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Abstract— Accuracy is very important criterion for micro-
manipulation systems, especially for microassembly. In this
paper, we propose a full procedure of kinematic calibration and
validation for XY Θ micropositioners, which are used as coarse
positioning in our microassembly platform. Based on vision,
two methods (self-calibration and classical calibration) are
presented, implemented, tested and compared. The differential
evolution (DE) algorithm is applied to identify the kinematic
parameters. After calibrations, we perform tests of accuracy
and repeatability through controlling the micropositioners via
inverse kinematics.

I. INTRODUCTION

Microassembly has become a critical technology in the

micro and nanotechnologies [1]. The increasing needs for

microsystems conduct to the development of new concepts

and skilled microassembly cells. Performing efficient mi-

croassembly tasks require high accurate microrobots and

control schemes[2]. Kinematic calibration is a process con-

cerning of locating the end-effector of the robot manipulator

in a global coordinate frame with improved absolute accuracy

by identifying inaccurate and unknown geometric parameters

[3], [4]. Large amount of calibration methods have been

proposed for improving the accuracy of robots and machine

tools [5], [6]. However, most of them are focusing on

macroscale robots (e.g., industrial robots) while less article

discussed such a topic for microrobots. Meanwhile, the need

for high performances microrobots and microrobotic cells

increases rapidly (e.g., in micro-assembly field) [1]. Hence,

calibration strategies and measuring devices shall be adapted

for small-sized robots and their compact workspace. High

performance-cost rate devices would be given top priority.

Here, two calibration methods are applied to the microp-

ositioners. One is self-calibration (also called autonomous

calibration) method through positioning the tool tip at a

fixed point with different configurations. Another is classical

method based on minimizing the difference between mea-

sured and calculated end-point positions.

In this paper, we propose a full procedure of calibration

and validation for 3-DOF micropositioners XY Θ whose

joint coordinates are known by integrated sensors. First,

the principles of two calibration methods and identification

algorithm are presented in Section II. Subsequently, we

provide a vision-based metrology. Experiment setup and
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TABLE I

TABLE OF DH PARAMETERS

i αi ai θi di

1 0 0 π

2
X

2 π

2
− γ 0 π

2
Y

3 π

2
0 Θ 0

results for calibration and validation are shown in Section IV.

The validation tests are done according to the requirements

of ISO-9283 International standard [7]. This is followed by

a conclusion in the last section.

II. CALIBRATION

A. Modeling

We used Denavit-Hartenberg (DH) convention to model

the micropositioners. Fig. 1 shows the relationship between

all coordinate frames and locations of parameters to be

identified. Here, OxRyRzR is defined as robot global frame

and Ox0y0z0 as robot base frame. P is the tool tip whose

positions are concerned. In Fig. 2, three kinematic parameters

γ, L, τ to be identified are unknown, where γ is the

differential angle between ideal perpendicular angle π
2 and

real angle of X axis and Y axis; L is the distance from

tool tip to the rotation center of Θ stage; τ is the direction

angle relative to x axis. According to DH convention, the

four DH parameters αi, ai, θi and di [3], [4], [8] are listed

in Table I. It’s worth pointing out that in this paper we

focus on 2 dimensional space, so some parameters only

contributing to vertical direction are neglected and set as

zeros. As mentioned before, X , Y , Θ are known information

by internal sensors. Therefore the only unknown parameter

from link 1 to link 3 is γ.

Commonly, the location of reference frame i with respect

to reference frame i−1 can be described by a homogeneous

transformation matrix i−1Ti. The homogeneous transforma-

tion of a rotation about an axis and a translation along an axis

could be denoted by Rotaxis and Transaxis, respectively.

Hence, the transformation from robot base frame 0 to robot

frame RF is expressed as:

RT0 = Roty(
π

2
)Rotz(

π

2
).

The transformation from rotary positioner frame 3 to

robot base frame 0 is calculated through concatenation of

individual transformations according to Table I:
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Fig. 1. Coordinate frames for calibration modeling.
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Fig. 2. Parameters to be identified

0T3 = 0T1
1T2

2T3

= Rotz(
π

2
)Transz(X)Rotx(

π

2
− γ)Rotz(

π

2
)

Transz(Y )Rotx(
π

2
)Rotz(Θ)

Moreover, the tool tip frame t with respect to frame 3 is

defined as

3Tt = Rotz(τ)Transx(L),

where τ and L are orientation and position parameters of

point of interest P in frame 3.

Consequently, the forward kinematics of the microposi-

tioners is given by

RTt =R T0
0T3

3Tt.

The position of the point of interest in planar dimension

is

P = [xR, yR],

xR = (cγcΘ + sγsΘ)Lcτ + (sγcΘ − cγsΘ)Lsτ

+ X + Y sτ,

yR = (cγsΘ − sγcΘ)Lcτ + (sγsΘ − cγcΘ)Lsτ

+ Y cτ,

where P denotes the coordinate of the tool tip; c and s are

the abbreviations of cos and sin operators.

Therefore, the coordinates of the tool tip in robot frame

RF is the kinematic function of each pose (X, Y, Θ), which

can be expressed as:

P = f(q(X, Y, Θ), φ), (1)

where q is the correspondingly joint variables vector con-

sisting of three joint coordinates X , Y and Θ; φ is the

parameters vector to be identified.

B. Self-Calibration

The self-calibration method used imposes virtual single

point constraint on the end-effector by positioning the tool

tip at a fixed point with different poses using visual servo

control. The internal sensors of the micropositioners record

the coordinates of all poses at the fixed point.

The measurement procedure is as following:

1. Set rotation joint Θ as Θn, n = 1, 2, . . . , N .

2. Visual servo controller positions the tool tip P to a fixed

point within the tolerance in image frame, which is assumed

a fixed point in robot frame as well, meanwhile records the

corresponding measured by integrated encoders Xn and Yn.

Then, one pose measurement has collected and is expressed

as qn(Xn, Yn, Θn).
3. Set the next rotation joint as Θn+1 = Θn + 5◦ with

stepsize 5◦.

4. Follow the control scheme of step 2 and obtain mea-

suring pose qn+1(Xn+1, Yn+1, Θn+1)
5. Similarly, total N measurements are obtained.

For arbitrary two poses qi(Xi, Yi, Θi) and qj(Xj , Yj , Θj),
P i is equal to P j . Hence, φ can be identified by minimizing

a cost function, which is defined as:

Esel =

3N(N−1)/2
∑

n=1

√

ǫsel(n)ǫT
sel(n), (2)

where

ǫsel =

























P 1
c − P 2

c

P 1
c − P 3

c
...

P 1
c − PN

c

P 2
c − P 3

c
...

PN−1
c − PN

c

























, with 3N(N − 1)/2 elements.

Pc is the calculated coordinate by using the calculated φ.
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C. Classical Calibration

As comparison, we also performed classical calibration

to the same micropositioners. What is different from self-

calibration is identification algorithm need to find not only

the kinematic parameters but also the relation parameters

between the image and the robot frames. In this case, algo-

rithm aims to minimize the difference between the calculated

coordinates Pc and measured (or real) coordinates Pr. The

cost function is:

Ecla =

N
∑

n=1

√

ǫcla(n)ǫT
cla(n), (3)

where

ǫcla =











P 1
c − P 1

r

P 2
c − P 2

r
...

PN
c − PN

r











, with 2N elements.

D. Identification Algorithm

In this paper, the calibration problem is developed based

on the kinematic equations of micropositioners, and then

transformed into the optimization problem solved by Dif-

ferential evolution (DE). DE shows especially efficient and

robust for problems containing continuous variables [9], [10].

Error functions Esel and Ecla in (2) and (3) are continu-

ous, nonlinear, no-convex, and have several local minima.

Therefore, the DE algorithm is used for identification of

parameters in this research. DE is a population-based op-

timization algorithm, in which a candidate solution is called

an individual and individuals constitute a population. The

complete evolution goes through mutation, crossover, and

selection operation. For optimization problem with m pa-

rameter variables, the individual is represented by parameter

vector φ = (φ1, φ2, · · · , φm). Each generation of population

G is represented as φiG, i = 1, 2, · · · , M , in which M is the

population size. In mutation,

Vi,G+1 = φr1,G + F (φr2,G − φr3,G), (4)

where Vi,G+1 is mutant vector generated after mutation,

r1, r2, r3 are mutually different random integer indices se-

lected from {j|j 6= i, j ∈ [1, M ]}. Step size F ∈ [0, 2] is

a real constant determining the amplification of the added

differential variation. For crossover,

Ui,G+1 = (U1i,G, U2i,G, · · · , Uni,G)

Uji,G+1 =

{

Vji,G if randb(j) ≤ CR or j = rnbr(i)

φji,G+1, otherwise,
(5)

where randb(j) ∈[0,1] is the jth evaluation of a norm random

number, CR ∈[0,1] is the crossover constant set by the user,

and rnbr(i) is an index randomly chosen from i dimensions

to ensure that at least one parameter from the mutated vector

Vi,G+1 can be attained. In selection stage,

φi,G+1 =

{

Ui,G+1 if J(Ui,G+1) < J(φi,G)

φi,G, otherwise,
(6)

where J could be Jsel or Jcla depending on the calibration

method used.

First, the initial population of DE is randomly generated.

In every generation, mutation is employed according to (4)

and crossover operation is implemented as (5). Then, based

on the quality of φi,G and Ui,G+1, selection operation is

carried out according to (6) and the selected individuals

constitute the new population of the next generation.

III. VISION-BASED METROLOGY

The calibration and performance tests are based on CCD

camera measurement assuming no image distortion and

perfect parallelism between image plane and robot plane.

For self-calibration, the locating of tool tip at a given

point is done by visual servo control constructed by MAT-

LAB/Simulink software.

A. Image Specification

The image format is 1024×768 mono and the frame rate

is 7.5 fps. To determine the scale factor (µm-to-pixel rate),

a preliminary experiment was performed [11], [12]. The

micropositioners tracked the same rectangular path five times

and a total of 5 sets of increments for the input (∆q) and

output (∆w) displacements were recorded to calculate the

scale factor for both axes

λ =
∆q

∆w
. (7)

The calculated λ is 0.9379 µm/pixel.

B. Image Processing

The image acquisition and processing is done by MAT-

LAB/Simulink with cvLink toolbox in a computer. First, the

color image is acquired by CCD camera in Fig. 3(a). For the

convenience of processing as shown in Fig. 3(b), the acquired

image is then converted into binary BW (black-and-white)

version. Then, the exterior contour of microsphere in the

BW image is extracted, and its center point is determined

and marked in sequence as shown in Fig. 3(c) and (d).

IV. EXPERIMENTS

As shown in Fig. 4, the micropositioning device used

in this research consists of two translation stages (PI M-

111.1DG controlled by MercuryTM C-863 controller) and

one rotary stage (SmarAct SR-3610-S controlled by MCS-

3D controller). A video camera (AVT STINGRAY F-125C)

and microscope lens (Opto zoom 70XL) are used as exter-

nal sensor for 2D position measurement. Besides, a glass

microsphere (Whitehouse Scientific, monodisperse particle

standard) with measured size 200.9 µm is used as reference

object.

Fig. 5 shows the flow chart of complete procedure of

calibration and validation using camera. Considering the

consuming time and number of parameters to be identified,

we made 1081 measurements in trajectories of five squares

taking 7 minutes for classical calibration to identify six

parameters γ, L, τ , ζ, u0 and v0 where later three are

depicted in Fig. 6. Afterwards, 72 measurement vectors were
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(a) Acquired image (b) Convert to BW image

(c) Find the contour (d) Mark the center

Fig. 3. Procedures of the image processing

Camera 

Lighting system 
Microsphere 

 stage

Y stage 

X stage 

5 cm 

Fig. 4. Experimental setup for calibration and validation

made in about 15 minutes for self-calibration to identify three

parameters γ, L and τ .

The position in robot workspace can be transformed into

the image space through a rotation matrix R and a position

vector w0, with w = [u, v]T and p = [x, y]T describing

the position vector of point in image space and robot space,

respectively

w =
1

λ
Rp + w0 (8)

where

R = Rotz(ζ)Roty(π)

=





−cos(ζ) −sin(ζ) 0
−sin(ζ) cos(ζ) 0

0 0 1



 ,

w0 = [u0, v0]
T .

Experiment setup

Adjust the camera to appropriate condition

Determine the parameters to be identified

Camera calibration

Self-calibration Classical calibration

Inverse kinematics Inverse kinematics

Desired accuracy?
No

Yes

Calibration done

Validation Validation

Fig. 5. Flow chart of calibration and validation for using camera

U

V

ζ

IF

RF (u0, v0)

xx

y

u0

v0

Fig. 6. Frames of image and robot. IF: image frame; RF: robot frame

A. Identification Results

Used DE algorithm, the identified values of parameters can

be found in Table II and Table III. We can see that the iden-

tified γ, L and τ in self-calibration are quite different from

those in classical calibration. The most different parameters

are L and τ characterizing the position of the microsphere

relative to the rotation center. That means the identification

of both methods “see” different locations of the microsphere.

One part of reasons is due to the optimization precision

of the identification algorithm, which converge to a local

minimum; another part is the environmental perturbation

(e.g., thermal-induced drift) changing the location of the

microsphere because two calibrations took place on two days.

TABLE II

IDENTIFIED RESULTS OF SELF-CALIBRATION USING 72 MEASUREMENTS

Identified parameters Values

γ (rad) -0.0096

L (µm) 86.9

τ (rad) 4.310
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parameter

identification

External

External

sensor

sensor

robot
robot

X, Y , Θ

RF

RF

forward

kinematics

inverse

kinematics

Xc, Yc, Θc

P

φ-RF Pr

standard

accuracy, repeatability

From RF

to IF

RF

Fig. 7. Block diagram of the self-calibration and validation. IF: image frame; RF: robot frame

parameter

identification

External

Externalsensor

sensor

robot
robot

X, Y , Θ

IF

IF

IF

forward

kinematics

inverse

kinematics

Xc, Yc, Θc

P

φ-IF Pr

standard

accuracy, repeatability

Fig. 8. Block diagram of the classical calibration and validation. IF: image frame; RF: robot frame

TABLE III

IDENTIFIED RESULTS OF CLASSICAL CALIBRATION USING 1081

MEASUREMENTS

Identified parameters Values

γ (rad) -0.006

L (µm) 17.027

τ (rad) 2.530

ζ (rad) -0.025

u0 (pixel) 841.093

v0 (pixel) 157.548

B. Validation of Calibrations

To evaluate the accuracy achieved after calibrations, we

performed validation experiments to both self-calibrated

model and classical model resorted to ISO-9283 standard [7].

Fig. 7 and 8 are complete block diagrams of self-calibration

and classical calibration as well as their validations. We

can see that the main discrepancy between two processes is

their reference frames in calibration phase. Self-calibration

refers to RF and classical calibration to IF , so in validation

phase, a transformation from RF to IF is necessary for self-

calibration. Validations are implemented by computing joint

coordinates via inverse kinematics and identified parameters.

According to the measurement and calculation principle

of the standard, five points (Table IV) in 2-dimensional

workspace are defined for both tests, and the positioning

accuracy and repeatability are computed by comparing the

target positions and measured ones.

1) Self-Calibration: The test trajectories are shown (red

arrows) in Fig. 9 with five points defined in RF . To evaluate

the accuracy of the robot, the relationship between RF and

IF should be known exactly, which is not an easy issue.

In this case, the pixel-coordinates of the end-effector in 0◦

and 180◦ are recorded so as to be used to calculate the

TABLE IV

COORDINATES OF TEST POINTS FOR TWO CALIBRATIONS

Test points self-calibrated model (µm) classical model (pixel)

P1 (200,150) (500,350)

P2 (360,270) (340,470)

P3 (360,30) (340,230)

P4 (40,30) (660,230)

P5 (40,270) (660,470)

U

V

IF

RFX

Y

P1

P2

P3 P4

P5

300µm

400µm

Fig. 9. Trajectory (red arrows) of performance tests for self-calibrated
model. IF: image frame; RF: robot frame

P1

P2

P3 P4

P5

U

V

IF

300 pixel300 pixel

400pixel

200pixel

Fig. 10. Trajectory (red arrows) of performance tests for classical calibrated
model. IF: image frame; RF: robot frame
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position (the mean values in pixel) of the rotation center,

which is the original point of RF . The orientation of x-axis

is defined as the same as the positive motion orientation of

the lower X stage. The y-axis is assigned perpendicularly

to x-axis. Consequently the RF can be determined based on

the hypothesis of no eccentricity. From Fig. 11, we can see

that the repeatability is about 0.8 µm and the accuracy is

around 3 µm for 5 test points. In a geometric point of view,

the repeatability is the radius of the large circle; the accuracy

is the distance from the center of small circle to the center

of the square.

38.8 39 39.2 39.4 39.6 39.8 40 40.2 40.4 40.6
270

272

274
36 36.5 37 37.5 38 38.5 39 39.5 40

30

32

34
357.5 358 358.5 359 359.5 360
30

32

34
360 360.5 361 361.5 362 362.5

270

272

274
195.5 196 196.5 197 197.5 198 198.5 199 199.5 200

150

152

154

acc=3.854 µm

acc=1.769 µm

acc=2.813 µm

acc=3.539 µm

acc=1.614 µm

P
1

P
2

P
3

P
4

P
5

rep=0.839 µm

rep=0.853 µm

rep=0.858 µm

rep=0.693 µm

rep=0.674 µm

x

y

Fig. 11. Positioning accuracy (acc) and repeatability (rep) of self-
calibration, x-axis and y-axis are in µm

2) Classical Calibration: The test trajectories with five

points are defined in IF as shown in Fig. 10. The test results

are given in Fig. 12, which show that the repeatability is

about 0.5 µm and the accuracy is about 5 µm. This result

show that the repeatability is better than self-calibration, but

accuracy is worse.

497.5 498 498.5 499 499.5 500
350

351

352

339.4 339.6 339.8 340 340.2 340.4
470

471

472

334 335 336 337 338 339 340
230

232

234

657.5 658 658.5 659 659.5 660
226

228

230

660 660.5 661 661.5 662 662.5

466

468

470

P
1

P
2

P
4

P
3

P
5

acc=2.1435 pixels = 2.010 µm

acc=1.462 pixels = 1.371µm

acc=5.761 pixels = 5.404 µm

acc=2.205 pixels = 2.068 µm

acc=4.257 pixels = 3.993 µm

rep=0.537 pixels = 0.503 µm

rep=0.538 pixels = 0.505µm

rep=0.575 pixels = 0.540 µm

rep=0.611 pixels = 0.573 µm

rep=0.537 pixels = 0.503 µm

x

y

Fig. 12. Positioning accuracy (acc) and repeatability (rep) of classical
calibration, x-axis and y-axis are in pixels

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a full procedure of calibration and

validation for 3-DOF XY Θ micropositioners which is used

as coarse positioning to a microassembly platform. This

work applies calibration methods at the macro scale to the

micro scale, which could be termed as coarse calibration.

To perform open-loop micropositioning for future automatic

microassembly, this work is a necessary step. Differential

evolution (DE) algorithm is applied due to identify the

kinematic paramters. Based on a microscope vision system,

experimental results show that the micropositioners have a

repeatability is about 0.8 µm and the accuracy is around

3 µm by self-calibration. And by classical calibration, the

repeatability is about 0.5 µm and the accuracy is about 5

µm. Hence, both calibrations achieve close performance and

have their respective pros and cons in accuracy and repeat-

ibility. In order to suit microassembly tasks with rigorous

accuracy requirements, the calibration should be improved.

Such efforts will be conducted in our next step of research.
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