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Abstract— This paper presents a new approach to
compensate the static hysteresis in smart material
based actuators that is modeled by the Prandtl-
Ishlinskii approach. The proposed approach allows a
simplicity and ease of implementation. Furthermore,
as soon as the direct model is identified and obtained,
the compensator is directly derived. The experimental
results on piezoactuators show its efficiency and prove
its interest for the precise control of microactuators
without the use of sensors. In particular, we exper-
imentally show that the hysteresis of the studied
actuator which was initially 23% was reduced to less
than 2.5% for the considered working frequency.

I. Introduction

Piezoelectric ceramics (piezoceramics) are very prized
in the design of microrobots, micro/nanopositioning de-
vices and systems at the micro/nano scale in general.
They have been successfully used to develop stepper
microrobots [1][2], Atomic Force Microscopes (AFM) [3]
and continuous microactuators such as piezocantilevers
and microgrippers [4][5]. This recognition is mainly
thanks to the high resolution (at the nanometre level),
the high bandwidth (more than 1kHz) and the relatively
high force density that they offer. However, when the
applied electrical field is large, piezoceramics exhibit an
important hysteresis nonlinearity which strongly limits
the accuracy of the developed actuators.

Three approaches exist to control the hysteresis and to
improve the general performance of piezoelectric actua-
tors (piezoactuators): feedback control, charge control,
and feedforward voltage control. In feedback control,
both classical (PID, ...) and advanced control laws (H∞,
passivity,...) have been successfully used [6][7]. Its main
advantages are the possibility to reject external distur-
bance effects and to account for the model uncertainties.
However, the use of closed loop control techniques at
the micro/nano scale is strongly limited by the difficulty
to integrate sensors. Sensors which are precise and fast
enough are bulky (interferometers, triangulation optical
sensors, camera-microscopes measurement systems, etc.)
or difficult to fabricate. In charge control, an adapted
electrical circuit is used to provide the input charge
applied to the piezoactuators [8][9][10]. Finally, in feed-
forward voltage control, the hysteresis is precisely mod-
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eled and a kind of inverse model is put in cascade with
the process resulting in an overall linearized system.
The main advantage of the two latter approaches is
the shunning of external sensors making the controlled
system packageable and fabricated with low cost. In an
automatic point of view, feedforward voltage control is
particularly appreciated because this approach allows
stability, performance analysis and controllers synthesis.

For piezoactuators, there exist several approaches of
hysteresis compensation based on voltage control: the
Bouc-Wen [11], the polynomial [12], the lookup tables
[13], the Preisach [14][15] and the classical Prandtl-
Ishlinskii approaches [16][17][18]. The Prandtl-Ishlinskii
approach is particularly appreciated for its simplicity,
ease of implementation and accuracy. It is based on the
sum of many elementary hysteresis backlash operators.
The accuracy of the model increases with the number of
these operators. To compute the corresponding hysteresis
compensator, the least-squared error optimization has
been used [17]. However the computation time greatly
increases according to the number of operators which
makes this method only practical for low number of
backlash operators. In this paper, we propose another
compensation approach for hysteresis modelled by the
Prandtl-Ishlinskii. Based on the inverse multiplicative
structure, the proposed approach does not need any
computation of the compensator. Indeed, as soon as the
model is identified, the compensator is derived without
extra-calculation. Therefore, independant from the num-
ber of the backlashes (and whatever the required accu-
racy), there is no cost for the compensator computation.

II. The classical Prandtl-Ishlinskii modeling
and identification

The classical Prandtl-Ishlinskii (PI) model is based on
the backlash operator.

A. The backlash operator

Definition 2.1: A backlash operator, also called play-
operator (see Fig. 1), is defined by the following equa-

tions:

{
y(t) = max {u(t)− r,min {u(t) + r, y(t− T )}}
y(0) = y0

where u(t) is the input control, y(t) is the output dis-
placement, r is the threshold of the backlash and T is
the refresh time.
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Fig. 1. A backlash operator with a slope unity.

B. The classical PI model

Definition 2.2: A classical PI hysteresis model is
defined as the sum of several backlashes each one having
a threshold ri and a slope (weighting) wi [19]: y(t) =

n∑
i=1

wi ·max {u(t)− ri,min {u(t) + ri, yei(t− T )}}

y(0) = y0

where n is the number of operators and yei the ith

elementary output (output of the ith backlash). Fig. 2
gives the block diagram showing the principle of the
classical PI hysteresis modeling.

1w

2w

nw

∑

backlash

weighting

( )y t( )u t

. 
. 
.

Fig. 2. Diagram showing the principle of the classical PI modeling.

C. Parameters identification

Following the procedure in [16], the identification of
the parameters ri and wi is performed by applying a
sine or a triangular input voltage u(t) with an amplitude
uA to the process. This amplitude corresponds to the
maximal output of y that is expected for the applications.
The curve in the (u, y)-plane - which has a hysteresis
shape - should be afterwards shifted so that it is in the
positive section of the plane. Fig. 3 shows an example
of a (shifted) hysteresis curve approximated by three
backlashes. In Fig. 3, bwi = 2 ·ri is the bandwidth. From
the figure, the kth output can be formulated as follows:

yk =

k∑
i=1

(bwk+1 − bwi) · wi (1)

From the previous equation, a tensorial formulation can
be obtained:

{y} = [A] · {w} (2)

where [A] is a triangular matrix constructed from the
different bandwidth values.
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Fig. 3. Example of (shifted) hysteresis obtained with three
elementary backlashes.

The identification procedure is therefore as follows [16].

• Apply at least half a period of sine voltage u(t) to
the piezoactuator. The amplitude of the correspond-
ing output y(t) should cover the end use range.

• If the obtained hysteresis curve is not in the positive
section of the (u, y)-plane, shift the curve.

• Define the number n of the backlashes.
• Split the input u domain into n + 1 uniform or

non-uniform partitions. For example, Fig. 3 depicts
four partitions and presents an approximation of
hysteresis with three backlashes. The bandwidth
bwi and the output vector {y} are easily obtained
according to Fig. 3.

• Construct the matrix [A] from the bandwidth bwi
by using (equ 1) and (equ 2),

• Finally, compute the parameter {w} using the fol-
lowing formula:

{w} = [A]
−1 · {y} (3)

Remark 2.1: The classical PI hysteresis model (see
Def. 2.2) is a static model. It is used to model hysteresis
of processes working at low frequency. At high frequency,
the classical PI hysteresis model is often combined with
a linear dynamics to maintain the initial accuracy [16].
Since the compensation of this dynamics part is indepen-
dant from the compensation of the static hysteresis and
is available in several approaches [14][16], this paper only
focuses on the static hysteresis.

Remark 2.2: The refresh time T should be low relative
to the time characteristics of the used input signals such
as the period of u(t). Indeed, if T is high, the backlash
defined in Def. 2.1 (and in Fig. 1) is distorted and the
accuracy of the PI model in Def. 2.2 is decreased. The
choice of T can start with the Shannon Theorem that
can be further refined if necessary. For example, from the
expected working frequency f , the sampling frequency fs
should satisfy fs > f .
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III. A new compensation approach for the PI
hysteresis modeling

In this section, we propose a new compensation
method for the classical PI hysteresis model previously
presented. The advantage of the proposed method is that
as soon as the model is identified, the compensator is
directly derived without additional calculation. For that,
we need to rewrite the PI model.

A. General principle

Definition 3.1: The (feedforward) compensation of
piezoelectric materials hysteresis consists in putting in
cascade with the hysteretic system a compensator (see
Fig. 4) such that one obtains a linear input-ouptut
(yr, y) with a unity gain between the reference input yr
and the output y [20]: ∂y

∂yr
= 1

Remark 3.1: expression ∂y
∂yr

= 1 in Def. 3.1 is similar
to y = yr.

( )y t( )u t( )
r
y t

process

(modelled with a PI model)

compensator

(another PI model)

Fig. 4. Compensation of a hysteresis.

B. Rewriting the model

First we shall rewrite the hysteresis model already
defined in Def. 2.2. For that, we need to give a property
of the backlash operator.

Property 3.1: Reconsider the backlash operator in
Def. 2.1. We have: r = 0 ⇔ y(t) = u(t)
So we have the following consequence which is an alter-
native expression of Def. 2.2.

Consequence 3.1: A classical PI hystere-
sis model can be expressed as follows:

y(t) = −u(t)

+

n∑
i=0

wi ·max {u(t)− ri,min {u(t) + ri, yei(t− T )}}

y(0) = y0
where ri and wi (for i = 1 · · ·n) are known according to
the above identification procedure. For i = 0, we have:
r0 = 0 and w0 = 1.
Proof: We rewrite the first equation in Def. 2.2 as follows:
y(t) = u(t)− u(t)

+

n∑
i=1

wi ·max {u(t)− ri,min {u(t) + ri, yei(t− T )}}

According to Property 3.1, u(t) can be expressed using
the backlash operator by using a threshold r0 = 0.
Multiplying the result by a weighting w0 = 1, we obtain:
u(t) = w0 · max {u(t)− r0,min {u(t) + r0, ye0(t− T )}}
Using the two previous equations, we derive
Consequence. 3.1.

C. A new compensator for the hysteresis

First, we give a consequence of Remark 2.1 and Re-
mark 2.2 that will be used further.

Consequence 3.2: Define a compensator with input
yr(t) and output u(t). From Remark 2.1 (du(t)dt is
low) and Remark 2.2 (T is very low), we have:∣∣∣ ∂u(t)∂yr(t)

− ∂u(t−T )
∂yr(t)

∣∣∣ → 0 where ∂u(t)
∂yr(t)

is the slope of the

compensator map (yr(t), u(t)).

Proof: Since du(t)
dt and T are both low, we have

du(t−T )
dt also low. Thus, we derive

∣∣∣du(t)dt −
du(t−T )

dt

∣∣∣ →
0 The latter expression can be rewritten as fol-

lows:
∣∣∣ ∂u(t)∂yr(t)

.dyr(t)dt −
∂u(t−T )
∂yr

.dyr(t)dt

∣∣∣ → 0 which yields:∣∣∣ ∂u(t)∂yr(t)
− ∂u(t−T )

∂yr

∣∣∣ . ∣∣∣dyr(t)dt

∣∣∣ → 0 For any continuous

and differentiable yr(t) and for any
∣∣∣dyr(t)dt

∣∣∣, the pre-

vious expression is obtained iif:
∣∣∣ ∂u(t)∂yr(t)

− ∂u(t−T )
∂yr

∣∣∣ →
0 To sum up, if du(t)

dt and T are both low, we have∣∣∣ ∂u(t)∂yr(t)
− ∂u(t−T )

∂yr

∣∣∣→ 0.

Let us now give the new compensator.

Theorem 3.1: Reconsider the PI hysteresis
model in Def. 2.2 which is rewritable as in
Cons. 3.1. If the compensator is defined by:

u(t) =
n∑
i=0

wi ·max

{
u(t− T )− ri,
min {u(t− T ) + ri, yei(t− 2T )}

}
−yr(t)

then ∂y
∂yr

' 1 and therefore, the hysteresis is
compensated.

Proof: Replacing u(t) of the model in
Consequence. 3.1 by the proposed compensator
in Theo. 3.1, we obtain: y(t) = yr(t) + O where
O = u(t)− u(t− T )

+

n∑
i=1

wi ·max {u(t)− ri,min {u(t) + ri, yei(t− T )}}

−
n∑
i=1

wi ·max

{
u(t− T )− ri,min

{
u(t− T ) + ri,

yei(t− 2T )

}}
Knowing that the model is independant from the

reference, i.e.:
∂

n∑
i=1

wi·max{u(t)−ri,min{u(t)+ri,yei(t−T )}}

∂yr
=

0 we derive: ∂O
∂yr

= ∂u(t)
∂yr(t)

− ∂u(t−T )
∂yr(t)

which - according to

Consequence. 3.2 - means ∂O
∂yr
→ 0 Finally, we deduce

that: ∂y(t)
∂yr

= ∂yr
∂yr

+ ∂O
∂yr
' 1

We have demonstrated that using the compensator given
in Theo. 3.1, the hysteresis modelled by a classical PI
technique was compensated. It is reminded that the
proposed compensator contains the initial model itself
(up to a signal −u(t) and up to period T ) according to
Cons. 3.1. This means that there is no extra-calculation
of the compensator since it uses the same parameters and
structures than the initial model.
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D. Parameters and implementation of the proposed com-
pensator

The proposed compensator is identified and imple-
mented as follows.

First, the hysteresis model of the process is given. It
is defined by Def. 2.2. Then, the parameters ri and wi
of the model are identified following the procedure in
Section. II-C. As soon as this model is identified, the
compensator is directly derived from Theo. 3.1 since they
have the same parameters. This proposed compensator is
implemented in cascade with the process either by direct
programming or by using block diagram tool as presented
in Fig. 5-a.

Remark 3.2: The implementation scheme in Fig. 5-a
is equivalent to the Fig. 5-b. The difference is on the two
substraction and addition blocks. The scheme in Fig. 5-
b is more natural since the reference yr(t) brings in the
positive input of the block.

Remark 3.3: The proposed compensator in Theo. 3.1
and presented in Fig. 5 has a (nonlinear) feedback. The
structure has an inverse multiplicative form.

Remark 3.4: As we can see, an additional one period
delay appears in the proposed compensator in Theo. 3.1
(see for example u(t) and u(t − T )). It ensures that no
algebraic loop is in the feedback of the compensator, and
therefore no error occurs during functioning. In the block
diagram implementation, this delay is obtained using the
delay-block (Fig. 5).

IV. Experimental results

In this section, we apply the proposed compensator to
feedforward control the bending of a piezoactuator.

A. The experimental setup

The piezoactuator used in the experiments is a uni-
morph cantilever with rectangular cross-section. It is
made up of one piezoceramic layer (PZT-151) and one
passive layer (Nickel). When applying a voltage to the
piezolayer, it expands/contracts resulting a bending of
the whole cantilever (Fig. 6-a). The setup - pictured in
Fig. 6-b - is composed of:

• the unimorph piezoelectric cantilever with dimen-
sions: 15mm × 2mm × 0.3mm, where 0.2mm and
0.1mm are the thicknesses of the PZT and of the
Nickel respectively,

• a computer and a dSPACE-board that is used to
acquire the measurements and to provide the con-
trol signal u(t) and reference yr(t). The software
Matlab-Simulink is used for that. The refresh
frequency of the acquisition material is fs = 5kHz
(T = 0.2ms) which is high enough relative to the
frequencies of the signal to be used,

• a high voltage (HV) amplifier,
• and an optical sensor from Keyence (LC2420) with a

resolution up to 10nm. This sensor is used to report

the bending y(t) of the actuator for the identification
and for the validation aspects.

piezoelectric cantilever

Simulink - Computer - dSPACE board

(a)

(b)

PZT

Nickel

measurement

displacement sensor

10mm

HV-amplifier

D/A

converter
A/D

converter

Hysteresis

compensator

reference yr

y

voltage U

voltage u

 

Fig. 6. Photography of the piezoelectric actuator.

B. Modeling and parameters identification

The piezoactuator has a strong hysteresis. It is mod-
eled using the classical PI approach described by Def. 2.2
and by Fig. 2. To identify the parameters ri and wi, we
follow the procedure in Section. II-C.

First, a sine input voltage u(t) is applied to the
piezoactuator. The amplitude of the sine signal - equal
to uA = 80V - corresponds to a bending that covers the
required range (nearly 20µm for us) in the application.
The working frequency is chosen to correspond to that
required by the application: f = 0.1Hz.

After reporting the measured bending y(t), we plot
y(t) versus u(t) and shift it in order to obtain a shifted
map (u, y) in the positive section like in Fig. 3. Then, we
define the number of backlashes n. The choice is a com-
promise because a low number generates a less accurate
model while a high number increases its complexity. In
our case, we choose n = 15.

Then, we split the range 160V (= 2·uA) into 16 (= n+
1) partitions and we compute the bandwidths bwi. Using
the bandwidths and the ascending curve of the shifted
y(t), the discrete values yi are deduced. The matrix A
is also computed from the derived bwi and from (equ 1)
and (equ 2).

Finally, we derive the thresholds using ri = bwi

2 and
the weighting wi using (equ 3).
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Fig. 5. Diagram showing the implementation of the proposed compensator. The two schemes (a) and (b) are equivalent.

Using different amplitude of sine input u(t), the sim-
ulation of the identified model is now compared with
the experimental result. Fig. 7 shows that the identified
model captures the hysteresis behavior of the piezoactu-
ator. This figure also shows that the hysteresis amplitude
is about 23% (= h

H ≈
10µm
43µm ).

C. Results with the compensator

We now implement the compensator pictured in Fig. 5-
b. When applying a sine input reference yr(t) with the
working frequency f = 0.1Hz, we see that the map

(yr, y) is linear and with a unity slope (Fig. 8-a) and thus
the accuracy of the controlled system is obtained. Fig. 8-
b plots the corresponding tracking response. Finally, the
tracking error is plotted in Fig. 8-c. As pictured in the
figure, the maximal tracking error (yr−y) is nearly 0.5µm
which is negligible relative to the operational range.
These results demonstrate that the proposed compen-
sator reduces the hysteresis from 23% to less than 2.5%
(≈ 1µm

40µm , 1µm and 40µm being the range of the error
and the operational range respectively).
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Fig. 7. The hysteresis of the piezoactuator: experimental result
and simulation of the identified PI model.
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Fig. 8. Experimental result when using the proposed compensator.

V. Conclusion

A new compensator technique for the classical Prandtl-
Ishlinskii (PI) hysteresis model was proposed in this
paper. The main particularity of the proposed technique
is that no additional computation is required for the
compensator. As soon as the model is identified, the
compensator is obtained. The approach is dedicated to
compensate static hysteresis in smart materials such as
piezoceramics. The experimantal results on piezoactua-
tors demonstrated the efficiency of the proposed method.
Future works include the extension of the proposed com-
pensation technique to multivariable hysteresis compen-
sation. Application of the proposed method in piezoac-
tuators working in tasks where the reference input is
more complicated (varying amplitude, etc) will also be
considered.
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