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Abstract— One of the most significant difficulty in Wireless 

Sensors Network (WSN) is the development of  an effective 

topology control method that can support the quality of the  

network, respect the limited memory and at the same time increase 

the lifetime of the network. This paper introduces a new approach 

by mixing a non-cooperative Game Theory technique with a 

decentralized clustering algorithm to address the problem of 

maximizing the network lifetime. More precisely, this approach 

uses Game Theory techniques to control the activities of a sensor 

node and its neighbors to limit the number of the forwarding 

messages and to maximize the lifetime of the sensor's battery. In 

other words, the approach will decrease the energy consumed by 

the WSN by decreasing the number of forwarded packets and 

improve the network lifetime by harvesting energy from the 

environment. The simulations results show that the performances 

in terms of energy saving and increasing the number of data 

packets received by base station outperforms those with 

distributed based clustering algorithms without GT, such as low 

energy and location based clustering LELC and LEACH 

algorithms. 

Keywords—WSN; sensor lifetime; energy harvesting; 

clustering protocols; game theory; equilibrium  

1. INTRODUCTION 

The WSN has required an important attentiveness in these 

years. It is implicated widely in different domains, such as 

health care, ecosystem monitoring, environmental assessing, 

target tracking, maintaining control, and urban areas 

applications [1] [2] [3]. The major activities of a sensor node 

are capturing the data information in its urban environment, 

aggregate it and forward it to reach the sink using routing 

protocols. Moreover, the finite batteries capacity implies a 

limited lifetime of the sensor nodes and their applications. For 

this problem, several solution techniques have been proposed 

to prolong the network lifetime. Some of these solutions are 

based on topology control, routing protocols, data aggregation, 

forecasting approaches and others [4] [5] [6] [7] [8]. The main 

tasks of our study is to extend the network lifetime by 

decreasing the wasted energy during the sensor node activities, 

and compensate the loss of energy by harvesting environmental 

energy in the sleeping mode. Our proposed method is based on 

a non-cooperative MGET in a clustering hierarchical structure. 

This approach is divided in two phases. The first one consists 

to select dynamically the clusters and their clusters heads based 

on sensors energy and location [9]. In the second phase, the 

sensor node aggregates the sensing messages by a compression 

method to save sensor’s energy and memory and decided to stay 

out of the communication to charge its battery in the sleeping 

mode or to enter the market game and send the message to its 

neighbors. The suitable decision of the sensor node depends on 

the probability obtained by maximizing its utility. 

In this paper, the rest main contributions are structured as 

follows: 

Section Ⅱ presents the categories of clustering protocols. In 

addition, it shows the different types of the GTs, their 

applications in WSN and the GT principle. In section Ⅲ, we 

explain the energy consumed by the different activities of an 

arbitrary sensor node and the model of sensor’s rechargeable 

battery. In section Ⅳ, we adapt a non-cooperative game theory 

in a decentralized clustering protocol to prolong the WSN 

lifetime, decrease the wasted energy in the network and 

increase the number of data information arrived to the BS. The 

simulation results are presented and investigated in Ⅴ. Finally, 

we conclude the paper in section Ⅵ. 

2. Related work 

2.1. Clustering 

Clustering protocols are one of the effective techniques of 
broadcasting for organizing the network and improving its 
lifetime and . Election of cluster heads (CHs) play a significant 
role in energy consumption management [10]. Clustering 
protocols can be categorized in two classes: Centralized [11] 
and distributed clustering algorithms [12]. 

2.1.1. Centralized clustering 

In centralized clustering, the BS is the organizer to form 
clusters. At the start of each round, sensors nodes have to 
transmit their location information and energy status to the BS. 
The BS will collect all information from all the sensors nodes 
in the network, select Cluster Heads (CH), and form clusters. 
This type of clustering is not a very suitable way to do clustering 
for a large number of sensors or large network wide. 
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For example, BCDCP (Base-Station Controlled Dynamic 
Clustering Protocol) is a centralized clustering protocol with a 
unique BS that is capable of complex computation, the CHs are 
selected by the BS randomly and all the routes and paths for 
transmission and reception of data information are selected by 
the BS [13]. Each node needs to transmit data messages 
regarding its location and residual energy to the BS during the 
formation of clusters. Therefore, BCDCP increases the design 
complexity and the energy consumption of the nodes in the 
large-range networks. BCSP (Base station Centralized Simple 
Clustering Protocol) is a protocol where in the BS does not 
collect any information about location of the sensor nods but 
utilizes information about remaining energy of each sensor 
node and the number of CHs depending on the circumstance of 
the sensor network [14]. Each node should send its current 
energy information along with the sensing information, 
increasing the overhead. The drawback of this protocol is that 
due to its centralized implementation, it is not so appropriate for 
sensor networks with a large number of nodes. In addition, 
without any location information, BCSP cannot guarantee a 
uniform distribution of CHs nodes and their clusters. 

2.1.2. Distributed clustering 

Distributed clustering techniques eliminate the need of a 
centralized station to create CHs and clusters. The low energy 
and hierarchical structure models are generally used to create 
clusters and select CHs in two levels. At the first level, there is 
a selection of CHs and at the second level, the data messages 
are transferred by sensor nodes to BS via CHs. BS just receives 
messages and does not control the creation of clusters. EEMDC 
(Energy Efficient Multi level and Distance aware Clustering) is 
that extends the WSN lifetime while providing more stability 
and reliability to the network [15]. This routing protocol splits 
the network area into three logical layers. After the partition of 
the network area, the hotspot problem is fixed, the distance 
between the nodes and the CH and between the CH and the BS 
are taken into account when considering the hop-count value of 
the nodes. In addition, CHs are elected by acquiring the average 
leftover energy of the nodes, and the data messages are 
delivered to the BS using the shortest distance path to the BS. 
ICCBP (Inter Cluster Chain Based Protocol) is a new clustering 
algorithm that uses multi-hop and intra-cluster communication 
with updating CHs when the existing CHs dissipate their energy 
[16]. In [17], a new structure to construct clusters and establish 
connections between sensors is proposed. In this protocol, the 
distance between CHs depends on a threshold calculated by the 
signal message transmission to insure the connections between 
clusters. In addition, this protocol creates a virtual wireless 
sensor networks. LEACH (Low-Energy Adaptive Clustering 
Hierarchy) protocol is one of the most popular decentralized 
clustering protocol based on the homogeneous WSNs [18]. 
LEACH is a dynamic clustering method that update clusters and 
head clusters (CH) each round. Each round starts with a setup 
phase and finishes with steady state. In the setup phase, it 
rotates the CHs role among all sensor nodes to expend energy 
uniformly. Each sensor will pick a random number between 0 
and 1. If this number is less than a threshold, 𝑇(𝑛) that will be 
defined, the sensor node becomes a CH for the current round. 
The threshold is set as follows:  

𝑇(𝑛) = {   

𝑝

1 − 𝑝 (𝑟 × 𝑚𝑜𝑑
1
𝑝
)
    𝑓𝑜𝑟 𝑛 Є 𝐺

                   0                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                

 (1) 

where 𝑝 is the cluster head probability in the network, 𝑟 is the 
current round of election and 𝐺 is the set of nodes that were not 
cluster head in the last round. In this paper, we use the clustering 
approach based on LEACH protocol with strategy based on 
location and residual energy of a sensor node to select the CHs 
[19]. 

2.2. Game Theory 

The Game Theory (GT) is extensively applied in economics 

to maximize the outcomes by using the mathematical models 

such as the strategic game theory for the differential 

information economy which players suggest net trades and 

prices [20]. In the recent years, GT is increasingly applied in 

WSN for different objectives, such as communication security, 

energy efficiency, control power transmission, data collection 

and pursuit evasion [21] [22] [23]. In this section, we review 

the GT used to enhance the energy conservation and extend the 

network lifetime. The GT can be classified in two top main 

categories: cooperative and non-cooperative games. 

 
2.2.1. Cooperative Game Theory based approach 

To decrease the energy consumed in the network, some 
sensor nodes cooperate to form coalitions. The coalitional game 
is considered as one of the most significant type of cooperative 
game theory. In [24], a power control game theoretic model is 
proposed to optimize the trade-off between energy consumption, 
and data packets transmission performance. It takes in 
consideration the individual utility of each sensor player. A 
novel approach is proposed in [25] to identify the overlapping 
community form in social networks. This approach is based on 
the shapely values mechanism. It activates with a weight 
function to find the stable coalitions of underlying community 
form of the network. The shapely values and the weight function 
are updated by the community detection algorithm using the 
local information. Another type of cooperative game is the 
bargaining game theory. To achieve the two opposite objectives, 
which are prolonging the WSN lifetime and maintaining 
the quality of the sensors activities in parallel, a Kalai-
Smordinsky Bargaining Solution is used to find the best 
distribution among coalition members in [26].  

2.2.2. Non-Cooperative Game Theory based approach 

For the non-cooperative game theory, sensor nodes react 
selfishly to preserve their residual energy by refusing to receipt 
a data information and forward it in multi-hop network. The 
optimal responses for energy efficient non-cooperative game 
theoretic are obtained when each sensor player improves its 
strategy to maximize its utility, given the strategies of other 
sensors players. In [27], a non-cooperative game theory model 
is proposed to control the transmit power levels and the Nash 
Equilibrium solution exists and attained according to the channel 
condition and power level. In addition, a non-cooperative game 
theory is used in the election of the CHs for the clustering model 
in [28]. In this game model, the sensor node decides to declare 



itself as a CH or not by calculating the optimal probability in the 
mixed strategy that depends on the maximizing of its payoff.  

In addition to the non-cooperative and cooperative game 
theories, the repeated game theory is involved with a class of 
active games, in which a game is played for several times and 
the players have the ability to spot the result of the preceding 
game before attending the upcoming repetition [29]. In [30], a 
control scheme based on reinforcement learning and game 
theory is proposed as a routing game model to provide a packet-
forwarding mechanism for underwater wireless sensors network 
and reduces the energy consumption.  

In this paper, we propose a non-cooperative repeated game 
theory. Mostly, a game theory consists of a set of players, a set 
of strategies for each player and a set of corresponding utility 
functions. For a WSN, the sensors are the players, G is a 
particular game, where N =  {S(1), S(2), . . . , S(P)} is a finite 
set of the sensor nodes. X = {x(1), x(2), . . . , x(P)} is the vector 
representation of the strategies taken by the sensors. U =
 {U(x(1), U(x(2), . . . , U(x(P)} is the corresponding utility 
function of node j represented by Uj, Uj (j =  1, 2, . . . , P), 
corresponds to the utility value of each node. This value is 
obtained at the end of the decision taken by the sensor node 𝑆(j). 
A strategy for a player is a whole organization of decisions in all 
possible states in the game. The players; sensors effort to act 
selfishly to maximize their consequences agreeing to their 
preferences. We have to formulate the utility functions in a way 
that will help node 𝑆(j) to select a strategy that characterizes the 
best response to its strategies. Every different mixture of 
individual decisions of strategies can produce a different 
strategy profile. For a non-cooperative repeated game theory, the 
solution concept involving N players is obtained when each 
player has made the best response against the others players 
decision of probabilities. This solution is named mixed strategy 
Nash Equilibrium.  

3. ENERGY MODEL 

3.1. Energy consumption model for a sensor 

The energy cost for a sensor depends on the energy 
consumed to achieve its activities. In this section, we present the 
different factors that play a main role in the consumption of 
energy. To determinate the residual energy of a node, it is 
required to find the total energy consumption of a node in the 
operating of one data packet information. The notations utilized 
for the factors causing energy consumption by a sensor node are 
described in Table 1. 

Table 1: Notations definition  

Notations Definition 

𝑛 Number of sensor nodes in the network 

𝑆𝑖   Sensor node where 𝑖 = {1, 2, … , 𝑛} 
𝐸𝑆  Sensing energy cost  

𝐸𝑃  Processing energy cost 

𝐸𝑇  Transmitting energy cost 

𝐸𝑅  Receiving energy cost 

𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑅𝑎𝑑𝑖𝑜  Switching state energy cost in the radio 

𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑀𝐶𝑈  Switching mode energy cost in the 

MicroController Unit (MCU) 

𝑉𝑑𝑐  Voltage supply 

𝐶 Total energy consumption 

𝐿(𝑆𝑖 ) Number of bits information 

 

 Sensing energy consumption  

The sensing energy cost depends on the type of sensors. For 
example, the temperature sensors consumed less important 
energy than gas sensors. The sensor node can contain diverse 
sensors, and each one has its individual energy consumption 
attributes. Generally, the sensing energy consumption for a 
𝑆𝑖 can be expressed as follows: 

𝐸𝑆 = 𝐿(𝑆𝑖 ) × 𝑉𝑑𝑐 × 𝐼(𝑆𝑖 ) × 𝑇(𝑆𝑖 ) (2) 

where  𝐼(𝑆𝑖 ) is the needed amount of current,  and 𝑇(𝑆𝑖 ) is the 
duration to detect and collect 𝐿(𝑆𝑖 ) bits data information. 

 Processing energy consumption  

The sensor consumes energy to read the data message and to 
write it in its memory. The processing energy consumption 
could be calculated by [31]: 

𝐸𝑃 =
𝐿(𝑆𝑖 ) × 𝑉𝑑𝑐 

8
× (𝐼𝑊𝑟𝑖𝑡𝑒 × 𝑇𝑊𝑟𝑖𝑡𝑒 + 𝐼𝑅𝑒𝑎𝑑 × 𝑇𝑅𝑒𝑎𝑑) (3) 

where 𝐼𝑊𝑟𝑖𝑡𝑒  and 𝐼𝑅𝑒𝑎𝑑  are the necessary amount current to write 
and read one byte data.  𝑇𝑊𝑟𝑖𝑡𝑒  and 𝑇𝑅𝑒𝑎𝑑  are the necessary 
duration to treat the 𝐿(𝑆𝑖 ) data information. 

 Communicating energy consumption  

The energy consumed to transmit and receive 𝐿(𝑆𝑖 ) is 
computed following the first-order wireless communication 
model for the radio hardware illustrated in fig.1 [32]. 

 

 

 

Figure 1. First order radio energy model 

 
Transmitter expends energy to run the radio electronics and the 
power amplifier. The necessary energy required to transmit 
 𝐿(𝑆𝑖 ) bits data message is: 

𝐸𝑇𝑖 = {
𝐿(𝑆𝑖 )  × 𝐸𝑒𝑙𝑒𝑐 + 𝐿(𝑆𝑖 )  × 𝐸𝑓𝑠 × 𝑑

2           𝑤ℎ𝑒𝑛 𝑑 < 𝑑0

𝐿(𝑆𝑖 )  × 𝐸𝑒𝑙𝑒𝑐 + 𝐿(𝑆𝑖 )  × 𝐸𝑚𝑝 × 𝑑
4          𝑤ℎ𝑒𝑛 𝑑 > 𝑑0 

 

(4) 

where 𝐸𝑒𝑙𝑒𝑐  represents the energy consumed to transmit or 
receive 1 bit messag, the constants 𝐸𝑓𝑠  and 𝐸𝑚𝑝  depend on the 

transmitter amplifier model.  𝐸𝑓𝑠 is for the free space model, 𝐸𝑚𝑝 

𝐿(𝑆𝑖) × 𝐸𝑒𝑙𝑒𝑐 

𝐸𝑇(𝑑) 

𝐸𝑅(𝑑) 

𝐿(𝑆𝑖) × 𝐸𝑒𝑙𝑒𝑐 
d 



is for multipath model, 𝑑 is the transmitter receiver distance and 
𝑑0 is a threshold distance calculated as follows: 

𝑑0 = √
 𝐸𝑓𝑠

𝐸𝑚𝑝  
⁄   (5) 

And the energy consumed by the radio to receive 𝐿(𝑆𝑖 )  bits data 
information is defined by:            

𝐸𝑅𝑖 =  𝐿(𝑆𝑖 ) × 𝐸𝑒𝑙𝑒𝑐  (6) 

 Switching Radio sensor state energy consumption  

The sensor dissipates a significant amount of energy to 
change from a state (i.e., sensing, processing, transmitting and 
receiving) 𝑖 to another 𝑗. For the switching states in the radio, 
the wasted energy can be determined as: 

𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑅𝑎𝑑𝑖𝑜 =
𝑉𝑑𝑐 
2
× (𝐼𝑠𝑡𝑗 − 𝐼𝑠𝑡𝑖) × 𝑇𝑠𝑡𝑖,𝑗                      (7) 

where 𝐼𝑠𝑡𝑗 is the current draw of the radio in the state switched 

to, and 𝐼𝑠𝑡𝑖is the current draw of the radio in the current state 

and 𝑇𝑠𝑡𝑖,𝑗 is the necessary time for the radio to switch from state 

𝑖 to 𝑗. 

 Switching the microcontroller (MCU) mode energy 
consumption  

The sensor wastes energy by switching between the MCU 
modes. In this paper, we just take in consideration the active 
mode and the sleeoing mode. This wasted energy is negligible 
compared to switching radio energy consumption. The energy 
cost for the computational MCU mode can be expressed as: 

𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑀𝐶𝑈 = 𝑉𝑑𝑐 × (𝐼𝐴𝑐𝑡𝑖𝑣𝑒 × 𝑇𝐴𝑐𝑡𝑖𝑣𝑒 + 𝐼𝑆𝑙𝑒𝑒𝑝 × 𝑇𝑆𝑙𝑒𝑒𝑝) (8) 

The total energy consumed by each sensor 𝐶 is defined as 
follows: 

𝐶 = 𝐸𝑆 + 𝐸𝑃 + 𝐸𝑇𝑖 + 𝐸𝑅𝑖 + 𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑅𝑎𝑑𝑖𝑜 + 𝐸𝑆𝑤𝑖𝑡𝑐ℎ−𝑀𝐶𝑈  (9) 

 

3.2. Rechargeable battery model  

The applications of the sensor node are limited by the 

availability of the power stored in its battery. If the sensor node 

expends all its energy, it is considered as dead. Moreover, it 

disturbs the dispatching of the information data to reach the 

sink. In view of the fact that the replacing of the sensor’s battery 

by a new one and the redeployment of the sensors are very 

costly, it is not appropriate to change the sensor’s battery. To 

overcome these problems, the sensors nodes can use energy 

harvesting supplies to recharge their batteries. However, the 

utilization of renewable energy depends on the network 

environmental conditions as solar, wind, hydrogen, and hybrid 

sources [33]. In this article, we considered that the sensor’s 

battery can be recharged from the environment (see Fig.2). 

 

 

Figure 2. Energy harvesting for WSN model 

4. THE PROPOSED APPROACH: GAME THEORY WITHIN 

CLUSTERING ALGORITHM FOR WSN 

 The distributed clustering algorithm uses round as unit, each 
round is made up of set-up phase and steady phase for the 
purpose of reducing unnecessary energy costs. Set-up phase is 
for the building of the clusters and the election of the CHs and 
steady phase is for the sensor’s states (see Fig.3). 

 

 

Figure 3. Set-up and steady phases 

4.1. Set-up phase 

It concerns the formation of the clusters and their heads for 

each round using sensor location and individual energy 

consumption [19]. Two CHs cannot be in the same cluster. For 

this reason, the distance between CHs should be bigger than a 

threshold distance. The remaining energy level in each sensor 

node plays an important role in increasing the lifetime of the 

network. CHs can ensure the link between sensors and the Base 

Station (BS). For a round, if a CHs is dead, the communications 

between the sensor nodes in its cluster and the BS are 

interrupted and no data information from this cluster can reach 

the BS. A sensor node that has a residual energy bigger than a 

threshold energy could become a CH for the actual round. 

 
𝐸(𝑆𝑖 ) > 𝛽𝑜𝑝𝑡 × 𝐸𝑡𝑜𝑆𝑖𝑛𝑘  (10) 

 



where 

 𝛽𝑜𝑝𝑡 = ((𝑟𝑚𝑎𝑥 − 𝑟)|(𝑟𝑚𝑎𝑥 × (𝐸𝑡𝑜𝑆𝑖𝑛𝑘|𝐸0(𝑆𝑖 ))) (11) 

                                                                                                                  

where 𝐸(𝑆𝑖 ) is the residual energy of the sensor 𝑆𝑖  , 𝐸𝑡𝑜𝑆𝑖𝑛𝑘 is 

the necessary energy for a sensor to transmit a data information 

to the BS, 𝛽𝑜𝑝𝑡  is the maximum number of data messages that 

the sensor 𝑆𝑖  can send to the BS, 𝑟𝑚𝑎𝑥 is the maximum number of 

rounds (that corresponds to the network lifetime) and 𝑟 is the 

actual round. 

The proposed set-up phase is illustrated by a flowchart scheme 

in Fig.4. 

For each round, the selection of the CHs is based on the location 

and residual energy and each non-CH sensor decides to belong 

the cluster that corresponds to the minimum distance between 

its location and the CH location. Each cluster has its unique CH 

that can be updated after each round epochs. 

 

4.2. Steady phase 

 It corresponds to the data processing, transmitting and 
receiving between the sensors in the same cluster. This phase is 
divided in two stages: Data information aggregation and entry 
market game theory for the communication between neighbors’ 
nodes in the same cluster. 

 Data information aggregation 

To save the maximum amount of energy consuming during 
sensors communications and to increase the limited available 
space in the memory, the data messages are compressed before 
their registration in the sensor’s memory.  

If we compress a message of 𝐿(𝑆𝑖) bits to a message of 𝐿(𝑆𝑖)/𝑎, 

the saving energy obtained by compressing the data information 

can be expressed as follows: 

 
𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑖 = [1 − 1 𝑎⁄ ]. [𝐸𝑃 + 𝐸𝑇 + 𝐸𝑅] − 𝐸𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠  (12) 

 

where 𝐸𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 is the energy cost to compress 𝐿(𝑆𝑖) bits data 

packet message. 

 

 

 

 

Figure 4. Flowchart for the set-up phase 



 The Game Theory based control 

At this stage, we propose a non-cooperative game theory based 
algorithm to control the energy consumed by the sensors in the 
network. This algorithm is called the Profitable Energy Market 
Game (PEMG) wherein each player has to decide if he wants 
to participate or to stay out of the market at each round. The 
market defines trading rules according to a strategy. In this 
work, the strategy has two actions: to enter the game or to stay 
out the game. Each player (i.e. sensor) calculates a payoff that 
can affect or be affected by the payoffs of other players (i.e. its 
neighbors). The payoff is a function of the sensor’s residual 
energy. More precisely, the payoffs depend on the players’ 
strategies that stay in the sleeping mode to charge their 
batteries or enter the game to transmit the sensing data 
messages. 

 

In what follows, a PEMG is deployed within each cluster. The 

players in each cluster 𝑖 are  𝑆𝑖(𝑗) where 𝑗 = {1,2⋯ 𝑁𝑖} is the 

current number of sensors in the cluster for the round 𝑟, 𝑚𝑖(𝑘) 
denotes the number of messages sent by a given player 𝑆𝑖(𝑘), 
𝑀𝑗 is the number of 𝑆𝑖(𝑗) neighbors and 𝑈𝑖(𝑗) is the individual 

utility function that will be presented later. 

 

The player 𝑆𝑖(𝑗) can take one of two decisions denoted by 𝑥𝑖(𝑗) 
set to 0 or 1: Entering the game with 𝑥𝑖(𝑗) = 1 and participate 

by sending messages or staying out of the game and harvesting 

energy to charge its battery with 𝑥𝑖(𝑗) = 0. The sensor’s 

decisions can be expressed as follows: 

 

𝑥𝑖(𝑗) = {
 1,      𝑆𝑖(𝑗) 𝑒𝑛𝑡𝑒𝑟𝑠 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒

0,      𝑆𝑖(𝑗) 𝑠𝑡𝑎𝑦𝑠 𝑜𝑢𝑡 𝑡ℎ𝑒 𝑔𝑎𝑚𝑒
(13) 

  

In this paper, our game model in each cluster is defined by:  

 

𝐺𝑖 = {𝑁𝑖 , 𝑀𝑗 , 𝑋𝑖(𝑗)𝑗𝜖𝑁𝑖 , 𝑈𝑖(𝑗)𝑗𝜖𝑁𝑖} (14) 

 

The utility function for a sensor node depends on the cost of 

the strategy decision taken and it can be expressed by:  

 

𝑈𝑖(𝑥𝑖(𝑗)) = {

𝑔𝑖(𝑗) − 𝐶𝑖(𝑗), i𝑓 𝑥𝑖(𝑗) = 0 and ∃ 𝑥𝑖(𝑘) = 1 

𝑔𝑖(𝑗) + 𝑓𝑖(𝑗), 𝑖𝑓 𝑥𝑖(𝑗) = 0 for all j ∈  𝑀𝑗
0, i𝑓 𝑥𝑖(𝑗) = 1

 

(15) 

where 𝑖 ≠ 𝑗 , the cost function 𝐶𝑖(𝑗) is the total energy 
consumed by 𝑆𝑖(𝑗) to send a message, the gain function 𝑔𝑖(𝑗) 
is its residual energy and 𝑓𝑖(𝑗) is the energy harvested to 
recharge the sensor’s battery. 

When a sensor player 𝑗 selects the action to enter the game to 
transmit messages and its neighbors sensors not then the utility 
is 𝑔𝑖(𝑗) − 𝐶𝑖(𝑗). The utility is 𝑔𝑖(𝑗) + 𝑓𝑖(𝑗),  if the sensor player 
𝑗decides not to enter the game to harvest and charge its battery 
and that, one of its neighbors enters the game. 

In our proposed non-cooperative market entry game, the best 
response dynamics for the sensors players can be acquired in the 
context that each sensor node updates its strategy in order to 

maximize its utility, given the strategy of its neighbors (i.e., a 
mixed strategy). 

To determine a mixed strategy equilibrium, we need to consider 
the expected utility of each player.  If a randomly node j in the 
cluster 𝑖 enters the market with a probability 𝑃𝑖(𝑗), the expected 
utility of the node 𝑗 can be expressed as follows: 

𝐸[𝑈𝑖(𝑥𝑖(𝑗))] =  𝑃𝑖(𝑗) × (𝑔𝑖(𝑗) − 𝐶𝑖(𝑗)) + (1 −  𝑃𝑖(𝑗)) 

                                 × (𝑔𝑖(𝑗) + 𝑓𝑖(𝑗)) × (1 −∏(1 −  𝑃𝑖(𝑘))

𝑀𝑗

𝑘≠𝑗

) 

(16) 

It should be noted this expected utility of node 𝑗 reaches its 
maximum when the battery of the sensor is full (i.e., the residual 
energy 𝑔𝑖(𝑗)is at its maximum) and the energy consumption 
𝐶𝑖(𝑗) is 0. 

The Figure fig.4 shows the variation of the expected utility 
function for a given sensor 𝑗,  with the variation of the number 
of neighbors between 1 and 30 and the variation of the 
probability to enter the game, e.g.,  𝑃𝑖(𝑗) is between 0.1 and 1. 
We consider that the neighbors have the same probability to 
enter the game 𝑃𝑖(𝑘) = 0.3, 𝑘 ≠ 𝑗. Assuming in the simulation 
that the maximum energy capacity available is 0.5 j, the result 
shown in fig.4 shows that the expected utility function has a 
maximum which is the maximum energy in the sensor’s battery. 

 

 

Figure 4. The expected utility function varies with the number of nodes 
neighbors and the probability  𝑃𝑖(𝑗) and has a maximum that 
corresponds to the maximum battery capacity. 

Since the best response for a sensor node is when its utility 

reaches its maximum, we derive the expected utility function 

and the derivation is obtained by: 

 



𝜕𝐸[𝑈𝑖(𝑥𝑖(𝑗)𝑗)]

𝜕𝑃𝑖(𝑗)
= −(𝐶𝑖(𝑗) + 𝑓𝑖(𝑗)) + (𝑔𝑖(𝑗) + 𝑓𝑖(𝑗))

×∏(1 −  𝑃𝑖(𝑘)) 

𝑀𝑗

𝑘≠𝑗

 

(17) 
Setting the derivation to zero, we get the maximum as follows: 

 

(𝐶𝑖(𝑗) + 𝑓𝑖(𝑗))

(𝑔𝑖(𝑗) + 𝑓𝑖(𝑗))
=∏(1 −  𝑃𝑖(𝑘)) 

 

𝑀𝑗

𝑘≠𝑗

 

(18) 

Letting 𝛼𝑖(𝑗) =
(𝐶𝑖(𝑗)+𝑓𝑖(𝑗))

(𝑔𝑖(𝑗)+𝑓𝑖(𝑗))
) and 𝑞𝑖(𝑘) = (1 −  𝑃𝑖(𝑘)), we 

obtain a system of 𝑀𝑗 equations from eq. 18 

 that can be written as: 

{
 
 

 
 

𝛼𝑖(1) = 𝑞𝑖(2) × 𝑞𝑖(3) × …× 𝑞𝑖(𝑀𝑗)

𝛼𝑖(2) = 𝑞𝑖(1) × 𝑞𝑖(3) × …× 𝑞𝑖(𝑀𝑗)

⋮
                     𝛼𝑖(𝑀𝑗 − 1) = 𝑞𝑖(1) × …× 𝑞𝑖(𝑀𝑗 − 2) × 𝑞𝑖(𝑀𝑗)

                    𝛼𝑖(𝑀𝑗) = 𝑞𝑖(1) × …× 𝑞𝑖(𝑀𝑗 − 2) × 𝑞𝑖(𝑀𝑗 − 1)

 

(19) 
which can be rewritten as: 

(∏(𝑞𝑖(𝑘))

𝑀𝑗

𝑗=1

)

𝑀𝑗−1

=∏(𝛼𝑖(𝑗))

𝑀𝑗

𝑗=1

(20) 

 

since 𝑞𝑖(𝑘) = (1 −  𝑃𝑖(𝑘)), the eq. 20 becomes : 

(∏(1 − 𝑝𝑖(𝑘))

𝑀𝑗

𝑗=1

)

𝑀𝑗−1

=∏(𝛼𝑖(𝑗))

𝑀𝑗

𝑗=1

(21) 

 
The optimal probability for a given sensor node 𝑗 in the cluster 𝑖 
to enter the market game can be then expressed as follows: 

 𝑃𝑖(𝑗) = 1 −
√∏ (𝛼𝑖(𝑘))

𝑀𝑗
𝑘=1

𝑀𝑗−1

𝛼𝑖(𝑗)
(22)

 

The maximum utility for a sensor player depends on its strategy 
and also on the combination decisions of all other neighbors 
players. 

The utility matrix for sensor player 𝑆𝑖(𝑗) is shown in Table 2. 

For the calculation of the utility matrix for each cluster game, 

the resulting utility coming from the combination of the actions 

taken by the players (to enter the market game or not to enter 

the market game) are taken into consideration as indicated by 

eq.15. If a node player 𝑗 in the cluster 𝑖 enters the market, its 

utility will be (𝑔𝑖(𝑗) − 𝐶𝑖(𝑗)) regardless of the action of its 

neighbors in this cluster. If none of the nodes in the same cluster 

enters the market, this means that all the nodes 𝑗 and their 

neighbors’ nodes are out of energy and cannot find any 

available energy sources to harvest and charge their batteries. 

For this reason, these sensors receive a payoff equal to 0. It is 

assumed that (𝐶𝑖(𝑗) < 𝑔𝑖(𝑗)), so that at least a node would 

enter the market if no other sensor node does. However, if one 

node enters the market, then each of its neighbors would prefer 

to be selfish and would maximize its residual energy by 

charging its battery. 

 

 

Table 2: Symmetric entering market game matrix 

 

 All 𝑆𝑖(𝑘) do not 

enter the market 

At least one 

enters the market 

𝑆𝑖(𝑗) enters the 

market 

𝑔𝑖(𝑗) − 𝐶𝑖(𝑗) 𝑔𝑖(𝑗) − 𝐶𝑖(𝑗) 

𝑆𝑖(𝑗) doesn’t 

enter the market 

0 𝑔𝑖(𝑗) + 𝑓𝑖(𝑗) 

 

Let 𝑋 = {𝑥𝑖(1), … 𝑥𝑖(𝑀𝑗)} be the vector representation of the 

strategies played by the sensors. 

The utility matrix for 𝑆𝑖(𝑗) can be written as follows: 

 

𝑈𝑖(𝑗) = [
(𝑔𝑖(𝑗) − 𝐶𝑖(𝑗)) (𝑔𝑖(𝑗) − 𝐶𝑖(𝑗))

0 (𝑔𝑖(𝑗) + 𝑓𝑖(𝑗))
] (23) 

 

In a symmetrical market game, the strategy that a sensor player 
and its neighbors decide to enter the game market, i.e., 𝑋 =
{1…1}, or the strategy that a sensor player and its neighbors 
decide to charge their battery in the sleeping mode, i.e.,  𝑋 =
{0…0},  are not Nash equilibria. Indeed, it is impossible for each 
node to find out a best response to the strategy decisions. 
Namely, no pure-strategy Nash Equilibrium exists in our game. 
However, to permit the entry market game to have symmetrical 
Nash equilibria, the players can adopt mixed strategies. For any 

node, as (𝑔𝑖(𝑗) − 𝐶𝑖(𝑗)) > 0, the sensors players do not have a 

dominant strategy. We assumed that each sensor player is 
allowed to choose its strategy decisions randomly following a 
probability distribution. In other words, there are 𝑀𝑗 mixed 

strategies Nash equilibria in the game and the best responses are 
obtained when the utility of a node 𝑗 to enter the market is equal 
to the utility of the node 𝑗 to stay out of the market and thus we 
can compute the equilibrium probability from the table 2 by: 

𝑈𝑖(𝑥𝑖(𝑗) = 0) = 𝑈𝑖(𝑥𝑖(𝑗) = 1) (24) 

 

(𝑔𝑖(𝑗) − 𝐶𝑖(𝑗)) × 𝑝 = (𝑔𝑖(𝑗) + 𝑓𝑖(𝑗)) × (1 − (1 − 𝑝)
𝑀𝑗−1) (25)

 

Therefore, from the above eq. 25, we can calculate the 
equilibrium probability 𝑃𝐸  to enter the game for a 𝑀𝑗 Nash 

equilibrium with a mixed strategies as follows: 

𝑃𝐸𝑖(𝑗) = 1 − (1 −
(𝑔𝑖(𝑗) − 𝐶𝑖(𝑗))

(𝑔𝑖(𝑗) + 𝑓𝑖(𝑗))
)

1
𝑀𝑗−1

(26) 

since we have 0 <
(𝑔𝑖(𝑗)−𝐶𝑖(𝑗))

(𝑔𝑖(𝑗)+𝑓𝑖(𝑗))
< 1. Subsequently, from the 

eq. 26, we can notice that the probability decreases when the 



number of neighbors players increases. For example, in the 
limiting cases, while (𝑀𝑗 − 1) is varying from 1 to infinity, 

the probability of entering the market game will be changing 
from 1 to 0. 

 

 

Figure 5. Entering game probability varies with the number of 
nodes neighbors for a Nash Equilibrium mixed strategies 

Fig. 5 depicts the entering game probability that is given in Eq. 
26 with increasing number of neighbors of the source, from 1 to 
30, for different values of actual energy in the battery 𝑔𝑖(𝑗). 
When the number of neighbors decreases (from 30 to 1) when 
some neighbors nodes dead, the forwarding entering game 
increases. 

5. SIMULATION RESULTS 

 For our experiments, we used 200 sensor nodes in our 

network, where nodes are randomly distributed in 1000x1000 

m2 area. The BS is deployed at the center of the area. For the 

simulations, a sensor node considers another sensor as a 

neighbor if the distance that separate them is lower than a 

threshold D. This threshold D is the maximum radius with which 

a sensor can receive a fixed number of bits for a fixed power 

transmission. 

Table 3: Simulation parameters 

Parameter value 

Network area (m2) 100×100 

BS location (50, 50) 

Number of sensor nodes 𝑛 200 

Initial energy (J) 𝐸0 0.5 

𝐸𝑒𝑙𝑒𝑐 (nJ/bit) 50 

parameters of amplifier energy  

consumption 𝐸𝑚𝑝 (pJ/bit/m4) 

and 𝐸𝑓𝑠 (pJ/bit/m2) 

0.0013  
and 10 

Data aggregation energy (J) 5×10-12 

Size of data packet (bits) 𝐹 4000 

Number of bits transmitted by sensor 
(bits) L 

2500 

Compression percentage (%) 20 

Parameter value 

Round epochs 𝑟𝑚𝑎𝑥 5000, 10000 

Proper percentage of CH nodes (%) 𝑝 5 

Distance (m) 𝐷 10 

In Fig.6, we compare the energy consumed by the network for 

7000 rounds by comparing our proposed approach with other 

protocols from the literature: the LEACH clustering protocol 

[18] and a clustering based protocol [19]. The results show that 

these Leach protocol consumes all its energy after 2000 rounds. 

An improved version of Leach via a low energy and location 

based clustering approach (LELC) presented in [19] stills have 

energy for 5000 rounds. Fig.6 shows also the results of the two 

versions of the proposed PEMG with Game Theory (GT), Popt 

GT and Pnash GT, according respectively to Eq.22 (optimal 

probability) and Eq.26 (Nash equilibrium probability). The 

either PEMG versions extend the lifetime of the network 

beyond 7000 rounds. The results show also that Popt GT 

consumes less energy than the PEMG with Nash probability 

Pnash GT. 

 
Figure 6. Energy Consumption by the network 

The figure fig.7 shows the evolution of number of dead sensors. 

For Leach clustering protocol, the majority of sensor nodes are 

died before 2000 rounds of time. At the same time, with LELC 

clustering protocol, the number of dead sensors is less than the 

half of the number of dead sensor nodes in Leach protocol. 

Moreover, when the WSN is dead, after 5000 rounds, the 

number of dead nodes is 120. It stills less than the dead nodes 

in Leach protocol after 2000 rounds. 

In the case of Pnash GT, the number of dead nodes is the half 

of the total number after 7000 rounds (i.e., 50%), while in the 

case of Popt GT and LELC without GT, 60% of the initial 

number of sensors are dead. This is mainly because of our GT 

based protocols provide the harvesting option to the sensors. 

Moreover, with Popt GT, the strategy taken by a sensor 

privilege the action to enter the market and thus sending 

messages, i.e., maximizing the strategy of communicating 

messages via Popt maximization. However, for Pnash GT, all 

the strategies taken by the sensor are equally probable. 

 



 
Figure 7. Dead Nodes in the network 

The simulation results reported in Fig.8 show that the number 

of packets received by the BS for PEMGT with Pnash in our 

clustering protocol is more important than all the other 

approaches and that the network is still active after 7000 rounds. 

However, in the case of clustering without any GT, the network 

lifetime is limited to 5000 rounds.  In addition, the small 

difference in energy consumed by the network between Pnash 

and Popt in PEMGT is justified by the number of packets 

information that reach the BS and the extension of the network 

lifetime. 

 

 
Figure 8. Number of Data Packets received by the BS. With Pnash 

GT, the network is still active as the packets continue to be received 

by BS beyond the other protocols. 

6. CONCLUSION 

In this paper, a clustering based protocol using a non-

cooperative game theory (GT) approach is proposed with the 

aims to prolong WSN lifetime. The GT permits to a sensor to 

decide between two actions: to enter the game and transmit a 

message or to stay out the game and harvest to charge its 

battery. For the network organization, a clustering protocol 

based on sensors locations and energy consumptions is used and 

a GT based algorithm is deployed within each cluster. The 

objective is to find out the Nash Equilibrium (NE) solution for 

mixed strategies. The simulation results show that the proposed 

approaches outperforms those without GT in terms of energy 

consumption, nodes and network lifetimes. In other words, 

combining a GT based approach with a clustering protocol 

provides an efficient solution for energy harvesting to prolong 

WSNs lifetime. The future work will focus on the control of the 

energy harvesting process in the sensors. 
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