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Abstract

We present an atomistic model for predicting the distribution of doping electric charges

in layered molybdenum disulfide (MoS2). This model mimics the charge around each

ion as a net Gaussian-spatially-distributed charge plus an induced dipole, and is able to

predict the distribution of doping charges in layered MoS2 in a self-consistent scheme.

The profiles of doping charges in monolayer MoS2 flakes computed by this charge-dipole

model are in good agreement with those obtained by density-functional-theory calcula-

tions. Using this model, we quantitatively predict the charge enhancement effect in MoS2

monolayer nanoribbons, with which strong ionic charge-localization effects are shown.
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I. INTRODUCTION

Two-dimensional (2D) materials are ideal candidates for nanoelectromechan-

ical systems (NEMS) thanks to their unique electronic, optical and mechanical

properties and peculiar structures.1 2D layered MoS2 has recently been used as

main components in various devices including sensors,2 actuators,3 resonators,4

piezoelectric generators,5 supercapacitor,6 and field-emission devices.7 The knowl-

edge of the distribution of electric charges in the layered MoS2 is a key aspect for

understanding the damage mechanism and stability criteria in device components

during charging, and is hence critical for the design of electromechanical devices

since doping charges could strongly influence the electromechanical coupling,8 elec-

tronic band structures,9 charge screening10 or field emission11 properties of the

component material.

Experimentally, electrostatic force microscopy (EFM) and Kelvin force mi-

croscopy (KFM) have been used to image the charge distribution in nanostructures

such as carbon nanotubes (CNTs)12 and graphene.13 Electric charges in nanomate-

rials were found to accumulate at the edges due to strong Coulomb repulsion.14,15

Density functional theory (DFT) calculations have been established for the theo-

retical interpretation of this effect,16 however not in the range of dimensions often

accessible by experiments due to the breakdown of periodic symmetry. It is hence

critical to develop a model at larger scale for accurately predicting the charge

distribution in nanostructures of size comparable to those of the samples used in

experiments. Moreover, it is highly desirable that this model could provide an

atomistic description of the systems in order to combine with empirical force fields

for describing coupled electrical and mechanical effects17–21 in finite-size nanos-

tructures by atomistic simulations.22,23

Recently, a Gaussian-regularized atomistic model has been developed to study

electrostatic effects in carbon nanomaterials based on the atomic dipole theory of

Applequist et al.24 and the electrostatic polarization model of Jensen et al.25,26
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and Mayer.27 This charge-dipole (QP) model has recently been used to predict

the charge distribution in CNTs and was validated by EFM experiments.14 In the

present work, we extend this model to layered MoS2 taking the ionic electrostatic

interactions between atoms of different types into account, thanks to parameters

obtained through DFT calculations. This model provides an atomistic description

for the self-consistent electrostatic interactions between the atomic charges, dipoles

and external electric fields, and is capable of dealing with relatively-large systems.

The outline of this paper is as follows. Details about the DFT calculations and

QP model are presented in Section II. A comparison to DFT calculation results is

presented in Section III. Finally, the charge enhancement effect in MoS2 monolayer

is predicted in Section IV. We draw conclusions in Section V.

II. METHODS

A. Density Functional Theory calculations

DFT calculations are conducted within the framework of spin-polarized plane-

wave density functional theory (PW-DFT), as implemented in the Vienna ab-initio

simulation package (VASP).28,29 The generalized gradient approximation (GGA)

with the Perdew-Burke-Ernzerhof (PBE) functional and projector augmented wave

(PAW) pseudo-potentials are used. We adopt a 2× 2× 1 supercell. The vacuum

size is set to be larger than 15 Å between two adjacent images. An energy cutoff of

400 eV is used for the plane-wave expansion of the electronic wave function. The

lattice structure is relaxed by the conjugated gradient algorithm. The 2D Brillouin

zone integration using the Γ-center scheme is applied with a 6×6 grid for geometry

optimization, and a 7×7×7 grid for static electronic structure calculations in the

Monkhorst-Pack scheme.

The density profile of the intrinsic electric charges in an infinite pristine mono-

layer of MoS2 is depicted in Fig.1. A strong ionic charge-localization effect can be
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FIG. 1: (a) Density profile of the intrinsic electric charge in an infinite pristine MoS2

monolayer. (b) Atomistic structure of the monolayered MoS2. The solid lines highlight

the squared zone in which the charge density profile is depicted in (a).

observed. i.e. the electric charge is found to accumulate on the sites of S ions form-

ing a volcanic-cone-like profile. The concave at the sites of the S atom is caused

by the repulsive interaction with valence electrons, while this is not observed on

the charge profile of the Mo atoms. Note, that the density of the intrinsic electric

charge is much higher than that of the doping charge shown in the figures below.

The pristine monolayer MoS2 is then subjected to a quantity of doping charge
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FIG. 2: Electronic band structure and density of state of an infinite monolayer

MoS2 that is doped with a charge density of 0 (a), 0.002 (b), 0.003 (c) and 0.005 (d)

electron/Å3.

with a global density ηdop. Fig.2 shows the electronic band structure (EBS) and

density of state (DOS) at different doping levels. It can be seen that the EBS

of MoS2 starts to be significantly modified and direct-to-indirect band-gap switch

can be observed when ηdop goes beyond 0.002 e/Å3. The computation done below

is thus controlled with Qdop < 0.002 e/Å3 in order to avoid significant modification

to EBS and DOS, which would increase uncertainty in the transferability of the

subsequent parameterization of the charge-dipole model. Note that benchmarks

were performed on an infinite pristine sample computing its DOS and band gap,
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and good agreement was obtained with data provided in the literature, as shown

in supplementary material.

B. Gaussian-regularized charge-dipole model

In the charge-dipole (QP) model, each atom is associated with an electric charge

q and an induced dipole p. The total electrostatic energy U for a system composed

of N atoms can be written as follows,

U elec =
N∑
i=1

qi(χi + Vi)−
N∑
i=1

pi ·Ei +
1

2

N∑
i=1

N∑
j=1

qiT
i,j
q−qqj

−
N∑
i=1

N∑
j=1

pi · T i,j
p−qqj −

1

2

N∑
i=1

N∑
j=1

pi · T i,j
p−p · pj (1)

where χi is usually called electronegativity of the atom/ion i (though it is rather

an electronegativity divided by the proton charge, if the electronegativity is de-

fined by the partial derivative of a given isolated atom/ion energy with respect

to the electron number), Vi and Ei stand for the external potential and electric

field, respectively, at the location of atom/ion i. T and T usually are the electro-

static interaction tensors between point charges or dipoles in vacuum, which allow

to compute the electrostatic potential or field at a point ri created by a point

source (charge or dipole) located at rj . They are defined as T i,jq−q = 1/4πε0rij,

T i,j
p−q = −∇riT

i,j
q−q and T i,j

p−p = −∇rj ⊗ ∇riT
i,j
q−q, where ri,j = |ri − rj|. For point

charges or point dipoles, the terms i = j in the double-summations are usually

respectively connected to the chemical hardness and polarizability of the corre-

sponding atoms. However, in the present model, the charges and dipoles are

not considered to be point-like but to correspond to spherically symmetric, ra-

dially Gaussian, electronic charge distributions. This avoids divergence problems

such as “polarization catastrophes” due to the fact that in covalent bonds the
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electronic clouds are overlapping, by replacing the standard vacuum T and T

defined above by their convolution with two Gaussian distributions of the type

exp(−r2/R2)/π3/2R3,25,27,30



T i,jq−q = 1
4πε0ri,j

erf

(
ri,j√
R2

i +R2
j

)
T i,j
p−q = −∇riT

i,j
q−q = 1

4πε0

ri,j
r3i,j

[
erf

(
ri,j√
R2

i +R2
j

)
− 2√

π

ri,j√
R2

i +R2
j

exp
(
− r2i,j

R2
i +R2

j

)]
T i,j
p−p = −∇rj ⊗∇riT

i,j
q−q

= 1
4πε0

{
3ri,j⊗ri,j−r2i,jI

r5i,j

[
erf

(
ri,j√
R2

i +R2
j

)
− 2√

π

ri,j√
R2

i +R2
j

exp
(
− r2i,j

R2
i +R2

j

)]
− 4√

π

ri,j⊗ri,j
r2i,j

1

(
√
R2

i+R
2
j )

3
exp

(
− r2i
R2

i+R
2
j

)}
.

∀i 6= j

(2)

where rij = ri − rj is the vector pointing from ion j to i, and Ri and Rj are the

width of the Gaussians charge distributions for ions i and j respectively, which

would vary with the type and position of the ions. This allows to remove diver-

gences (when i = j, i.e. lim ri,j → 0) and express self-terms as:


qiT

i,i
q−qqi =

q2i
4πε0

√
2/π

Ri

pi · T i,i
p−qqi = 0

pi · T i,i
p−p · pi = − p2i

4πε0

√
2/π

3R3
i
.

(3)

Periodic boundary conditions (PBC) can be included in this model by adding

periodic images to the propagators (Eq.2) taking rij = ri−rj+k∗a, where a is the

periodic length in a given direction, k = −m,−m+ 1,−m+ 2, ...,−1, 0, 1, ...,m−

2,m− 1,m with m being a large integer. PBC were used for our computations on

infinite nanoribbons but not on flakes. Note that a generalization of the charge-

dipole model to systems with different atoms has been provided in Ref.32. More-

over, charge equilibration models are known to result in unreasonable charge distri-

butions predicted for geometries far from equilibrium due to incorrect description
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to long-range charge transfer.32–34 This problem persists even for time-dependent

density functional theory.35 Note that all geometries used in the present work are

relaxed to be in full-equilibrium to avoid such a problem.

Since the equilibrium charges and dipoles should correspond to the global min-

ima of U elec, its derivatives with respect to the qi and pi should therefore be

zero. Furthermore, the conservation of the total molecular net charge Qtot can

be imposed self-consistently by using a Lagrange multiplier λ and minimizing

U elec−λ(
∑N

j=1 qj−Qtot).36 We note that multiple λ can be involved if charge con-

servation must be enforced for a system composed of several separated molecules

and that λ can also be interpreted as an “instantaneous electronegativity” com-

mon to all atoms at electric equilibrium.37 These boundary conditions enable us

to obtain the equilibrium configurations of the charges and dipoles by solving N

linear vectorial equations and N + 1 linear scalar equations (corresponding to a

square matrix of order 4N + 1).

N∑
j=1

T i,j
p−ppj +

N∑
j=1

T i,j
p−qqj = −Ei

N∑
j=1

T i,j
p−q · pj +

N∑
j=1

T i,jq−qqj − λ = −(χi + Vi)

N∑
j=1

qj = Qtot

∀i = 1, ..., N

(4)

Key parameters including the Gaussian charge distribution width Ri and elec-

tronegativity χi are obtained respectively for Mo and S atoms by fitting to the

charge distributions obtained from DFT calculations, as detailed below.

Two different sets of DFT calculations are conducted to compute the distribu-

tions of intrinsic and doping electric charges in monolayered MoS2 flakes as shown

in Fig.1 and Fig.3 for example, respectively. The results are used to estimate the

values of the Gaussian charge distribution widths Ri in the QP model (Eq.2), with

an analytical expression of the electronegativity χi which uses the atomic charges
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FIG. 3: DFT-calculated density profiles of doping charge in different MoS2 monolayer

sheets that are doped with an electron. The watermarked circles represent the in-plane

positions of corresponding S and Mo atoms. xnor and ynor stand for the in-plane coor-

dinates that are normalized with respect to the sheet width and length.

computed by a Bader-type analysis,38

χi =
N∑
j=1

T i,jq−qqj (5)
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TABLE I: Values of the Gaussian charge density widths and atomic electronegativities.

R (Å) χ (V)

atom inner edged inner edged

S 0.2118 0.2616 2.0267 1.6657

Mo 0.7019 0.8626 -1.0948 -1.7686

by which the values of χi do not need to be estimated before the determination of

Ri. These Ri are first roughly estimated by fitting Gaussian functions to the DFT-

calculated average radial atomic charge densities. Then, an iterative-correction

algorithm is used to determine the exact best-fitting value of Ri by numerically

fitting all the atomic total charge density profiles calculated by the QP model to

those computed by DFT, as shown in the Supplementary Materials. For each type

of ions, two different values of Ri are obtained as follows. One for bulk-positioned

ions that are characterized by the same number of nearest neighbors as for an

atom in an infinite MoS2 monolayer (inner denoted), and another for those with

a reduced number of nearest neighbors due to edge positions (edge denoted). The

obtained values of Ri are listed in Table I for S and Mo atoms, respectively. We

see that Ri is larger for the edged atom, this is similar to the Gaussian charge

distribution widths in sp2-hybridized carbon nanomaterials.36 It is also found that

the Ri values of Mo are larger than those of S anions.

To determine the values of χi, we input DFT-calculated intrinsic charge distri-

bution into Eq.5. χi is a complex function that varies with the size of the MoS2

monolayer and the environment of a given atom/ion, but χi converges at large size.

For the model simplicity, the convergent values of the electronegativities for each

kind of atom, in relatively large layers, are therefore used as parameters for the QP

model and listed in Table I. We see that χ of Mo in layered MoS2 is comparable

to that of the bulk −2.16, while that of S is below the bulk value of 2.58. Note,
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that the intrinsic dipoles are neglected in the estimation of χi due to the difficulty

in determining the intrinsic dipole from DFT-calculated 3D charge distribution.

This would hold as an approximation since the contribution of intrinsic dipoles to

intrinsic fields is usually minor compared to that of net charges. However, it seems

probable that the values of the calculated QP dipoles effectively compensates for

the approximations in the determination of the parameters which is based solely

on charges.

Further details about the computation of R and χ parameters are provided in

the supplementary material.

III. COMPARISON TO DFT

A comparison is made between the distributions of a doping electron computed

by the QP model and another set of DFT calculations on relatively large MoS2

flakes, as shown in Fig.4 and 5. We see that the agreement on the average charge

density of the doping charge ηdop is remarkable, signifying that the redistribution

of the doping charge in MoS2 monolayer can be well captured by the QP model. It

is shown that the density of doping charge is enhanced at the flake edge, similar to

that predicted for CNTs.39 However, unlike in CNTs, the charge profile in MoS2

oscillates due to the aforementioned ionic charge-localization effects. This is an

unique electrostatic feature of ionized nano-crystals.

IV. PREDICTIONS OF CHARGE ENHANCEMENT

We use the parametrized QP model to quantitatively predict the charge en-

hancement effect in monolayer MoS2 nanoribbons, which is a significant feature

of two-dimensional materials for energy storage6 and field-emission applications.11

To generalize our results for the size of samples commonly used in experiments, it

is interesting to investigate infinitely-long sheets or strips. We therefore compute
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FIG. 4: Average density profile η̄ of a doping electric charge in MoS2 monolayer

flakes along the longitudinal axis x. Comparison between results obtained by DFT

calculations (symbols) and the charge-dipole model (lines). The x positions (abscissa

axis) are normalized with respect to the sheet length.
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FIG. 5: Average density profile η̄ in doped MoS2 monolayer flakes along x axis. Com-

parison between results obtained by DFT calculations (symbols) and the charge-dipole

model (lines). The x positions (abscissa axis) are normalized with respect to the sheet

length.
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FIG. 6: Profile of the normalized density ηnor of a doping electric charge in monolayer

MoS2 nanoribbons of an infinite length and a finite width W . ηnor is normalized with

respect to η at the ribbon center. The abscissa axis is normalized with respect to W .

the distribution of net electric charges in MoS2 nanoribbons infinite in length of

different widths W , as shown in Fig.6. We see that the charge enhancement at the

edges is more significant for longer sheets. This behavior is comparable to that in

CNTs.16

The maximal charge enhancement ratio γmax is defined as the ratio of the

maximal atomic charge density (at the edge) over the mean. The size-dependence

of γmax for S and Mo is demonstrated in Fig.7. It can be seen that γmax increases
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FIG. 7: Maximal charge enhancement ratio γmax versus W for S and Mo atoms,

respectively. γmax is defined as the ratio between η at the ribbon edge and that at the

ribbon center.

withW in decreasing proportionality. It can be seen on Fig.7 that γmax is higher for

Mo than for S. This could be due to the combination of the effect of the difference

of electronegativities and the fact that there are roughly twice more S atoms than

Mo atoms. Note, that a similar charge enhancement effects is also observable in

spherical monolayer MoS2 nano-flakes, as shown in supplementary material.

V. CONCLUSIONS

We predict charge enhancement effects in monolayer MoS2 nanoribbons using

an atomistic model, which is parametrized for predicting the distribution of dop-

ing electric charges. This model mimics each atom/ion as an induced dipole plus

a quantity of Gaussian-distributed net charge. The equilibrium distributions of

the net charges and induced dipoles are determined by minimizing the total elec-
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trostatic potential energy with the constrain of a fixed total electric charge. The

parameters are obtained by empirically fitting to DFT calculation results. The

charge distributions obtained by the charge-dipole model are compared with those

obtained by another set of DFT calculations, by which good agreement is achieved.

Different charge enhancement ratios are determined for S and Mo atoms, as a fea-

ture of MoS2 distinct from graphene. The combination of this model with empir-

ical force fields will enable large-scale atomistic simulations on electromechanical

effects in layered MoS2.

VI. SUPPLEMENTARY MATERIAL

See supplementary material for calculation details about benchmarks, Gaussian

characteristic width, electronegativity and charge enhancement in circular MoS2,

respectively.
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