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Outstanding performances have been obtained by optical atomic clocks: fractional frequency 

instabilities and accuracies of single-ion optical clocks are now as low as 310-15 -1/2 for the 

former [1] and 310-18 -1/2 for the latter [2], while optical lattice clocks have reached instabil-

ities and inaccuracies as low as 610-17 -1/2  [3] and 210-18 -1/2 [4] respectively. Optical 

clocks are exquisite measuring tools, useful to various domains of precision science, and 

many proposals require to bring optical clocks into the field. For this purpose, a number of 

laboratories worldwide are now building transportable optical clocks. The first operational 

setups have been reported recently, for both a strontium lattice clock [5], [6] and a single-ion 

calcium clock [7]. 

Optical lattice clocks can reach lower fractional instability, thanks to the high atom number, 

but the frequent reloading required induces an increased susceptibility to the Dick effect [8]. 

They also require a complex loading scheme into the optical lattice trap, starting with a 2D 

magneto-optical trap (MOT) or a Zeeman slower. On the other hand, single-ion optical clocks 

involve a simpler loading scheme and lower optical powers, leading to potentially more com-

pact and less power-consuming systems. 

We are developing a compact optical atomic clock based on trapped Yb+ single ions [9]. The 

clock should reach a fractional frequency instability around 10-14 -1/2 in an overall volume 

below 500 L. This clock would therefore exhibit a stability 10 times better than an active Hy-

drogen Maser in a similar volume. We will present the details of our experimental apparatus, 

which includes a miniature single ion-trap based on surface-electrodes (SE) [10]. 
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