
FACS 2006

Cooperation Between the B Method and the
Automata Theory to Check the Component

Interoperability

Samir Chouali 1

Laboratoire d’Informatique de l’Universite de Franche-Comte - LIFC FRE CNRS 2661
16, route de Gray - 25030 Besanon cedex, France

Abstract

Component interoperability is one of the essential issues in the component based development, since it
allows the composition of reusable heterogenous components developed by different people. In this paper,
we propose an approach to formally verify component interoperability at signature, semantics, and protocol
levels. It is based on the use of the B formal method for specifying component interfaces and finite transition
systems for specifying component protocols. The verification is done with the B theorem prover and the
verification of the simulation relation between transition systems. This approach allows to decide whether
two components can interoperate if assembled together and whether a component can be replaced by another
component.

Keywords: Component interoperability, compatibility, substitutability, B method, verification.

1 Introduction

The component based development is widely used in software engineering. Its aim
is to develop software systems by assembling a collection of pieces that are inde-
pendently produced. These pieces are called components. The advantages of this
approach are the reusability of software components which involves a reduction of
the development cost, and the flexibility of developed systems.

A component is a unit of composition with contractually specified interfaces and
explicit dependencies [22]. An interface describes the services offered or required
by a component without disclosing the component implementation. It is the only
access to the information of a component. The offered services by a component are
described by an offered interface and the required services are described by a used
interface.

The component interoperability is an essential issue in the component based
development. The success of applying the component based approach depends

1 Email: chouali@lifc.univ-fcomte.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:chouali@lifc.univ-fcomte.fr

Chouali

on the interoperability of the connected components. The interoperability can be
defined as the ability of two or more entities to communicate and cooperate despite
differences in their implementation language, the execution environment, or the
model abstraction [11,24]. In the verification of component interoperability, it is
necessary to consider two cases:

• verification of component compatibility: verify whether two software components
can be related.

• verification of component substitutability: verify whether a defective component
can be replaced by another component.

So, the verification of component interoperability involves the verification of
the interface compatibility or interface equivalence on the components that will be
connected or the component that will be replaced.

The specification of the interfaces plays an important role in the verification of
their compatibility. Most current interface modelling languages (IDLs), used in sev-
eral component oriented platforms like JavaBeans [21], CORBA [16], or COM [14],
are limited for expressing signature (operation names, types, parameters) informa-
tion. They provide insufficient information about component behaviors. Hence, one
cannot insure trust in component based systems.

The design by contract approach proposed by B. Meyer [13] is the first evolution
toward a specification approach that proposes a way to insure trust in components.
B. Meyer proposes to annotate interface specifications with assertions that provide
pre and postconditions of the operations. Several other works [9,1] have proposed to
enhance component interfaces by providing information at signature, semantics (the
meaning of operations) and protocol (order in which the operations of a component
are called) levels. Despite these enhancements in the interface specification, we
believe that there is not enough information in component interfaces to perform a
formal verification of the interface compatibility.

In this paper we deal with the formal specification of the interfaces and the
verification of their compatibility at the signature, semantics, and protocol levels.
We propose to specify interfaces with the B method and to enhance them by the
specification of protocols using the automata theory language [18]. The B method
allows an abstract specification of systems to be developed step by step using the
refinement until the implementation. Therefore we consider that the B specification
of an interface is an abstraction of a component implementation.

The B theorem prover is used to verify a step of the interface compatibility. We
also exploit the B specifications of the interfaces and their protocol specifications
in order to model the behavior of software components with transition systems [4].
Thus, we verify the simulation relation between the transition systems, which is the
final step of the verification of the interface compatibility.

In the following section we give an overview of the B method. In Section 3 we
present the specification of component interfaces and illustrate it by the example
of the car wiping system. In Section 4 we present the verification approach of the
component interoperability. In Section 5 we present related work. In section 6 we
terminate the paper by a conclusion.

212

Chouali

2 The B method

The B method [2] is a formal software development approach allowing to develop
software for critical systems. It covers the entire development process from abstract
specifications to an implementation. The B method is based on the set theory. The
basic building block of a B specification is the abstract machine that is similar to a
module or a class in an object oriented development. A B specification is composed
of one or many abstract machines (examples of B machines are given in Section 3),
each of them describes a set of variables, invariance properties (also called safety
properties) relating to these variables, an initialization which is a predicate that
initializes the variables, and a list of operations. The specification of an operation
consists of a precondition part and a body part. The precondition expresses the
requirement that must be met whenever the operation is called. The body expresses
what the operation achieves, it is expressed with a generalized substitution. The
states of a specified system are only modifiable by operations that must preserve
an invariant.

With the B method, a system is developed by refinement. The refinement is used
to transform step by step an abstract specification into a concrete representation. At
each refinement step, you have to prove that the refined specification is correct with
its abstraction. Therefore the implementation must refine its abstract specification.
The verification with the B method is automated. The B theorem prover, Atelier
B [20], allows the verification of invariance properties and the refinement relation.

3 Specification of component interfaces

Our goal is to propose an approach to specify component interfaces in order to
verify the interface compatibility. This work takes place in the context where com-
ponents are specified as black boxes, then deployed without knowing details of their
implementation. In this context, the specification of component interfaces plays an
important role because it is the only description of the component.

We propose to specify components interfaces with the B method and augment
the interface specifications with protocol specifications that must be respected by
the order of the operation calls. We apply this approach to a case study.

3.1 Specification structure

Traditional approaches of interface specification provide signature of operations and
their pre and postconditions. In many cases there are not sufficient information in
interfaces specifications in order to detect the problems of components

3.1.1 Interface Specification with the B method
A B specification of an interface is composed of the following information:

• The name of the B machine: it is the name of the associated interface.
• The variables of the interface: the set of variables used in the operation definition.
• The initialisation: the initial value of the variables.

213

Chouali

• The invariant: describes the property that a component must satisfy in each
state.

• The operations: each operation is specified by a precondition and a body which
expresses the transformation performed on states by an operation.

3.1.2 Protocol specification
In the B method, it is not possible to specify a particular order of operation calls.
Therefore we use the regular language to specify component protocols. We specify
a protocol as a set of finite words that are made up over an alphabet which is a set
of the called operation names.

A protocol is described by the following formula:
(((operation name1).(operation name′1). . . .)

∗ + . . .

+((operation namei).(operation name′i). . . .)
∗+ . . .), using the following operators:

• ′′.′′ expresses the sequencing in the operation calls. For example
(operation name1 . operation name2) means that the operation name1 will be
called before the operation name2,

• ′′+′′ expresses the choice. For example (operation name1 + operation name2)
means that either the operation name1 or the operation name2 will be called,

• ′′∗′′ is used to express the repetition. For example
(operation name1 . operation name2)∗ means that the operation name1 and the
operation name2 will be called a finite number of times.

3.2 Case Study: a car windscreen wiping system

We illustrate our approach by considering a car windscreen wiping system [12].
This system receives messages from an environment, a car driver, and activates the
windscreen wiper. It has two operational modes:

• manual: the car driver selects the speed for the windscreen wiper. Then the
wiping system receives messages from the car driver and sends messages in order
to activate the windscreen wiper with the selected speed,

• automatic: the wiping system is activated by the car driver and the selection
of the speed for the windscreen wiper is done automatically according to the
quantity of the detected rain.

The wiping system can send messages to activate the windscreen wiper with
three different speeds: the first speed, the intermediate speed and the second speed.

In order to construct this system, we dispose of three components provided by
different software designers. The components are:

• the control lever CLever component,
• the windscreen wiper WWiper component,
• the rain sensor RSensor component.

214

Chouali

3.2.1 The CLever component
It allows to detect the mode of the wiping system selected by the car driver, au-
tomatic or manual. In the first mode, the component CLever sends a message to
activate the automatic mode for the wiping system. In the second mode, the car
driver can select two speeds for the windscreen wiper:

• speed1: the component CLever sends a message to the environment in order to
activate the first speed for the windscreen wiper,

• speed2: the component CLever sends a message to the environment in order to
activate the second speed for the windscreen wiper.

Remark 3.1 Note that the component CLever does not offer the possibility to
select the intermediate speed for the wiping system.

The component CLever has three interfaces: the offered interfaces OIManual
and OIAutoCL, and the used interface UICLever. We only describe the offered
interface OIManual. The B specification of this interface is given in figure 1.

MACHINE OIManual
SETS

CL Position = {sp1, sp2, stop};
VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position (Io)

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = stop)

THEN cl pos := sp1 END;
. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp2 END;
Cl Stop =̂ PRE cl pos = sp1

THEN cl pos := stop END

Fig. 1. B machine corresponding to the interface OIManual of the component CLever

The operations defined in the interface OIManual are:

• Cl Speed1: the car driver activates the first speed for the wiping system.
• Cl Speed2: the driver activates the second speed for the wiping system.
• Cl Stop: the driver stops the wiping system.

The protocol that must be respected by the operation calls in the interface
OIManual is:

(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.

215

Chouali

3.2.2 The WWiper component
It receives messages from the environment and activates (with the first, the second
or the intermediate speed) or stops the windscreen wiper.

This component has three interfaces, the used interfaces UIManual and UIAu-
toWW, and the offered interface OIWWiper. We only describe the used interface
UIManual. The B specification of this interface is given in figure.2.

MACHINE UIManual
SETS

CL Position = {sp1, sp2, spi, stop};
VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position (Iu)

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = spi ∨ cl pos = stop)

THEN cl pos := sp1 END;
. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp1 END;
Cl Speedi =̂ PRE cl pos = stop

THEN cl pos := spi

Cl Stop =̂ PRE (cl pos = sp1 ∨ cl pos = spi)

THEN cl pos := stop END

Fig. 2. B machine corresponding to the interface UIManual of the component WWiper

The operations defined in the interface UIManual are:

• Cl Stop, Cl Speed1, Cl Speed2: these operations have the same description as
those described in the interface OIManual,

• Cl Speedi: the driver activates the intermediate speed for the wiping system.

The protocol that must be respected by the operation calls in this interface is:
((Cl Speedi.Cl Stop)∗.
(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.
(Cl Speedi.Cl Stop)∗).

3.2.3 The RSensor component
It is operational in the automatic mode of the wiping system. It allows to detect
the quantity of rain and to send messages to its environment in order to activate
the windscreen wiper with the appropriate speed. it can detect three cases: there
is no rain, there is little rain and there is big rain. This component is described by
the offered interface OIAutoRS and the used interface UIAutoRS.

216

Chouali

3.2.4 The wiping system
The architecture of the wiping system using these three components is proposed in
figure 3. It is described using UML 2 notations [8].

WW

OIManualUIManual UICLever

OIAutoCL

UIAutoRSOIAutoRS

UIAutoWW

CLever

RSensor

iper
OIWWiper

Fig. 3. Component architecture of the wiping system

4 Verification of component interoperability

In order to verify the component interoperability, it is necessary to treat two cases:

• verification of component compatibility: verify whether two software components
can be related.

• verification of component substitutability: verify whether a component can be
replaced by another component.

4.1 Verification of component compatibility

To determine whether two components can interoperate, we propose a compatibility
verification between offered and used interfaces because components interoperate via
these interfaces.

We use the B theorem prover, and the operational semantics of the interface
specifications (transition systems) of offered and used interfaces to perform the
verification. We split the verification approach into two steps:

• Invariant verification: since we define an invariant in the interfaces, we must verify
that the invariant provided in the used interface is satisfied by the specification
of the appropriate offered interface.

• Verification of interface compatibility at signature, semantics and protocol lev-
els between an offered and used interfaces: to verify that required services de-
scribed by a used interface are compatible with offered services described by an
offered interface, it is necessary to verify the compatibility between these inter-
faces. Therefore, we verify that the component behavior described by an offered
interface simulates the component behavior described by the corresponding used
interface.

217

Chouali

We illustrate our verification approach by checking whether the component
CLever interoperates with the component WWiper via the interfaces OIManual
and UIManual.

4.1.1 Invariant verification
In order to insure that the component CLever can interoperate with the compo-
nent WWiper via the offered interface OIManual and the used interface UIManual,
we must prove that the operations specified in the interface OIManual satisfy the
invariant Iu specified in the interface UIManual. Since we specify interfaces us-
ing the B method, we use the B theorem prover to perform this verification. The
verification will be performed on a new B specification obtained by modifying the
OIManual specification and taking into account information provided by UIManual.
So, we describe below two steps allowing to construct a B specification where the
invariant Iu is specified and also the operations of the offered interface OIManual
are specified. This new specification is obtained as follows:

• We modify the invariant of the interface OIManual : The invariant of the new
specification is Io ∧ Iu, where Io is the invariant of the interface OIManual.

• We add in the specification of OIManual variables and sets of UIManual which are
not defined in OIManual. If there exists a set S which is defined in the interface
OIManual and in the interface UIManual with more variable values, then we
replace the set S in OIManual by the set S of UIManual (see the example below).
Finally, initialize the new variables defined in the specification of OIManual.

After carrying out these two steps, we obtain a new B specification presented in
figure 4 in which the value spi has been added in the set CL Position. We did not
change the invariant of the interface OIManual because this interface has the same
invariant as the one defined in UIManual.

MACHINE NewOIManual
SETS

CL Position = {sp1, sp2, spi, stop}; (new value spi)
VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = stop)

THEN cl pos := sp1 END;
. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp2 END;
Cl Stop =̂ PRE cl pos = sp1

THEN cl pos := stop END

Fig. 4. The new B specification obtained from OIManual and the invariant of UIManual

218

Chouali

The verification with the B theorem prover shows that the new B specification
is valid, which means that the operations preserves the invariant. Therefore the
operations of the offered interface OIManual satisfy the invariant provided by the
used interface UIManual.

4.1.2 Verification of interfaces compatibility at signature, semantics and protocol
levels

The verification of the compatibility between the offered interface OIManual and
the used interface UIManual is based on verifying that the component behavior
described by the B specification of the offered interface and its protocol simulates
the component behavior described by the B specification of the used interface and
its protocol.

The steps which compose this verification approach are:

• Construction of the transition systems that capture the component behavior de-
scribed in the specification of offered and used interfaces: we exploit the protocol
specifications and the B specification of the interfaces to construct these transition
systems.

• Verification of the interface compatibility by defining and verifying the relation
of simulation between the transition systems obtained in the above step.

Construction of the transition systems corresponding to the interface
specifications: The protocols specified in the interfaces OIManual and UIManual
are respectively:

• (Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.

• ((Cl Speedi.Cl Stop)∗.

(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.
(Cl Speedi.Cl Stop)∗).

These protocols are specified with a finite regular language which has the al-
phabet composed of operation names specified in the interfaces. According to the
Kleene theorem [18], we can model these protocols with finite transition systems
[4].

The transition systems do not express the total behaviors described in the inter-
faces, because the values of their states are not significant. Indeed, they only present
the information at the levels of operation signature and protocols but not at the
level of the semantics of the operation (their pre and postconditions). Therefore,
we enhance these transition systems by changing the values of their states. We use
the B specification of the interfaces in order to decorate the states of the transition
systems by a set of atomic propositions that correspond to pre and postconditions
of the operations. The approach of constructing the transition systems is presented
as follows:

• From the clause Initialization of the B specification of an interface, we decorate the
initial states of the transition system that model the protocol by a set of atomic

219

Chouali

propositions which are the equality between the variables and their values.
• From the operations of the B specification of an interface, we decorate the other

states by a set of atomic propositions which are the equality between the variables
and their new values. The values of variables in a state si, such that t

def= si−1
op→

si is a transition, are obtained by applying the generalised substitution of the
operation op on the variables of the state si−1.

By applying our approach on the previous example, we obtain the transition
systems TSo (see figure 5) and TSu (see figure 6) that model both behaviors of
software components described respectively by the offered interface OIManual and
the used interface UIManual. These transition systems allow to know all the au-
thorized behaviors for the component CLever corresponding to the specification of
the interfaces OIManual and UIManual.

The transition system TSo
def= 〈S0o, So,→o, Lo, Fo〉 is composed of the following

information:

• the initial states: S0o = {s0}
• the set of states: So = {s0, s1, s2}
• the transition relation →o expressed by the following set of transitions:

{s0
Cl Speed1→ s1, s1

Cl Speed2→ s2, s2
Cl Speed1→ s1, s1

Cl Stop→ s0}
• the labelling function Lo defined by: Lo(s0) = {cl pos = stop}, Lo(s1) =
{cl pos = sp1}, Lo(s2) = {cl pos = sp2}

• the set of the final states: Fo = {so}.

Cl_Speed1

Cl_Stop

Cl_Speed2

Cl_Speed1

s2 s1 s0

Fig. 5. The transition system TSo corresponding to the interface OIManual

The transition system TSu
def= 〈S0u, Su,→u, Lu, Fu〉 is composed of the following

information:

• the initial states: S0u = {s′0}
• the set of states: Su = {s′0, s′1, s′2, s′3}
• the transition relation →u expressed by the following set of transitions:

{s′0
Cl Speed1→ s′1, s

′
1

Cl Speed2→ s′2, s
′
2

Cl Speed1→ s′1, s
′
1

Cl Stop→ s′0, s
′
0

Cl Speedi→
s′3, s

′
3

Cl Stop→ s′0}
• the labelling function Lu is defined as follows: Lu(s′0) = {cl pos = stop}, Lu(s′1) =
{cl pos = sp1}, Lu(s′2) = {cl pos = sp2}, Lu(s′3) = {cl pos = spi}

• the set of the final states: Fu = {s′o}.

Verification of the relation of simulation: We define a relation of simulation
between two transition systems as an adaptation of the definition of the simulation

220

Chouali

s’1 s’3s’2 s’0

Cl_Stop

Cl_Speedi

Cl_Speed1

Cl_Stop

Cl_Speed2

Cl_Speed1

Fig. 6. The transition system TSu corresponding to the interface UIManual

relation of Milner [15]. A transition system TS0 simulates a transition system TS1

according to the Milner definition if and only if the system behavior described by
TS1 is included in the system behavior described by TS0.

In our case, we need to take into account the transition labels in order to verify
components compatibility. In Milner’s definition the transition are not labelled.

Definition 1 Let TSo = 〈S0o, So,→o, Lo, Fo〉 and TSu = 〈S0u, Su,→u, Lu, Fu〉 be
two transition systems. Let R be a relation between Su and So, R ⊆ So × Su. R is
a relation of simulation iff for each couple of states (si, s

′
i) ∈ So × Su we have:

• if (si, s
′
i) ∈ R, then Lu(si) ⊆ Lo(s′i)

• if (si, s
′
i) ∈ R and s′i

a→ s′i+1 ∈→u, then there exists si+1 ∈ So such that s1
a→

si+1 ∈→o and (si+1, s
′
i+1) ∈ R.

After defining the relation of simulation between the states of transition sys-
tems, we define what it means that a transition system simulates another transition
system.

Definition 2 Let TSo = 〈S0o, So,→o, Lo, Fo〉 and TSu = 〈S0u, Su,→u, Lu, Fu〉 be
two transition systems. Let R be a relation of simulation between Su and So, R ⊆
So × Su. TSo simulates TSu iff ∀s′0.(s′0 ∈ S0u ⇒ ∃s0.(s0 ∈ S0o ∧ (s0, s

′
0) ∈ R))

According to Definition 2, the transition TSo simulates the transition system
TSu if and only if the simulation relation holds between their initial states.

Theorem 4.1 Let TSo and TSu be two transition systems that model respectively
an offered interface OI and a used interface UI. When the relation of simulation
R holds between the states of TSo and TSu, then the interfaces OI and UI are
compatible at signature, semantics and protocol levels.

Proof. Suppose that TSo simulates TSu.

• Compatibility at protocol level: TSo and TSu model respectively the interfaces OI

and UI. The specification of these interfaces includes the B specification and the
protocol specification. According to Definition 1 and Definition 2, the verification
of the simulation relation is based on the parallel exploration of the transition
systems TSo and TSu. Thus we verify that the traces of the paths explored in TSu

are contained in the traces of the paths explored in TSo. Consequently, verifying
the relation of simulation implies verifying whether the set of the operation calls
described in UI are included in the set of the operation calls described in OI.

221

Chouali

• Compatibility at signature and semantics levels: the operations described in OI

and UI are expressed in TSo and TSu by transitions. Source and target states of
these transitions are decorated with a set of atomic propositions which expresses
respectively pre and postconditions of the operations. Furthermore transitions
are labelled with operation names. According to Definition 1 and Definition 2,
the verification of the simulation relation implies the verification of the matching
of transitions between TSo and TSu at signature and semantics (operation names,
pre and postconditions) levels. This involves the verification of the compatibility
at signature and semantics levels.

2

Case study: In order to verify that the interface OIManual is compatible with
the interface UIManual, we must verify that the relation of simulation R holds
between the two transition systems TSo and TSu. The verification requires the
parallel exploration of the transition systems TSo and TSu by beginning from their
initial states. Therefore, the proof that TSo simulates TSu is the proof that the
initial states (s0, s

′
0) ∈ R such that s0 is the initial state of TSo and s′0 is the initial

state of TSu.
We illustrate the verification algorithm of the simulation relation by verifying

whether TSo simulates TSu as follows:

• verify the first condition of the relation on the couple (s0, s
′
0): the condition is

verified because Lo(s0) = Lu(s′0),

• verify the second condition on (s0, s
′
0): there is a transition s′0

Cl Speedi→ s′3 ∈→u

in TSu, but there is not a transition s0
Cl Speedi→ s3 ∈→u such that (s3, s

′
3) ∈ R.

Therefore (s0, s
′
0) 6∈ R.

The verification of the simulation relation between the transition systems TSo

and TSu shows that TSo does not simulate TSu. That means that the interfaces
OIManual and UIManual are not compatible. Therefore, the behavior required by
the component WWiper is not offered by the component CLever. The verification
fails because the component WWiper requires the operation Cl Speedi that is not
offered by the component CLever (see the dashed transition in the transition system
TSu in figure 6).

4.2 Verification of component substitutability

To determine whether a defective component can be substituted by another compo-
nent, we propose an approach based on the verification of the relation of equivalence
between component specifications. This approach allows to determine whether the
behavior of the defective component is equivalent to the behavior of the substitute
component.

In order to illustrate this approach, we present in the figure 7 two components
control lever CLever and CLever’. Suppose that we need to replace the component
CLever by the component CLever’. To reach this goal, the component CLever’
must satisfy the following constraints:

• The set of services required by the component CLever’ must be the same as the

222

Chouali

CLever

CLever’

OIManual

OIManual’ UIManual’

UIManual

OIAutoCL

OIAutoCL’

Fig. 7. component substitutability

set of the services required by the component CLever. To check this constraint
it is necessary to verify the equivalence between component behaviors described
in the used interfaces of CLever and CLever’. In our example (see figure 7), we
verify that the behavior described in the interface UClever is equivalent to the
one described in the interface UClever’.

• The set of the services offered by the component CLever’ must be the same as
the set of the services offered by the component CLever. To check this constraint
it is necessary to verify the equivalence between component behaviors described
in the offered interfaces. In our example, we verify that the behavior described in
the interface OIManual is equivalent to the one described in the interface OIMan-
ual’, and we also verify that the behavior described in the interface OIAutoCL is
equivalent to the one described in the interface OIAutoCL’ .

To verify the equivalence between the component behaviors, we propose an ap-
proach based on the B method and on a relation between transition systems. This
approach is divided into two steps:

• Equivalence between invariants: we verify the equivalence between the in-
variants defined in the offered interfaces and between the invariants defined in
the used interfaces. In our example, we verify that the invariant defined in the
offered interface OIManual is equivalent to the invariant defined in the interface
OIManual’. We use the B theorem prover and the B specification of the interfaces
to perform this verification.

• Equivalence between component interfaces: in this step, we verify the
equivalence between component behaviors described in the offered interfaces and
the equivalence between component behaviors described in the used interfaces.
In the example in figure 7, we verify equivalence between component behaviors
described in OIManual and OIManual’, and between OIAutoCL and OIAutoCL’.
We also verify equivalence between component behaviors described in UClever
and UClever’. To perform this verification we define and we check the relation of
bisimulation (this relation is defined in the next paragraph) between the transition
systems that model the component interfaces (relation of bisimulation between
offered interfaces and between used interfaces). So, we verify that the relation of
bisimulation holds between the following transition systems
· the transition systems describing the offered interfaces OIManual and OIMan-

223

Chouali

ual’,
· the transition systems describing the offered interfaces OIAutoCL and OIAu-

toCL’,
· the transition systems describing the used interfaces UClever and UClever’.

In the following, we define the relation of bisimulation between transition sys-
tems. This relation is based on the relation of simulation defined in the last section.

A transition system TS′ bisimulates a transition system TS if and only if the
system behavior described by TS′ is the same as (we say also that is equivalent)
to the system behavior described by TS.

Definition 3 Let TS = 〈S0, S,→, L, F 〉 and TS′ = 〈S0
′, S′,→′, L′, F ′〉 be two tran-

sition systems. Let R be a relation of simulation between S and S′. Let α be another
relation between S and S′, α ⊆ S × S′. α is a relation of bisimulation iff for each
couple of states (si, s

′
i) ∈ S × S′ we have:

if (si, s
′
i) ∈ α, then (si, s

′
i) ∈ R and (s′i, si) ∈ R

After defining the relation of bisimulation between the states of transition sys-
tems, we define what means that a transition system bisimulates another transition
system.

Definition 4 Let TS = 〈S0, S,→, L, F 〉 and TS′ = 〈S0
′, S′,→′, L′, F ′〉 be two tran-

sition systems. Let α be a relation of bisimulation between S and S′, α ⊆ S × S′.
TS′ bisimulates TS iff ∀s0.(s0 ∈ S0 ⇒ ∃s′0.(s′0 ∈ S′

0 ∧ (s0, s
′
0) ∈ α))

According to Definition 4, the transition TS′ bisimulates the transition system
TS if and only if the bisimulation relation holds between their initial states.

5 Related Work

Several works have been proposed in the context of specifying component interfaces
and verifying their compatibility.

Cheesman and Daniels [7] propose to specify component interfaces using UML
[17] and OCL [23] notations. The interface specification includes: an information
model that provides the type of the information expressed in the interfaces (it is
specified using UML class diagram), invariants on the information model, and oper-
ation specifications that express operation signatures and pre- and postconditions.
However this work does not propose any verification approach of interface compat-
ibility.

Yellin and Storm [25] propose a state machine based approach to specify pro-
tocols. Protocols are expressed in terms of abstract states and transitions. We are
inspired by this work in order to model protocols. In contrast with our proposition,
the approach of Yellin and Storm does not cope with the component interoperability
at the semantics level but only at the protocol level.

Canal and al [6] use a subset of the polyadic pi-calculus to deal with component
interoperability only at the protocol level. The pi-calculus is very well suited for
describing component interactions. The limitation of this approach is the low-level
description of the used language and its minimalistic semantics which does not

224

Chouali

provide rich feedback to system designers when errors are detected during protocol
checks.

In [5], Bastide et al use Petri nets to specify the behavior of CORBA objects, in-
cluding operation semantics and protocols. This work correlates with our approach
because we use transition systems that can be expressed as Petri nets, to express
component behaviors. The difference to our approach is that we take into account
the invariant in the interface specifications and we use the B approach to verify
interface compatibility.

In [10], J. Han specifies protocols with a temporal logic based approach. This
approach leads to a rich specification for component interfaces.

Alfaro and Henzinger [3] propose an interesting approach which allows the ver-
ification of the interfaces compatibility based on the automata and game theories.
This approach is well suited for checking the interface compatibility at the protocol
level.

In [26], Zaremski and Wing propose an interesting approach to compare two
software components. It determines whether one component can be substituted for
another. They use formal specifications to model the behavior of components and
exploit the Larch prover to verify the specification matching of components.

The approaches described above treat the component interoperability at the
semantics and the signature levels, or at the protocol level, not both. However, in
this paper we propose an approach which handles the component interoperability
and component substitutability at the both levels.

An interesting approach proposed in [19], allows to formally specify, refine and
verify component based systems. It is based on Object-Z language and the process
algebra CSP. The main difference with our approach is the specification language.
In our case, we have chosen the B method to specify component interfaces in order
to exploit the B theorem prover.

6 Conclusion

This paper presents an approach to verify component interoperability. We have con-
sidered two cases in the interoperability: component compatibility and component
substitutability. This approach is based on the use of the B method for specifying
component interfaces. An interface specification provides the following information:

• an initialization predicate which provides initial states of a component
• a list of operations, specified by means of their preconditions and generalized

substitutions
• an invariant property that must be respected by the initialization predicate and

the operations.

Specification of interfaces is enhanced by the specification of protocols with finite
transition systems.

The approach to verify the component compatibility is composed of two steps.
First, we verify with the B theorem prover that the invariant specified in a used
interface is satisfied by the specification of the appropriate offered interface. Sec-

225

Chouali

ond, we use protocol specifications and B specification of interfaces to complete the
verification of interface compatibility at the signature, semantics, and protocol lev-
els by verifying the simulation relation between the transition systems that model
component behaviors.

The approach to verify the component substitutability is based on the B method
and the verification of the relation of bisimulation between transition systems that
models offered interfaces and between transition systems that models used interfaces
(interfaces of the defective component and the substitute component).

References

[1] J. Hernandez A. Vallacillo and M. Troya. Object interoperability. In Object Oriented Technology:
ECOOP’99 Workshop Reader, pages 1–21, 1999.

[2] J.-R. Abrial. The B Book. Cambridge University Press - ISBN 0521-496195, 1996.

[3] L. Alfaro and T. A. Henzinger. Interface automata. In 9 th Annual Aymposium on Foundations of
Software Engineering, FSE, pages 109–120. ACM Press, 2001.

[4] A. Arnold. Mec: a system for constructing and analysis transition systems. In AMAST, pages 81–82,
1999.

[5] R. Bastide, O. Sy, and P. A. Palanque. Formal specification and prototyping of CORBA systems. In
ECOOP ’99: Proceedings of the 13th European Conference on Object-Oriented Programming, pages
474–494. Springer-Verlag, 1999.

[6] C. Canal, L. Fuentes, E. Pimentel, J-M. Troya, and A. Vallecillo. Extending CORBA interfaces with
protocols. Comput. J., 44(5):448–462, 2001.

[7] J. Cheesman and J. Daniels. UML Components – A Simple Process for Specifying Component-Based
Software. Addison-Wesley, 2001.

[8] L. Doldi. UML 2 Illustrated - Developing Real-Time & Communications Systems. TMSO, 2003.

[9] J. Han. A comprehensive interface definition framework for software components. In The 1998 Asia
Pacific software engineering conference, pages 110–117. IEEE Computer Society, 1998.

[10] J. Han. Temporal logic based specification of component interaction protocols. In Proceedings of the
Second Workshop on Object Interoperability ECOOP’2000, pages 12–16. Springer-Verlag, 2000.

[11] D. Konstantas. Interoperation of object oriented application. In Oscar Nierstrasz and Dennis
Tsichritzis, editors, Object-Oriented Software Composition, pages 69–95. Prentice Hall, 1995.

[12] O. Kouchnarenko and A. Lanoix. Refinement and verification of synchronized component-based
systems. In Proc. Int. Sympo. of Formal Methods (FME 2003), pages 341–358, Pisa, Italy, 2003.

[13] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, second edition, 1997.

[14] Microsoft Corporation. The Component Object Model Specification, Version 0.9, 1995.
http://www.microsoft.com/com/resources/comdocs.asp.

[15] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[16] The Object Mangagement Group (OMG). The Common Object Request Broker: Architecture and
Specification, Revision 2.2, February 1998. http://cgi.omg.org/library/corbaiiop.html.

[17] J. Rumbaugh, I. Jacobsen, and G. Booch. Unified Modeling Language Reference Manual. Addison-
Wesley, 1997.

[18] S.-C.Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton, New Jersey,
USA, 1956.

[19] G. Smith and J. Derrick. Specification, refinement and verification of concurrent systems - an integration
of Object-Z and CSP. Formal Methods in Systems Design, 18:249–284, May 2001.

[20] STERIA. Atelier B : Preuves et Exemples.

[21] Sun Microsystems. JavaBeans Specification, Version 1.01, 1997.
http://java.sun.com/products/javabeans/docs/spec.html.

226

Chouali

[22] C. Szyperski. Component Software. ACM Press, Addison-Wesley, 1999.

[23] J. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling with UML. Addison-
Wesley, 1999.

[24] P. Wegner. Interoperability. ACM Computing Survey, 28(1):285–287, 1996.

[25] D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM Trans. Program.
Lang. Syst., 19(2):292–333, 1997.

[26] Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of software components.
ACM Transactions on Software Engineering and Methodology, 6(4):333–369, 1997.

227

Chouali

228

	Introduction
	The B method
	Specification of component interfaces
	Specification structure
	Case Study: a car windscreen wiping system

	Verification of component interoperability
	Verification of component compatibility
	Verification of component substitutability

	Related Work
	Conclusion
	References

