A numerical framework for the stability and cardinality
analysis of concentric tube robots: Introduction and
application to the follow-the-leader deployment

Q. Peyron®P, K. Rabenorosoa®, N. Andreff®, P. Renaud?®

“JCUBE-AVR, UDS-CNRS-INSA, 1 Place de I’Hépital, 67091 Strasbourg, France
YFEMTO-ST Institute, Univ. Bourgogne Franche-Comté/CNRS, 25000 Besancon, France

Abstract

Concentric tube robot (CTR) is a promising class of continuum robots for med-
ical interventions given their compactness and dexterity. Their dexterity is in
particular being used to achieve so called Follow-the-Leader (FTL) deployments,
where the tip path draws the shape of the robot. During this kind of deployment
they can however be subject to elastic instabilities, and the number of reachable
configurations may vary for a given state of actuators. These cardinality and
stability changes need therefore to be predicted during CTR design. Available
methods and results are limited, with restrictive assumptions on number and
properties of tubes. We therefore propose in this paper a numerical framework
for the cardinality and stability assessment of CTR. It is based on the associa-
tion of dynamic relaxation, continuation method and bifurcation analysis. The
numerical framework is validated by reproducing reference results on the stabil-
ity and cardinality of two-tube robots. Then, new results on three-tube CTR
deploying in a FTL manner are presented. The framework genericity allows in
particular to provide new insights on the behaviour of CTR with helical-shaped
tubes.

Keywords: Concentric tube robot, Continuation method, Stability evaluation,
Follow-the-leader deployment, Bifurcation analysis

1. Introduction

Concentric tube robots (CTR) are telescopic assemblies of pre-curved tubes
which are rotated and translated at their base. The superposition of their
curvatures creates internal forces which change the equilibrium state of the
robot. It is thus possible to control the shape and the tip position of this cannula
robot. In addition, CTR can achieve, under certain conditions, deployments in
a Follow-The-Leader (FTL) manner, i.e. with the tip path drawing the shape
of the robot [3, 8]. These features make this kind of manipulator of particular
interest for navigation in narrow spaces. Therefore, they have been investigated
extensively for minimally invasive interventions such as beating-heart surgery
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[11], vitro-retinal surgery [23] and nasal cavity exploration [9]. The reader may
refer to the review paper [1] for more examples of CTR in medical applications.

Their use is however hampered by stability issues, due to the tube elastic
interactions, which result in unsafe behavior of the robot. During a deployment,
and particularly during FTL deployment where tubes can be placed in opposi-
tion, the tubes endure torsional solicitations and store elastic potential energy
as described in [16, 6]. Webster et al. [16] and Dupont et al. [6] then showed
that multiple equilibrium configurations with different energy levels can as a
consequence exist for the same actuation inputs, which means the cardinality of
the CTR kinematic model is greater than one. In the remainder of the paper,
the number of equilibrium configurations existing for the same actuation inputs
will be thus referred as the CTR cardinality. This property impacts the robot
workspace and has therefore to be evaluated.

In addition, the energy stored in the CTR can be suddenly released, leading
the robot to be unstable and to snap away from an equilibrium configuration
with hazardous dynamics. Such snapping is unacceptable, especially in medical
context. Works have therefore been devoted to the stability improvement of
CTR through tube design [13, 21] and path planning [22]. Conditions are then
derived on design parameters like the number of tubes, tube geometry or de-
ployment sequence. It is then mandatory to assess stability taking into account
all these variables.

Assessment of stability and cardinality are complex and cumbersome tasks.
The existing approaches [6, 15, 14] use analytical manipulations of the kinematic
model which are possible after several assumptions on tube number and proper-
ties. Results have been produced for two-tube CTR in free space with constant
and planar pre-curvature of tubes. Dupont et al. [6] obtained the equations
describing the static behavior of the robot according to its base actuation an-
gles. This allowed them to establish a global stability criterion, ensuring that
the robot is stable for any rotation of the tubes. This study was completed by
Hendrick et al. [15] who obtained the kinematic model cardinality when two
tubes are deployed and a local expression of the two possible equilibria using
perturbation methods. Global [15] and local [14] stability criteria have been also
established for robots with more than two tubes. The local approach in [14] is
interesting for its genericity as it handles CTRs with arbitrary geometry and
mechanical properties of the tubes. It however provides local stability evalua-
tion only, and to our knowledge no other work provides cardinality evaluation
for arbitrary number and properties of tubes.

As a summary, there are few results about the cardinality of CTR during
their deployment, especially for the FTL case. Moreover there is no tool able
to evaluate the robot cardinality and the equilibrium stability that remains ap-
plicable without limiting assumptions on the tube number and properties. We
propose in this paper such a tool in the form of a numerical framework that can
be applied to a generic kinematic model of CTR. It is based on the simulation
of CTR deployment along paths, which consists in our approach to compute
connected sets of equilibria, using dynamic relaxation and continuation meth-
ods [18]. Bifurcation analysis [19] is then used to evaluate robot cardinality



without being dependent on tube number and properties. The kinematic model
we use is based on the expression of the CTR potential energy. This enables
one to assess numerically the local stability. The proposed framework is par-
ticularly adapted to this context, considering the successful previous use of the
numerical tools in the close context of buckled beam stability analysis [20]. Use
of continuation in robotics was indeed also advantageously considered for robot
workspace analysis in [17] or [26].

This paper is then organized as followed. A generic kinematic model de-
scribing the behavior of a CTR is derived from its potential energy in Section 2.
Transformation of this model through the different steps of the proposed nu-
merical framework is detailed in Section 3. Reference results on two-tube CTR
are generated in Section 4 to validate the proposed approach and to evaluate
its performances. New results are finally produced in Section 5 for three-tube
CTR, with constant and helical pre-curvature, deploying in a FTL manner.

2. Background of CTR kinematics

Our goal is to analyze the stability and the cardinality of any given CTR in
terms of number of tubes and tube properties. This supposes to derive a kine-
matic model with adequate genericity. We present in this section such a model,
which is based on the energy derivation presented in [29]. In this work, CTR are
composed of arbitrary number of tubes, with arbitrary mechanical properties
and planar pre-curvature. We add to this model the boundary conditions given
in [7, 8] to take into account tubes with transmission lengths and helical initial
shape. We use then the virtual tube method developed in [14] to facilitate the
implementation of the model. Model parameters and equations used throughout
this work are now introduced and developed in order to ease the understanding
of the results.

A-A

Tube 3
Tube 2

Figure 1: CTR schematics representation with parametrization. The figure corresponds to a
3-tube CTR with 3 sections. The robot backbone is represented with a dash-dotted curve.

As illustrated in Figure 1, the CTR is composed of n tubes. These tubes are



numbered from the innermost to the outermost. The deployed length of tube 1,
which is its translatory degree of freedom, is denoted L;. It is measured with
respect to the initial configuration where all tube extremities are located at arc
length s = 0. The rotational degree of freedom of tube ¢ is denoted by the
angle ;. The tubes are actuated in rotation and translation at the arc-length
s = —f3;, where (3; is the transmission length of tube i. The robot is considered
as composed of n sections, the number of tubes being constant along each one.
The sections are indexed from the distal end to the proximal one, and the length
of the i-th section is denoted AL;. The section lengths depend on the value of
the deployed length of each tube. For example, in the configuration depicted on
Figure 1, the section lengths are expressed by AL; = L; — L;11,i € [1,3].

A base frame Rg = (O, 2,90, 20) is attached to the base of the robot. The
robot backbone is described by a curve composed by points of coordinate p(s).
The local configuration of the robot can then be defined using a Bishop frame
Rp = (p(s),25,yB, ZB), obtained by sliding Ry along the backbone without
any rotation about its tangent. A frame R; = (p(s), 2}, ¥:, Z;) is then attached
to each tube i, that is obtained by applying a rotation (6;(s),z5) to Rp, with
0;(s) the twist angle of tube ¢ at arc length s. In the remainder of this paper,
we will use when needed subscripts (0, B and ) to indicate the frame in which
vectors are projected.

The curvature of a CTR is represented by the Darboux vector u(s) of the
curve drawn by its backbone [6]. This vector gathers the angular rate of the
frame R p according to s and projected in one of the previously defined frames.
The pre-curvature of tube 4 is denoted #;(s) and is expressed in R;. The
mechanical properties of tube ¢ are described by bending and torsional stiffnesses
kib(s) and ki (s). They are gathered in a stiffness matrix K;(s) expressed in R;
such that:

kin(s) 0 0
K.,,(S) = 0 kib(S) 0 (1)
0 0 kit(s)

The dependences in s are not mentioned in the following of the paper for the sake
of compactness. Let us consider the j-th section of the CTR where m tubes
interact with each other. The potential energy of this section of the CTR is
written [29]:
1 Lt T
jo 5/ S (s — )T K — 5)ds 2)
s=L; ;4

The telescopic assembly of the tubes imposes that the tubes share the same
bending curvature. The Darboux vectors of each tube, projected in the Rp
frame, are thus equal. Considering then that the projection of ug on zp is null
from construction of R p, the telescopic assembly constraint is written:

Ujg

up = BRZ‘ Uiy )
0

(3)
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where BR; is the rotation matrix describing the rotation of R; with respect
to Rp, and where u;, and u;, are the coordinates of u; along #; and y;. The
Z; component of u; corresponds to the twist angular rate 0, and appears in the
curvature projection between Rp and R; which is written:

u; = ‘Rpup + O, i=1.m (4)
where [...]" is a derivative according to the arc length s and e, = 0 0 1]T.
Expressing all the curvature vectors appending in (2) in the same frame R g
using (4), and observing that Z; = zp from construction of R;, lead to the
following expression of the energy:

1 [fLivt

E = 5 / Z (’LLB =+ 9;62 — BRZ’IEZ)TKz(’u,B + 9;62 — BRZﬁZ)dS (5)
s=L; =1

The potential energy depends thus on the backbone curvature uwp and on the

twist angles 0;,7 € [1,m]. As explained in [29], these variables are linked by a

relation obtained by expressing the balance of moments at each cross section of

the robot:

inuB = i BRiKi(ﬁi —dez) (6)
i=1 i=1

Thanks to (6), the equilibrium configuration of the robot can be described
using the twist angles only. The equilibrium equations can then be obtained
by applying the Euler-Lagrange formula to the potential energy (5). We do
not consider any assumption on the geometry and mechanical properties of
the tubes. The pre-curvature vectors and stiffness matrices are thus arbitrary
functions of the arc length s. In that case, the Euler-Lagrange formula gives
the following equilibrium equations for CTR subject to torsion:

kitﬁg’ =99, = k;tﬂ;z + k’;t(aiz — 9/) up 891

K2

K;i;
(7)

1=1...m

These differential equations are constrained by boundary conditions modeling
the proximal actuation of each tube and the free tube extremities. Assuming
that the torsional curvature is constant along the transmission lengths as in-
troduced in [7], and that the tubes may have helical initial shapes [8], these
conditions are written:

0;(0) = a; — 3:0;(0)

a;(Lj)_{ 0, i#j (8)

R ) ) i=1.n
Uiz ) =]

The kinematic model of the CTR is therefore formulated as a so-called two-
point boundary value problem (BVP) composed of the moment balance (6), the



energetic equilibrium (7) and the boundary conditions (8). For now, this model
is section-dependent but can be written along the whole length of the robot by
introducing virtual tubes, as described in [14]. The presented technique consists
in introducing n — m virtual tubes in a section where m tubes are present, with
null bending stiffness in order not to affect real ones. For the same reason,
the torsional stiffness is kept constant when extended from a real to a virtual
tube since its derivative according to s appends in (7). The stiffness matrix
becomes therefore a function of s defined on the total backbone length, i.e.
for s € [0, L1], and (6)-(7) can be written along the backbone with a constant
number n of tubes in interaction. Instead of repeating the BVP for each section,
the equilibrium state of the whole CTR can thus be computed with a single set
of equations. This will facilitate the implementation of our numerical framework
for the analysis of the kinematic model.

3. Numerical framework

3.1. General approach

We propose in this paper to study numerically the cardinality and the sta-
bility of a CTR during its deployment. Our approach is to proceed in four steps,
namely the numerical reformulation of the equilibrium determination problem,
the deployment simulation, the cardinality assessment and then the stability
evaluation. Each of them is here briefly justified before detailed presentation in
next section.

The analysis of a CTR is complex since its kinematics are described by a two-
point boundary value problem. As a first step we propose thus to reformulate
the equilibrium determination problem in a problem more efficiently solved by
numerical tools. Following a classical BVP solving method described in [27], we
discretize the robot along its backbone and express the second order derivatives
of (7) with finite differences. The CTR is then equivalent to a discrete elastic
structure which behavior is described by a set of non-linear equations. We
compute equilibrium configuration with dynamic relaxation, successfully used
for close problems [25]. The BVP (7) is thus transformed into a classical set
of first-order ordinary differential equations (ODE) without considering any
assumption on tube number and properties.

CTR are used for their ability to be deployed following complex paths. These
paths are, from a geometrical point of view, 1-D manifolds defined in the actu-
ation space. A deployment is thus described by variations of actuation inputs
which induce connected sets of equilibria, that we call equilibrium branches ac-
cording to the vocabulary associated to continuation methods [18]. We indeed
propose to rely on such methods to simulate CTR deployment, as they apply to
first-order ODE systems, they are not dependent on equilibrium stability and
are numerically robust to highly non-linear behaviors as it was illustrated in a
close context [20].

In previous works related to CTR analysis, cardinality changes during de-
ployment have been identified considering two kinds of paths: the tubes are
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Figure 2: Cardinality analysis as performed in the literature.

either rotated relatively to each other [6, 14] or placed in opposition and trans-
lated simultaneously [15, 7]. When the robot tip orientation is drawn according
to the actuation input, these paths lead to S-shaped curve and pitchfork dia-
gram, as presented on Figure 2a and 2b respectively. Cardinality changes are
spotted along these diagrams by particular equilibria located at points with
infinite tangent slope and at branch intersection. These equilibria correspond
indeed exactly to the mathematical entities designated as Limit Point bifurca-
tions (LP) and Branch Point bifurcations (BP) respectively, as introduced and
studied in the bifurcation theory [19, 18]. We propose then to use the existing
knowledge on these kinds of bifurcations to detect cardinality changes. The
bifurcation theory provides especially generic estimators of the presence of bi-
furcation which, when coupled with the equilibrium branch computation, gives
a numerical method for robot cardinality assessment without having to consider
any assumption on the tubes.

The equilibrium determination problem after reformulation is close to the
one addressed by Lazarus et al. in the context of elastic buckled beams [20].
The discretization process allows them to establish a simple stability criteria
based on the Jacobian matrix of a discrete beam kinematic model. We propose
thus to follow their approach in order to obtain a generic numerical method for
the CTR stability evaluation which fits with the continuation and bifurcation
tools.

Overall, the proposed reformulation stage and numerical methods form a
numerical framework for the cardinality and stability analysis of deploying CTR.
In the following, each of the above-mentioned stages is now detailed in order to
clarify it and make the framework easily reproducible.



3.2 Reformulation of the equilibrium determination problem

8.2. Reformulation of the equilibrium determination problem

Boundary value problems are classically solved using a finite difference me-
thod as explained in [27]. Here, such method is being used after first discretizing
the CTR in a number N of points between s = 0 and s = L; as denoted for
illustration on Figure 3, a point k being located at the arc length s;. The num-
ber of points for section j is designated by IN; so that N = 2?21 N;. The twist
angles defining the equilibrium configuration of the robot are then evaluated
at each point, as illustrated on the figure for point 5 and point N3 + 3. The
distance in arc length between point k and point k 4 1 is denoted hy, so that
hk = Sk4+1 — Sk-

s=0

Figure 3: Representation of the CTR after discretization. Here n = 3 and [N; N2 N3] =
[4 8 6]

The equilibrium equation (7) can then be written using discrete formulation
of derivatives. The second-order derivative of 6;(s) is replaced by a central
second-order finite difference, so that (7) becomes:

hii k-1 — (b + hi—1)0i 1 + hibi —1
hkhi—l

Kit k. =90,k =0 ()
with ¢ = 1...n, k = 2...N — 1 and subscript k denoting an evaluation at point k.
The initial and final boundary conditions (8) are then included to the central
finite differences evaluated at robot extremities:

Bibi2 — (Bi + h1)bi1 + hia

kit,l hlﬂz —90;1 = 0
Oing—20; N+ 0; N1
kit N ! 72 —9o,n =0 (10)
N

Oing = Uiz NhN +0; N
t=1..n
Gathering the twist angles in a state vector X such that:
] T

X = [9171 9171\/‘ 9271 9n7N ) (11)



3.3 Deployment simulation through continuation method

and considering a fixed set of actuation inputs, the boundary-value problem is
thus transformed into a set of non-linear equations of the form:

G(X)=0 (12)

Such formulation of CTR kinematic model is similar to the one involved in the
shape finding of elastic structures such as tensegrity mechanisms [25] and fab-
rics [28]. Dynamic relaxation was successfully used for these classes of systems
to solve the so-called form-finding problem. We therefore propose to use dy-
namic relaxation, where state variables are artificially considered functions of
time. The robot is initially constrained in an arbitrary shape and then relaxed
virtually until it reaches an equilibrium. The virtual dynamics of the state vari-
ables according to the virtual time are imposed to fit a second order damped
differential equation:

MX+DX +G(X)=0 (13)

with M and D two constant positive scalars in order to ensure numerical sta-
bility [25]. Selection of these values will be discussed later.

One can easily check that the steady state of (13) is a solution of (12). Sys-
tem (13) can be also written as a set of first-order ordinary differential equations
(ODE), that is more efficient numerically to solve using the state-space vector

Yy = [xT X T]T. The equilibrium determination problem consists then in
solving a set of 2 x n x N first-order ODE of the form:

Y = A(Y) (14)
with

(@) I 0
A(Y) = Y 15

=lo _po ¥+ ) 15)
and where @ and I are respectively null matrices and identity matrices of
size nN. The steady state of this system, that we call equilibrium of (14)
in the following, is denoted Y *.

3.8. Deployment simulation through continuation method

As described earlier, CTR deployment is considered described in actuation
space. We therefore have prescribed variations of L; and oy, i = 1...n, and we
wish to compute branches of equilibria as the robot is deployed along a path
using a continuation method. Two major types of continuation methods can
be applied in that case: the Predictor Corrector Method (PCM) [18] and the
Asymptotic Numerical Method (ANM) [24]. The ANM can be an efficient tool in
terms of accuracy and computation time if the equilibrium equations are written
in a quadratic form. This pre-processing step is tricky since it is not generic. As
shown for elastic structures in [20] and [2], different intermediate variables and
casting techniques must be introduced depending on the considered geometric
parametrization and constitutive equations. We therefore propose to use PCM
since it does not require any specific pre-processing. Its relevance will be further
discussed in terms of accuracy and computation time in Section 4.



3.3 Deployment simulation through continuation method

In order to describe the PCM principle, let us consider the situation where
the i-th tube of a CTR is deployed by performing a translation. This corresponds
to a modification of the actuation input L;, which becomes an input variable
of the system (15). The modification of L; lead then to the computation of a
branch B of equilibria Y* defined by:

B:R — R*N

Li — (Y*|A(Y*,L;) = 0) (16)

The PCM provides a discrete representation of the branch B with a number N,
of points. These points are computed iteratively by a two-step process composed
of a prediction step followed by a correction step. To describe them, let us note
(L k-1, Yy ;) the current equilibrium. In a first step, the length L; ;_1 is in-
cremented by the so-called continuation step .. The equilibrium corresponding
to this actuation increment is predicted following the branch tangent according
to L;, so that:

LY = Lijx_1+ 06,
) oB (17)
YP = Yk‘—l —|— 5c67‘[/7;(Li7k_1)
In a second step, the predicted point (L, Y'F) is corrected until the new equilib-
rium point of the branch (L; ;, Y;") is accurately found. Following [18], this step
is performed by applying a Gauss-Newton algorithm, starting from [YP Lr ],
to the system of equations:

A(Y,L;)=0
<Y -Y?, SE(Li,k_l)> =0 (18)

where the operator (,) denotes the dot product operator.

These two steps require the considered system of equation to be smooth
and to have a full rank Jacobian matrix. The first condition is verified since
the discrete CTR kinematic model solved with dynamic relaxation (14) is a
composition of smooth functions. In cases where the Jacobian matrix becomes
singular, the authors in [18] provide alternative root finding methods for the
correction step so that the PCM does not fail.

Because of the non-linear phenomena involved in the behavior of CTR, the
curvature of an equilibrium branch can vary during its computation. This can
impact the quality of the prediction step and on the numerical stability of the
Gauss-Newton algorithm. The PCM is therefore used with a step size control
algorithm described in [18], which automatically reduces ¢. in case of numer-
ical stability loss. Otherwise, the step size is increased until the user-defined
maximum value is reached in order to optimize the length of the computed
branch.

One very interesting feature of the method is that it does not assume the
robot to be stable. The continuation tool can thus be used to compute any

10



3.4 Cardinality analysis

branch of equilibria, including unstable configurations. This allows in particu-
lar to find stable branches in continuation of unstable ones, which would have
hardly been computed with a standard numerical tool depending on initial con-
ditions. This property will be outlined in the following examples. To sum up
the advantages of PCM in our context, the use of a step size control algorithm
and of alternative correction methods with the PCM provides an efficient tool
for CTR deployment simulation which is numerically robust to highly non-linear
behaviors, to changes in robot stability and to kinematic model singularities.

8.4. Cardinality analysis

Our approach to assess cardinality is to detect LP and BP bifurcations along
branches of equilibria, as introduced in Section 3.1. The term “bifurcation”
has been indeed used for CTR previously, in [15] and [7], to describe branch
intersections. We extend here the use of bifurcation notion, defined in the
following as changes in the robot behavior along a branch, as stated in [18], and
we consider the associated classification.

Existing estimators for bifurcation detection, designated as locators, are be-
ing used. They are mathematical functions which become zero with a sign
change when a bifurcation is encountered. The locators of LP ans BP bifurca-
tions as introduced in [19, 18] write in our context:

oB

SLP = 71 (19)
Ay 5

qup = det o8B 85’1 (20)
Yy 9L

where Ay is the Jacobian matrix of A(Y") with respect to Y.

The detection and the location of cardinality changes is then integrated
to the continuation process following the method given in [18]. Locators are
evaluated for each equilibrium configuration computed with the PCM. A sign
change of one locator between two points of the branch indicates the existence
of the corresponding bifurcation. The latter is then located accurately between
the two points with a root finding method applied on:

{A(Y) =0 1)
¢pp=0o0r ¢rp =0
The Jacobian of (21) may be singular in the neighbourhood of the bifurcation.
This is typically the case at BP bifurcation, where the vanishing of (20) may
be due to a singular Ay . This hampers the use of a standard Gauss-Newton
method for the localization. A secant method is instead preferred, since it does
not require the inversion of Ay [27] and it has been successfully used in [18] to
locate bifurcations.

To sum up the advantages of our approach for cardinality assessment, the
PCM and the bifurcation theory are employed here with a generic kinematic

11



3.5 Local stability assessment

model of CTR, solved with dynamic relaxation. We construct then a graph
composed of computed equilibrium branches and related bifurcations, known as
bifurcation diagram, through which the CTR cardinality is assessed during a
deployment. The association of equilibrium branch determination with detec-
tion of bifurcation provides thus a numerical method which is valid for any tube
number and properties. This genericity has never been offered previously to the
best of our knowledge.

8.5. Local stability assessment

Our second goal is to evaluate the local stability of a CTR during its deploy-
ment. The equilibrium determination problem after reformulation is close to
the one addressed by Lazarus et al. in the context of elastic buckled beams [20].
The stability of a loaded beam is then assessed by verifying that its equilibrium
configuration corresponds to a potential energy minimum, i.e. that the Hessian
matrix of the potential energy is positive definite. The beam discretization that
is then initially performed allows the authors to build such a Hessian matrix
based on the Jacobian matrix of the energy-based equilibrium equations, leading
to a simple numerical stability criteria.

We use this approach in order to establish a numerical method able to assess
CTR stability and which fits the continuation and bifurcation tools. After the
reformulation stages, the robot potential energy depends only on the discrete
and independent variables gathered in the state vector X described in (11). An
equilibrium state X™* solution of (12) is thus stable if the Hessian matrix of the
potential energy with respect to X is positive definite when evaluated at X*.
The equilibrium equations (7) are derived directly from the energy expression
in section 2. The Hessian matrix corresponds therefore simply to the Jacobian
matrix of G with respect to X, denoted Gx. An equilibrium state X* is
consequently stable if G x is defined positive, which is written:

Gx(X*) =0 (22)

In the opposite state the equilibrium is unstable if Gx has at least one strictly
negative eigenvalue.

In terms of implementation, we use the numerical evaluation of (22) to assess
the CTR stability. This method needs the computation of Gx and its eigenval-
ues. We can demonstrate easily from (14) that the former one is included into
the Jacobian matrix Ay, which writes:

0) H]

(23)
-4Gx —Hl

.
The determination of Gx is then straightforward since Ay is already computed
in the correction step of the PCM and in the locator of BP bifurcations. We
use then the QR decomposition algorithm to obtain the eigenvalues as Gx is
square and non symmetric. Since Gx is computed from a generic kinematic
model of CTR, this numerical method is valid for any number, geometry and
mechanical properties of the tubes.

12



3.6 Implementation

3.6. Implementation

The previous sections showed that the cardinality and stability analysis of a
CTR during its deployment results from continuation method and bifurcation
analysis applied on discretized model of CTR initially solved with dynamic
relaxation method. These model reformulation stages and numerical methods
constitute our numerical framework which is implemented following the flow
chart diagram presented on Figure 4. We now give details of implementation
corresponding to the three blocks composing the diagram.

The continuation method and bifurcation analysis are available as off-the-
shelf tools using the software AUTO [5] or the Matlab toolbox CL-MatCont [4].
Both tools use PCM and step size control algorithms for equilibrium branch
computation and provide locators for the detection of limit points (LP) and
branch points (BP). CL-MatCont provides the most advanced bifurcation anal-
ysis for dynamical systems as explained in [12]. It allows moreover to define
personalized test functions evaluated during the continuation process which can
be used to integrate the local stability criteria defined in (22). Consequently,
CL-MatCont suits totally to our needs in term of deployment simulation, bi-
furcation analysis and stability evaluation, and its use is designated as a single
dashed-dotted block on Figure 4.

The deployment simulation requires then the user to perform two program-
ming steps using the functions of the Matlab toolbox, surrounded with a solid
line on the flow chart. First, the discrete model of CTR formulated as an ODE
system (14) must be written in a Matlab file called System. This file must
be filled also with initialization and user-defined test functions which compute
the initial equilibrium configuration of the robot through dynamic relaxation
and the local stability criteria (22) respectively. Second, a simulation program
must be coded with the toolboxes functions in order to call the initialization
functions, to specify the path to perform and to set continuation settings. An
example of such a simulation program is given in Appendix A. The execution of
this script results thanks to CL-MatCont in a set of variables which contains the
computed branches of equilibria, the stability of the corresponding equilibrium
configurations and the nature and the location of the detected bifurcations.

As a summary, our proposition of numerical framework for the cardinality
and stability assessment of a CTR during its deployment, summed up in Fig-
ure 4, requires few implementation efforts from the user. The reformulation of
the equilibrium determination problem (Discretization, Finite difference, Dy-
namic relaxation) is performed in this paper for a generic kinematic model of
robot and can be consequently re-used. The equilibrium branches computa-
tion (Step size control, Prediction, Correction) and the bifurcation detection
(Detection/Location of bifurcation) are already implemented in- and performed
automatically by CL-MatCont. The deployment simulation, the cardinality as-
sessment and the stability evaluation require then the user to follow only two
steps composed of simple Matlab programming (MatCont System file, Simula-
tion program).

This fully numerical and generic approach for CTR behavior analysis has
never been proposed to the best of our knowledge. It contrasts with the current
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3.6 Implementation

Geometrical parameters of a CTR
Deployment sequence
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Figure 4: Flow chart diagram representing the proposed numerical framework. Steps devel-
oped in this paper are surrounded with a dashed line. Steps which must be implemented by
the user are surrounded with a solid line. The steps performed automatically by MatCont are
surrounded with a dash-dotted line.
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Parameter | Tube 1 | Tube 2 Parameter Value

k(M Pa) 1 1 D -10
kyi(MPa) | 1/1.3 | 1/1.3 M -1
flip (mm~Y) | 1/60 | 1/60 N, 100
MaxStepSize 10
Table 1: Design parameters of the two-tube Table 2: Parameters for numerical
CTR for case study. evaluation of the CTR.

works which attempt to perform these analyses analytically at the cost of model
simplifications. The capabilities of our numerical framework are demonstrated
in two steps in the rest of this paper: reference cases of CTR deployment are
first studied in order to validate the approach and to evaluate its performances.
Second, new case studies are investigated, leading to new results of interest for
CTR exploitation.

4. Method assessment with a two-tube CTR

A well-known situation with CTR cardinality and stability issues depicts a
robot composed of two tubes fully overlapped, with constant stiffness and pla-
nar pre-curvature, which is deployed in free space. This case study has been
extensively considered because of the kinematic model simplicity and its corre-
lation with physical prototypes. Consequently, we propose here to focus on this
robot configuration and simulate the two deployments described in section 3.1.
This will allow us to reproduce two standard results of two-tube CTR: the crit-
ical interaction length [15, 7] and the “S-curve” [6, 14] describing the robot tip
orientation according to its actuation angles.

4.1. Critical interaction length

Hendrick et al. established a global stability criterion assuring, if respected,
that the CTR cannot snap for any rotation of the tubes [15]. This criterion
imposes conditions on the interaction length between the tubes, denoted ALg
according to the notations introduced in Section 2, the transmission length, the
stiffness and the pre-curvatures of the tubes so that:

—cot ()
—5 < Bo (24)

with
krpkay (k1 + Fat)

A= ALy yllgy —t = 25
2 e koo (Reu + o) (25)

where 3, is the normalized transmission length defined by:
3, = Bikae + Bak1y (26)

N
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4.1 Critical interaction length
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Figure 5: Bifurcation diagram according to the variation of ALs.

If the initial shape and the mechanical properties of the tubes are set, equa-
tion (24) suggests that there is a critical value for ALy, denoted ALs. in the
following, beyond which the CTR is unstable. This critical interaction length
has also been highlighted in the pitchfork diagrams of Hendrick et al. [15]
represented in Figure 2b, where it is located at the two branches intersection.

We propose to reproduce the pitchfork diagram with our numerical frame-
work. The considered geometry and mechanical properties of the tubes are
gathered in Table 1. The kinematic model solved with dynamic relaxation (14)
is written for n = 2 in a CL-MatCont System file. We consider equal transmis-
sion lengths for the two tubes, an idealization used in [15] in order to observe
the evolution of the pitchfork diagram according to 8,. The value of the trans-
mission length is then computed using (26). All the non-mentioned parameters
are assumed to equal zero. The virtual damping and inertia given in Table 2
are chosen so that the robot initial equilibrium configuration can be computed
by integrating (14) with the standard Matlab ode45 solver. Experience shows
that any negative values of M and D lead to a numerically stable dynamical
system. Their magnitude seems to have few influence on the numerical stabil-
ity. We set then the damping ten times higher than the inertia since it provides
an appropriate time response, in terms of oscillations and convergence speed, a
remark that is valid for all the simulations presented in the following.

The path composed of the simultaneous translation of the two tubes is
parametrized by ALs. We write thus a simulation program which specifies
this section length as the parameter to be varied during the simulation by con-
tinuation. The script initializes the CTR in a configuration where tubes are
in opposition following [15], i.e. (a1,a2) = (0,7), and where ALy is chosen
close to 0. The discretized model of CTR does not allow null section lengths
since finite differences are divided by hj. The settings of the PCM and of the
step size controller used for the deployment simulation are specified in Table 2.
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4.2 Tip rotation versus actuation angles

We choose the number of point N, and the maximum step size by trial and
error process so that the two tubes are deployed towards ALy = 250 mm. The
non-specified settings are left to their default values as given in [4].

Starting from the initial configuration at ALs = 0, the computed branch
is stable (plotted in blue) until it reaches a BP bifurcation. The branch be-
comes then unstable (plotted in red). Starting from the detected branch point,
it is possible thanks to CL-MatCont to draw the second intersecting branch.
Beyond the bifurcation, the CTR can thus have two stable and one unstable
equilibrium configurations for the same interaction length as illustrated on the
complete pitchfork diagram in Figure 5a. This bifurcation diagram can be eas-
ily computed for several values of 3., resulting in a set of graphs superposed in
Figure 5b. The evolution of equilibrium branches according to the interaction
and transmission lengths is identical as presented in [15].

The length at the BP bifurcation corresponds to a numerical estimation of
the critical interaction length. Since the accuracy of the discrete derivatives used
in (9) depends on the sample number along the section Na, so does the accuracy
of the computed branches and of the bifurcation location. The accuracy is
expected to increase with N, as well as the computation time since continuation
and bifurcation tools need to compute and inverse the 2n(Ny+N2) x 2n(Ny+ N3)
Jacobian matrix Ay. The numerical estimation of the critical length is therefore
compared to the theoretical value given by (24) for different number of points
in the case where 8, = 0. The relative error equals 2.45% when Ny = 20,
which is acceptable as quick evaluation, and drops to 0.03% when Ny = 100.
Computation time increases as expected from 20s to 370s respectively, keeping
however reasonable values. We observe furthermore that choosing Ny = 20 does
not impact the result of the cardinality and stability evaluation. This number
of point is consequently chosen for the next simulations in order to optimize
accuracy and computation time.

4.2. Tip rotation versus actuation angles

As described in section 3.1, the S-shaped curve is the equilibrium branch
corresponding to the deployment scenario where one of the tubes is rotated
with respect to the other. In order to simulate this deployment, we set as = 0
and define a; as the parameter to be varied during the PCM. We consider the
same CTR, which parameters are gathered in Table 1. The interaction length
ALy is set to 100 mm, beyond the critical length obtained previously. We
consider the continuation parameters gathered in Table 2.

The resulting bifurcation diagram is presented on Figure 6a. Starting from
the initial configuration where oy = 0, a stable branch is computed until a LP
bifurcation. The next equilibria are unstable and stability is obtained again
after passing through a second LP. The CTR can thus have three different
equilibria for the same actuation inputs, two stables and one unstable. The
local stability evaluation is consequently validated, since it corresponds to the
evaluation presented on the different S-shaped curves in the literature like the
curve illustrated in Figure 2a.
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Figure 6: Simulation of relative rotation of the tubes for a two-tube robot.

In order to validate these results with respect to the S-shaped curves plotted
in the literature, the same diagram is generated with the backward initial value
problem (IVP) method used in [13] and [14] and applied to (7). Figure 6b shows
the correlation between the two curves for Ny = 100, where the relative error is
0.9%.

This case study illustrates the capability of the proposed framework to com-
pute equilibrium branches without being dependent on the CTR stability. The
second stable branch is obtained automatically in the continuation of the un-
stable one, without needing a priori knowledge on it.

To summarize the presented analysis of the two-tube CTR reference cases,
the proposed numerical framework allows us first to determine the static be-
havior of the robot during a deployment. Second, it provides the local stability
of the computed equilibria and critical values of parameters for global stability.
Third, it allows to assess the CTR cardinality correctly. Numerical errors can be
reduced to admissible values by increasing the number of discretization points
along the robot. This gain in term of accuracy implies reasonable computation
times, validating thus the interest of the proposed numerical approach.

5. Method exploitation for a three-tube CTR

As outlined in the introduction, the stability analysis of CTR with more than
two tubes is limited in the literature to local and global stability criteria if the
tubes do not have torsion pre-curvature, and to local stability criteria only when
arbitrary shapes are considered. There is in particular no information about the
cardinality of robots deploying in a FTL manner with tubes in opposition and
about the critical length of robots with helical pre-curvature. This last case
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is of importance since it allows for FTL deployment with a larger variety of
tube initial shapes [8]. The proposed numerical approach is therefore used to
bring new missing information on such geometries. In order to use realistic
numerical values for CTR geometry, we use a medical scenario developed in [10]
of olfactory cell exploration.

Figure 7: CTR after FTL deployment of three section paths as described in [10].

Tube 1 | Tube 2 | Tube 3
ky; (MPa) 1.51 2.64 | 13.48
ki (MPa) 4.34 7.58 | 38.75
Qi (mm~1) | 0.059 0.136 0.066
a; (rad) 0 ™ 0

Table 3: Kinematic model parameters used in the study of the three-tube CTR.

Actuated tubes Section length (ALy, ALy, ALs)
Tube 1 | Tube 2 | Tube 3 Initial value Final value
v v v (0’0)0) (0,0,ALgf)
v v X (0,0,AL3f) (O,ALQf,AL3f>
v X X (O,ALQf,AL3f) (ALlf,Asz,ALgf)

Table 4: FTL deployment sequence of a three-tube CTR.
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5.1 Cardinality during FTL deployment
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Figure 8: Equilibrium branches during the FTL deployment of a three-tube CTR. The tip
torsion angle is represented as a function of the two actuated lengths. BP bifurcations are
plotted in red.

5.1. Cardinality during FTL deployment

The considered CTR is composed of three tubes, with planar and constant
pre-curvature, constant stiffness and mounted in opposition. The corresponding
model parameters are gathered in Table 3. The robot must deploy with strong
geometrical constraints due to the narrowness of nasal cavities as shown on
Figure 7. For that purpose, FTL deployment is considered with obvious need
for stability during deployment.

To achieve a FTL deployment, the tubes must be actuated in a specific
sequence in addition of the geometrical constraints. This sequence consists in
deploying the sections introduced in Section 2, i.e. translating simultaneously
several tubes, in the descending order. The followed trajectory can therefore
be parametrized with section lengths only, which must reach reference values
denoted AL;y for section ¢. In the case study considered here, the deployment
sequence is composed of three steps which are described in Table 4.

We only consider the first two steps since they correspond to situations with
variable lengths of interaction, which can cause cardinality changes and insta-
bilities. In order to follow the deployment sequence, a first bifurcation diagram
according to ALs is computed following the proposed numerical framework.
Successive continuations according to ALs are then performed starting from
several equilibrium configurations of this diagram. This corresponds to start
from several values of AL3; and to deploy the second section. We use the
dynamic relaxation parameters and the continuation settings of the previous
validation studies (Tables 2).

The resulting graph is presented on Figure 8a, where the stable and unstable
branches are not distinguished for the sake of readability. The first continuation
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5.1 Cardinality during FTL deployment

according to ALjs reveals a BP bifurcation, indicating that a second branch
intersects. Computing this branch leads to a pitchfork bifurcation diagram
plotted in black. The section length at the BP can thus be considered as a
critical interaction length between the three tubes of section 3, called ALs,.
The successive continuation steps according to AL, reveal also BP bifurcations,
which are marked on the graph with red stars.

This set of bifurcation diagrams are represented in a 3D graph, proposed
for the first time here, which is easily produced with our numerical framework
and which gives three kinds of information. First, during the considered FTL
deployments, the CTR can have two stable and one unstable equilibrium states
for the same actuation inputs. Cardinality changes appear during the second
deployment step only in the case where ALsy < ALs.. Once the robot has
bifurcated, the tubes are no more placed in opposition and tend to align as ALj
or ALy increases, i.e. the angle difference between the tubes converge toward 0
degrees or —360 degrees. Second, the critical length of section 2, denoted ALx,.,
depends on AL3y with a quasi-linear relation observed from the graph top view
in Figure 8b. Third, we observe a stability area, not represented with colours
but with hatching in Figure 8b. The BP bifurcations correspond then to limits
of global stability like in the two-tube case.

As a summary, our numerical framework provides on one hand the cardinal-
ity of three-tube CTR deploying in a FTL manner, which has not been studied
until now. On the other hand, it allows to evaluate with minimal implementa-
tion efforts a global stability area defined in the actuation input space. Choosing
ALy and ALj in this area allows to deploy the robot while maintaining the robot
backbone on the reference path. We believe such information is of interest to
design stable paths while considering FTL deployment.
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Figure 9: Spatial representation of one helical tube and a CTR composed of tubes with helical
shape.
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5.2 Extension to helical pre-shaped tubes

5.2. Eaxtension to helical pre-shaped tubes

Helical tubes are tubes with an initial helical shape as illustrated in Fig-
ure 9a. They are defined mathematically by choosing the pre-curvature ,,
along z; different from zero. This geometrical condition is sufficient to de-
feat the establishment of current global stability criteria for n tubes CTR [15].
However, this information is useful for the achievement of FTL deployments as
explained in the previous sub-section. Our numerical framework is used here
to get global stability information on robots composed of helical tubes, such as
the one represented in Figure 9b.

We consider the three-tube robot with parameters given in Table 3 for which
tubes have the same helical pre-curvature:

Ui, = U, Vi=1..n (27)
Three statements are used to ensure the FTL behavior during the deployment.
First, the three tubes are mounted in opposition. Second, we consider null
transmission lengths, so that the FTL condition concerning the helical tubes
actuation given in [8] is respected. It facilitates also the understanding of sta-
bility analysis results by reducing the number of parameters involved in the
elastic stability. Third, the tubes are deployed following the sequence described
in Table 4. We focus here on the first step of the deployment. The corresponding
bifurcation diagram is presented on Figure 10a.

The length ALz is increased during the branch computation. The tip ori-
entation of tube 1 evolves linearly, with a slope corresponding to the helical
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(a) Pitchfork diagram for @, = Imm~!. (b) Evolution of the pitchfork diagram with
@, expressed in mm~1. Values of the pre-
curvature are written in the colour of the

corresponding diagram.

Figure 10: Equilibrium branches corresponding to the FTL deployment of CTR composed of
three helical tubes. The bifurcations are marked with red stars.
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pre-curvature, until the equilibrium branch reaches a BP bifurcation. The sec-
ond resulting branch is then computed in order to obtain the expected pitchfork
diagram. The critical length, which represents the global stability limit, corre-
sponds finally to the section length evaluated at the BP. We obtain thus this
new result with our generic approach without making additional theoretical or
implementation efforts.

In order to go further in the analysis of CTR with helical tubes, we study the
impact of helical pre-curvature on the robot cardinality. The critical interaction
length is then determined for several values of 4,. This implies to compute
several bifurcation diagrams which are superposed on Figure 10b. For the con-
sidered case study, the critical interaction length does not seem to depend on
the helical pre-curvature, which is a clue for the design of such a CTR.

It is also interesting to observe on Figure 10a that the second branch compos-
ing the pitchfork is not symmetric with respect to the first linear branch. This
result is somehow difficult to predict considering the behavior of the currently
used robot in the literature. The superposed diagrams on Figure 10b show the
evolution of the branch asymmetry according to 4., and the transition between
the helical tube and the planar tube cases. As @, decreases, the asymmetry
disappears progressively until the symmetric pitchfork diagram of CTR with

planar tube is reached at @, = Omm™!.

6. Conclusion

We propose in this paper a new numerical framework for the analysis of
concentric tube robots stability and cardinality. It is composed of a complete
kinematic model of CTR solved with dynamic relaxation and analyzed by con-
tinuation and bifurcation methods. The framework is able to simulate CTR de-
ployment, to evaluate local stability and to give information about the number
of possible equilibria. It was validated on a reference case study by reproducing
bifurcation diagrams given in the literature, with an accuracy depending mainly
on the number of points representing the robot. On the opposite of the existing
analytical studies, our numerical framework is not limited by kinematic model
complexity. Consequently, it has been used to generate new results such as the
number of equilibria and the critical length of three-tube CTR deploying in a
FTL manner. Moreover, stability analysis of robots composed of helical tubes
was performed for the first time.

As perspectives, our numerical framework may be used to study the impact
of design parameters on the CTR, cardinality and stability instead of actuation
inputs. It could specifically provide robot performance sensitivity to these pa-
rameters, as well as critical values which ensure elastic stability. This numerical
framework may also be used to observe the influence of external forces on the
robot behavior, which we think is possible by accounting for these forces in
the kinematic model. It may finally be interesting to study with this numerical
framework other continuum robots, which are subject to elastic instabilities and
which behavior is also described by a BVP.
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A. Example of simulation code for CL-MatCont

9% Deployment simulation of section 3 for a three—tube
CTR. The kinematic model is written in the System file
called "discrete. CTR_ system.m".

% Initialization of CIL—MatCont toolbox

init;

% Loading of CTR parameters, comprinsing the number of
tube, the section length, their geometry and their
mechanical properties. In this case

% p = [Ni,Delta Li,kit, kib,uix,uiy,uiz], i=1,2,3

p = CTR_ parameters;

% Computation of the initial configuration of the robot
with dynamic relaxation. X0 contain the twist angles
of each tube evaluated at each point on the robot
backbone.

handles = feval (@Qdiscrete_ CTR_system) ;

[tspan ,X0, options] = feval(handles{1},p);

% Initialisation of the deployment simulation. The
variable being varied during the PCM, here Delta L3,
is selected wusing its index in vector p.

ap = 6;

[x1,vl] = init_ EP_EP(Qdiscrete_ CTR_system ,X0,p,ap) ;

% Settings for the continuation and bifurcation tools.
Here some example of settings for the step size
controler , the PCM and the bifurcation detection. User

function for stability assessment is enabled here.
opt=contset (opt, 'MinStepsize ' ,1e—9);
opt=contset (opt, 'MaxStepsize ’,20) ;

opt=contset (opt, ' MaxCorrlters’, 60);

opt=contset (opt, 'FunTolerance’, le—6);

opt=contset (opt,  VarTolerance’, le—6);
opt=contset (opt, 'TestTolerance’, le—6);
opt=contset (opt, 'MaxNumPoints’ ,150) ;

opt=contset (opt, 'UserFunctions’ ,1);

UserInfo.name="userfl '; UserInfo.state=1;UserInfo.label="’
ul ”;

opt=contset (opt,  UserfunctionsIinfo’,UserInfo);

% Computation of the equilibrium branch corresponding to
the desired deployment. The function cont performs all
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the steps contained in the CL-MatCont block of the
flow chart diagram presented in Figure 4.
s [x,v,s,h,f] = cont(@equilibrium ,x1,v1l,opt);
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