defined to manage the other
steps of the algorithm (calculation of distances and start of
motion), each of these treatments being based on traversals
of all blocks.

D. The real-time simulator

We developed a simulator to visualize in real-time states
of blocks during the course of the reconfiguration algorithm.
This software, developed in C++, allows to observe the
asynchronous executions of the code on the different blocks
by managing its own global clock. It calculates the simul-
taneous evolution of the state of each of the blocks, taking
into account the delay of transfer of messages. Thus, the
emission of a message and its reception can not be achieved
simultaneously.

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2



Fig. 12. Two screen captures of the final configuration of blocks for two
examples : a conveyor and the text dMEMS 12. The yellow blocks are those
that have just reached their final position.

Shape Goal Conveyor dMEMS 12
Horizontal line 121 66

2 horizontal lines 136 64
Diagonal line 108 65

Sinusoidal line 71 71
2 boxes 132 177

TABLE I
NUMBER OF STEPS TO REACH THE GOAL FROM DIFFERENT INITIAL

SHAPES.

After each displacement, the positions of the blocks is
displayed in real time with OpenGL, many textures are
used to show the states of blocks. Some screen captures are
presented in Fig. 12 and some animations of reconfiguration
can be visualized in a short video accompanying this paper.

E. Comparison of speeds of reconfigurations

The speed of reconfiguration of the blocks strongly de-
pends on the initial configuration of blocks relatively to
the desired final map. Even more than the average distance
traveled by each block, the complexity of the 4-connected
path separating blocks is an important parameter of the
reconfiguration complexity.

We performed two types of reconfigurations, a first one
defining a card with a fairly simple pattern representing a
conveyor (composed by 546 blocks), and a more complex
one formed by the text : ’dMEMS 12’ (706 blocks) as shown
in Fig. 12).

For each of these situations, several initial configurations
were tested :

• horizontal line : blocks are initially placed on a set of
horizontal lines crossing the map in the direction of its
length passing through its center,

• two horizontal lines : blocks are placed along two
horizontal boxes crossing the map in the direction of
its length, one on the top and one in the bottom,

• diagonal line: large line that crosses the map from the
upper left to lower right corner,

• sinusoidal line : a curve line crosses the map,
• two boxes : one box on the left and one on the right of

the map.
For each configuration, the numbers of steps to achieve
the goal are shown in Table I. This value represents only
the number of repetitions of the algorithm required for
reconfiguration without taking into account the duration of
displacement of the blocks.

One can notice that the speed of convergence of the
algorithm varies significantly depending on the initial config-
uration. The algorithm seems to be more effective with the
horizontal lines for the second case because it places blocks
in a configuration close to their final distribution.

VI. CONCLUSION

In this paper, we have first presented an efficient 2D
motion and an holding system integrated in 1cm3. Several
blocks have been realized integrating electro-permanent mag-
nets in order to save energy. The experiments show that a
block is able to hold another one with a force of 45mN and
move two blocks at the speed of 14mm/s. The blocks will be
powered externally via the ground surface but the housing
of the other electronic parts in the block is possible.

In the last part, we proposed an algorithm allowing to
reconfigure a set of blocks according to a target map. The
blocks use the same program and are able to organize
themselves by exchanging asynchronous messages. This first
reconfiguration algorithm could be optimized to allow more
simultaneous movements of blocks.

In the future, this work will be used as a basis to realize the
above-mentioned Smart Blocks project. We have therefore
given suggestions, hints and solutions to problems that will
be faced in later work, when the actuators will be integrated
to form a modular and reconfigurable contactless conveyor.

REFERENCES

[1] N. Chaillet and S. Régnier, Eds., Microrobotics for Micromanipulation.
John Wiley and Sons, 2010.

[2] R. Zeggari, R. Yahiaoui, J. Malapert, and J.-F. Manceau, “Design
and fabrication of a new two-dimensional pneumatic micro-conveyor,”
Sensors & Actuators: A.Physical, vol. 164, pp. 125–130, 2010.

[3] K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and
N. L. Fort-Piat, “Distributed control architecture for smart surfaces,” in
Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2010,
pp. 2018–2024.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, and
S. Murata, “Distributed self-reconfiguration of M-TRAN III modular
robotic system,” Int. Journal of Robotics Research, vol. 27, no. 3-4, pp.
373–?386, 2008.

[5] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in Proc.
of the IEEE Int. Conf. on Intelligent Robots and Systems, 2006, pp.
3636–3641.

[6] A. Spröwitz, S. Pouya, S. Bonardi, J. van den Kieboom, R. Möckel,
A. Billard, P. Dillenbourg, and A. Ijspeert, “Roombots: Reconfigurable
robots for adaptive furniture,” IEEE Computational Intelligence Maga-
zine, special issue on ”Evolutionary and developmental approaches to
robotics”, vol. 5, no. 3, pp. 20–32, 2010.

[7] V. Zykov, E. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and
designed self-reproducing modular robotics,” IEEE Transactions on
robotics, vol. 23, no. 2, pp. 308–319, 2007.

[8] J. Neubert, A. P. Cantwell, S. Constantin, M. Kalontarov, D. Erickson,
and H. Lipson, “A robotic module for stochastic fluidic assembly of
3d self-reconfiguring structures,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2010, pp. 2479–2484.

[9] K. Gilpin, A. Knaian, and D. Rus, “Robot pebbles: One centimeter
modules for programmable matter through self-disassembly,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 2485–
2492.

ha
l-0

07
20

24
3,

 v
er

si
on

 1
 - 

24
 J

ul
 2

01
2


