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Abstract—With growing trend of miniaturization, new chal-
lenges in microrobotics have appeared. In particular, the com-
plexity of microworld comes from the fact that visual sensors such
as Scanning Electron Microscope have a very different principles
of image formation in contrast with classical cameras, and their
field of view stay very limited. Moreover, usually, the kinematic
model of the robots used are not well defined. The consequence
of both properties is that even a small movement of the robot
arm leads to a huge object displacement comparing to the size
of the viewed area.

This paper develops a procedure allowing to perform object
rotation while keeping it at the same 3D-position in open loop.
Such performance is achieved by a method of robot calibration
based on visual servoing and autofocus inside SEM. This kind
of properties is required for manipulation and 3D reconstruction
inside SEM.

Index Terms—Calibration, SEM, positioning, autofocus

I. INTRODUCTION

Vision is a powerful tool to implement robotic tasks at

micro-scale, such as micro-manipulation or characterisation.

However the need of a high magnification induce difficulties

to constitute sequences of images. In order to acquire it, a

user may have to spend hours of work which is mostly due to

the problem of maintaining the object in the field of view

and in focus. Consider the following example: the sample

is about 100 μm size and it is located somewhere on the

robotic stage (e.g. a robotic arm), several centimeters from

the rotation center. Even if an in-plane rotation of 3 degrees is

applied, the object may be millimeters away from the initial

position. Hence, an operator needs to relocate the object and

the situation repeats itself for every new image. Moreover, the

high magnification involve to mostly consider affine cameras,

among which Scanning Electron Microscopes (SEM).

Indeed, a distortion-free parallel projection model (affine

camera) may be used for description of image formation in

SEM [1]. SEM image is formed by gathering the electrons

reflected from the surface of the sample. Such images of a

sample with an arbitrary topography are of excellent quality

and high resolution, provided that it has a very big depth of

field that may achieve hundreds of micrometers. However, as

with every affine camera, the depth coordinate is lost during
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the image formation, because an affine camera model assumes

that all projection rays are parallel to each other. Moreover, the

projection of the object is independent of translations in the

plane perpendicular to the optical axis. Thus, even if the use of

SEM opens up great opportunity to do microrobotic task, new

methods have to be developed to exploit its particularities.

Firstly, the focus information have to be considered. When

an object performs an in-plane rotation, it leaves the field

of view which can be compensated by in-plane translations.

However, in the case of more complex out-of-plane rotation,

the displacement of object center is characterized by three

coordinates, adding translation along the optical axis. As it

was mentioned previously, this last translation is not taken

into account by the projection process in case of an affine

camera. Yet, it has to be considered as SEM has limited depth

of field, an area in which the object stays in focus. Obviously,

blurry images is not a convenient start point for positioning

by vision. Therefore, it is important to maintain the object

in focus while it is moving. We will refer to this problem as

autofocus. However, such autofocus controls only one degree

of freedom, which is the distance from camera to object, so

it is important to combine it with a visual servoing to control

the position of the object along the two other directions.

Such method could theoretically be used for a real-time ap-

plication, but could be not efficient, notably for fast or complex

tasks. So the precise knowledge of the robot kinematic model

is often required. In this paper, we propose to use point-link

calibration inside SEM, the methods presented in Section II.

Using such method, it is possible to accurately calibrate a

robot, only thanks to internal sensors and the SEM image, by

maintaining an object of interest in the same point in space

(without considering its orientation) for some robot config-

urations. To do this, the Section III shows how to combine

visual servoing and autofocus. Finally, Section IV illustrates

the performances of the method, by the observation of the

micrometric displacements of an object during a rotational

open-loop displacement of the calibrated robot inside SEM.

II. ROBOT CALIBRATION

A. Robotic system used

The studied system is shown in Fig. 1. Inside a vacuum

chamber of SEM, a serial-link manipulator, further referred

as robot, is installed. As a usual robotic arm, it comprises a
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Fig. 1. View of the CAD models of the 3P3R robot and the SEM column,
inside the SEM vacuum chamber.
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Fig. 2. Model of the robot installed inside SEM chamber.

chain of rigid links and joints. One joint j has one degree

of freedom represented either as a translational movement for

prismatic joints or rotational movement for revolute joints. In

our configuration, the robot is PPPRRR or 3P3R, which means

that it has three prismatic (�x, �y, �z) and three revolute joints.

All joints are equipped with position sensors. Prismatic joints

are actually three micropositioning stages mounted together.

Regarding revolute joints, first two are implemented as a

goniometer (�ry, �rz) and the last one is a classic rotation block

(�rx). The base of the robot is fixed on the chamber ceiling

and the frame associated to it is also fixed and denoted as

R0. Other frames Ri with i ∈ (1, 2, .., 6) correspond to six

robot joints (see Fig. 2). The end of the robot which is free to

move holds the tool or end-effector which is a sample holder

in our case. The frame associated with the center of the object

(around which the rotation has to be done) is noted Rt.

The position of the end-effector clearly depends on the

state of each joint. The pose may be computed as a series

of transformations involving every link from the base frame

to the tool frame:

0Tt =
0T1

1T2 · · · n−1Tn
nTt (1)

where iTk denotes the 4 × 4 transformation matrix between

Rk to Ri with k, i ∈ (0, 1, .., n) and n = 6.

Each transformation matrix in (1) includes geometric pa-

rameters of the robot: lengths between links, angles between

stages, etc. Once the robot has been designed, the theoretical

estimation of forward kinematics is obtained from its CAD

model and position of the tool may be calculated. However,

due to the process of assembly and manufacturing, these base

theoretical parameters are never the true ones which results in

low accuracy of object positioning, and the situation is even

worse at small scales.

The accuracy of the robot may be improved by following

a calibration procedure with the goal of refinement of robot

geometric parameters. In the following sections, these param-

eters are defined and the corresponding calibration procedure

is presented.

B. Point-link calibration

Calibration procedure implies the refinement of geometric

parameters of forward kinematics and tool transformation.

The vector of parameters ξ can be decomposed for each

transformation separately. For transformations between the

links of the robot, the Khalil and Kleinfinger notation [2] is

used. The transformation matrix between two joints ji−1 and

ji can be written as follows (3):

i−1Ti = rot(�y, βi)·rot(�x, αi)·trans(�x, di)·rot(�z, θi)·trans(�z, ri)
(2)

And for tool transformation, corresponding to the position of

the TCP (Tool Center Point):

nTt = trans(�x, xt) · trans(�y, yt) · trans(�z, zt) (3)

The theoretical values of robot forward kinematics are

presented in Table I. It should be noted that for revolute joints,

angles θi are replaced with joint variables (the values given

by sensors). The same is true for ri and prismatic joints.

The standard calibration procedure comprises the following

steps. First, the tool position x̂c is measured by a precise

external sensor for many different robot configurations c ∈
(1, 2, .., Nc). Typically, in the experience, Nc varied from 25

to 50. The joint variables jc are also stored. Therefore, two

values should match each other: tool position measured by

an external sensor x̂c and the same computed from forward

kinematics and tool transformation xc(jc, ξ). The goal is then
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Fig. 3. Transformation between robot links.

TABLE I
THEORETICAL MODEL OF ROBOT FORWARD KINEMATICS (INITIAL

VALUES OF PARAMETERS ξ0).

βi αi di θi ri
degrees degrees mm degrees mm

j1 0 0 0 0 j1
j2 0 −90.00 0 90.00 j2
j3 0 −90.00 0 180.00 j3
j4 0 0 0 j4 0
j5 0 −90.00 0 j5−90.00 0
j6 0 −90.00 0 j6 −41.6

x y z
mm mm mm

TCP 0 −5 50

to find such values of parameters that minimize the difference

between them:

ξ∗ = argmin
ξ

Nc∑
c=1

‖x̂c − xc(jc, ξ)‖2 (4)

However, as it was already mentioned, it is difficult to find a

sensor allowing to provide accurate position measurements at

microscale. Therefore, another calibration method that relies

only on joint parameters could be used: the point-link cali-
bration [3]. The idea behind this method is to place the robot

in many different configurations and ensure that for every

configuration the position of the tool is the same (with an

arbitrary orientation):

∀(ja, jb) : x(ja, ξ) = x(jb, ξ) (5)

Therefore, the calibration problem transforms into:

ξ∗ = argmin
ξ

Nc−1∑
a=1

Nc∑
b=a+1

‖x(ja, ξ)− x(jb, ξ)‖2 (6)

which can be solved by many different optimization al-

gorithms, from global optimization to Levenberg-Marquardt

algorithm, that is the most common approach for such tasks.

III. MAINTAINING OBJECT LOCATION

A. Visual servoing

The position of the object center Qt (tool) is determined by

its three coordinates (qtx, qty, qtz)
� and the goal is to maintain

it in the center of the image for any changing robot configura-

tion. This imply the need to measure the relevant displacement

and to compensate it by moving the robot accordingly. The

depth coordinate is measured using the autofocus technique

presented above. For two other coordinates, visual servoing

keep the object in the center of the image. Visual servoing is

a technique allowing to control a robot by using the feedback

from a visual sensor [4]. In order to measure the displacement

of one point, the homography-based approach is used.

Assume the starting point of the algorithm is an in-focus

image with the object to track located in its center. This image

is used to extract the features that are then tracked using KLT

algorithm in all following images [5]. Object center is not a

feature itself, thus, in order to track it, one needs to find the

transformation between the current image and first image and

then find the projection the object center in this current image.

This transformation is a homography that defines the following

relation between two corresponding points:

q′t = Hqt (7)

where H is a 3× 3 homography matrix. Therefore, once H is

estimated, the new position of the object center is easily found

using (7). The estimation of homography is done from tracked

features using linear algorithm inside RANSAC scheme [6].

Once the homography is estimated, the error between cur-

rent object position and the desired one (image center) is

written as:

e(t) = qt(t)− c (8)

where c is the center of the image and qt(t) is a time-varying

current position of the tool. It is important to note that the error

e is computed in camera frame Rc and, in order to express

it in the robot base frame to find the joint speed, it has to be

multiplied by the transformation matrix 0Tc. This matrix is

known from CAD model of SEM vacuum chamber. Finally,

the control law for maintaining the object in the center of the

image is written as:

j̇ = −λ0Tce (9)

where j̇ is the vector of joint speeds and λ is a proportional

gain.

B. Autofocus

By using 2D visual servoing, it is possible to assure that

the object always stays in the center of the image. However,

if the object move by an out-of-plane displacement, its image

will be unfocused and blur. Even in the case of a visual

servoing usable on an unfocused object, its accuracy will be

reduced. Moreover, the object could simply disappear of the

image, what makes the visual servoing algorithm unusable. As

a result, it is important to use an autofocus method.



Autofocus is a subject already studied in the specific case of

electron microscopy [7]–[9]. The algorithm presented below

is a new version of the algorithm presented in [10], initially

developed for keeping an object in focus, but it also allows

to estimate the depth coordinate precisely enough for such

applications as automatic manipulation, assembly or robot

calibration.

First, a definition of the sharpness has to be choose. This

sharpness, used inside a sharpness function, will be significant

of the depth variation, or equivalently from focal distance

variation or working distance in case of SEM. Some definition

could be used, as Pertuz et al. explained in [11] for general

cases, but also Rudnaya et al. in [9] in the specific case

of microscopy domain. In the present case, the normalized

variance was selected:

S(I) =
1

MN

1

μ

∑
M

∑
N

(I(qx, qy)− μ)2 (10)

where S(I) is the sharpness of image I, μ is the mean

of intensity values, M and N are image width and height,

respectively.

The implement an autofocus algorithm, this sharpness fonc-

tion is used as an objective function for an optimisation

algorithm. In this way, the working distance is the interesting

input parameter. So the method has to keep the sharpness

fn(ξ) = S to a maximum value by updating the working

distance ξ:

ξn = argmax
ξ∈R

fn(ξ) = argmin
ξ∈R

(−fn(ξ)) (11)

In the present case, the objective function is not stationary,

so optimization algorithms based only on function evaluations,

such as the Golden-section search [12] based on the reduction

of the interval that contains the maximum, are not suitable.

It is better to use methods based on first-order derivative,

or gradient-based methods. However neither the sharpness

function (nor its derivatives) are directly available. But it is

possible to use an approximation of gradient, as provided by

the method of backward differences :

f ′(ξn) =
f(ξn)− f(ξn −Δξ)

Δξ
(12)

Finally, a gradient descent/ascent method could be used:

ξn+1 = ξn − αf ′(ξn) (13)

with α the learning rate and ξn+1 the estimate of the working

distance that would give the best value of image sharpness.

The main limit is now that such method could be unusable

in presence of noises, that could be important in the case of our

objective function (based on the sharpness of a SEM image).

Because of high variations in the gradient value, the working

distance could change accordingly and make the focus to be

lost. Therefore, a lot of authors worked on improvement for

gradient methods, such as Momentum [13], AdaGrad [14],

RMSProp [15] or Adam [16]. This last is the most interesting

in our case, because it allows better filtering of the gradient.

Algorithm 1 Autofocus in SEM

1: α← 0.00001 � optimization parameters
2: β1 ← 0.6
3: β2 ← 0.6
4: Δξ ← 10−5

5: ε← 10−8

6: m← 0
7: v ← 0
8: ξn−1 ← ξ0 � initial working distance
9: f(ξn−1)← f(ξ0) � initial sharpness

10: set working distance ξn = ξn−1 +Δξ � initialize displacement
11: while autofocus is activated do
12: acquire image In
13: get sharpness score f(ξn)← S(In) (Eq. 10)

14: estimate gradient ĝ = f ′(ξn) =
f(ξn)−f(ξn−1)

ξn−ξn−1
(Eq. 12)

15: m← β1m+ (1− β1)ĝ
16: v ← β2v + (1− β2)ĝ2

17: set working distance ξ ← ξ + α m√
v+ε

18: end while

It is founded on an adaptive moment estimation, based on the

observation of the exponentially weighted moving average of

the gradient:
⎧⎪⎨
⎪⎩

mn+2 ← β1mn + (1− β1)f
′(ξn)

vn+2 ← β2vn + (1− β2)f
′(ξn)2

ξn+2 ← ξn − α mn+2√
vn+2+ε

(14)

with m the first moment variable, v the second moment

variable and ε a constant allowing to avoid division by zero

at first iterations.

The final autofocus algorithm is represented in Algorithm 1.

It includes a lot of advantages, notably the absence of cali-

bration step, of preliminary model, of training data or focus

sweeping of the scene. Moreover the robustness to noise allows

to work with high frame rate in SEM (tested between 1 and

5 Hz).

IV. RESULTS

To illustrate the control of the robot in the operational space,

the objective is rotating around three axis (with �rx, �ry and �rz)

while also maintaining the position of the TCP in translations.

The object observed, and used to defined the TCP, is a little

sphere of 10 μm of diameter, putted on a little beam (see

Fig. 4). The two are coated by gold.

Fig. 4. Object maintened in position during the displacements of the robot:
a 10 μm sphere putted on a microbeam. (left) an high-resolution view of the
object; (right) a typical image captured during the acquisition for calibration.



Fig. 5. Image taken during the motion of calibrated robot in open loop, for two magnifications and three positions. The objective is to maintain the sphere
at the same point. See the video.

A. Calibration step

To calibrate the robot, about 50 robot configurations have

been acquired. To maintain this object, the visual servoing

and autofocus algorithms presented above are combined with

Matlab/Simulink R2017b, with a frame rate of 1 Hz. The

parameters of the SEM are: magnification 373×; aperture size

60 μm; working distance 5.2 mm; image pixel size 299.2 nm;

resolution 200×200 pixels (see Fig. 4). The revolute axis are

commanded independently, and the translations of the three

others axis maintain the object at center.

Next the expression (6) is used to refine the set of parame-

ters ξ. The table of calibrated parameters is shown below (see

Table II). From the resulting values, one can see that the most

important correction was done on the parameter α reflecting

the perpendicularity between robot axis. The displacements d
and r allowed to correct the center of rotation.

B. Open-loop control

With the calibrated robot it is now possible to perform a

rotation around the object center (see Fig. 5 and the joined

video). The same object is used (a 10 μm sphere), and the

robot receive a sinusoidal consign on the three axis of rotation,

with ranges Δθx = 75◦, Δθy = 6◦, Δθz = 7.5◦ (near to the

maximal achievable displacements).

Thank to the calibration, the biggest displacement between

the TCP and the image center during rotations is near the size

of the sphere, so 10 μm (see Fig. 6). This result illustrates

TABLE II
CALIBRATED MODEL OF ROBOT FORWARD KINEMATICS ξ∗ .

βi αi di θi ri
degrees degrees mm degrees mm

j1 0 0 0 0 j1
j2 0 −89.8154 0 89.6759 j2
j3 0 −91.2235 0 179.9239 j3
j4 −0.3958 1.7134 −0.0002 j4−0.0768 −0.0002
j5 0 −90.4253 −0.0496 j5−89.6437 0.0229
j6 0 −89.8625 −0.1434 j6−0.0034 −41.600

x y z
mm mm mm

TCP −0.75364 −6.29653 55.50676

that the presented method allows to calibrate a robot inside

SEM with a good accuracy, adapted to micro-robotic tasks

and notably to keep an object in the field of view during

displacements for image acquisitions.

Finally, it may be noted that the small error seems mostly

due to the depth estimation: actually, as the object has a

spherical form, the autofocus is not performed exactly on the

TCP, but on the sphere around it.

V. CONCLUSION

In this paper, a method dedicated for automatic positioning

by the use of an affine camera, and its applications in SEM,

was presented. The main lock consisted in the problem of



Fig. 6. Displacement of the sphere during the open loop displacement in the
plane perpendicular the the optical axis (direct measurement on the video).
The error on position maintening stay inferior to 10 μm for rotations equal
to Δθx = 75◦, Δθy = 6◦, Δθz = 7.5◦.

keeping the object inside the field of view while performing

rotations and the presented algorithm was dedicated to solving

it.

A first step refereed to an autofocus method used to solve

the variations of sharpness due to sample displacement. The

presented method relied on gradient-based optimization and

allowed keeping the object with unknown structure in focus at

high frame rate, i.e. using very noisy images. The experiments

on the SEM validated the algorithm and proved its robustness

to the variation of magnification and displacement speed. The

working distance was adjusted automatically that served also

for depth estimation, for measuring the translation perpendic-

ular to the image plane. A visual servoing algorithm added to

the method allowed a positioning along the two others axis in

translation.

Next we used a procedure to calibrate a serial robot inside

SEM, performing the rotation around the point of our choice.

It started with the acquisition of different robot configurations

keeping the same position of the tool. The vectors of joint

variables corresponding to every configuration were then used

in the optimization process that allowed refining of initial

theoretical geometric parameters of the robot and the tool

transformation. The calibration detected and measured the

error in the kinematic model of the robot, with lengths of

joints and angles between joints.

Finally, the method was tested inside SEM with a micro-

sphere of 10 μm. After calibration, the robot was controlled

in open loop: applying a rotational speed along the three axis,

the object stays in the field of view and the shift from the

desired position did not exceed 10μm, so approximately an

error of the same order as the size of the object.

The paper showed it is possible to control a serial robot in

open loop inside SEM with micrometric accuracy, beforehand

using a calibration method based on vision. Next this approach

will be used for object manipulation, positioning and image

acquisition for 3D reconstruction.
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