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w Effective velocity surfaces for anisotropic elastic

composites s
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Velocity surfaces for periodic composites

» Non-zero effective elastic constants for periodic
composites are dictated by crystal symmetry.

» Numerical values for effective elastic constants
can be obtained by fitting the dispersion relation

iIn the Iimit Kk — 0 and w — O.

» Our aim: devise an efficient method to obtain
velocity surfaces for arbitrary periodic
composites, for
» Sonic crystals (for pressure acoustic waves),

» Phononic crystals (for vector elastic waves).

» Our method: finite element method, for periodic

boundary value problem, with second-order

perturbation theory.
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Speed of Sound in Periodic Elastic Composites C gf £ ( k) =
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» Valid for 2D and 3D sonic crystals

» Plane wave expansion (PWE) type analysis, with
second-order perturbation theory

» Spectacular result for air bubbles in water
composites (slow sound)

» Small drawback: need to invert a full matrix (no
gain with respect to eigenvalue problem)

Scalar case (sonic crystals) Vector case (phononic crystals)
Partial differential equation for Bloch waves Three possible values for the constant field ug, for
(p (k) —w?B )p =0 (1) three different gurfaces:
under periodic boundary conditions. Assume the [ 25 (U + ik (k) + o(k) (6)
solution is developed to first order in k — 0 1
p =~ po + ikpi (k) + o(k) (2) First-order corrections:
where py is a constant field (Vo = 0) and k is a (Vg,cVu) = (Vq, ckuy), vq (7)
unit vector. First order term: Second-order terms lead to a 'Christoffel’ equation
(Va,p 'Vpi) = (Va, p 'kpo), Va. (3) (8 x 3 generalized eigenvalue problem):
Second order term: kz[(lA(u(()O‘), clA(u((f)) — (IA(u(()O‘), cVuﬁﬁ))]gg
2 _ 1 ~ 1 87 0}
Vesz(i%) _ w_z _ (p07 % PO) B (k1p07 P vp1) (4) — Wz(u(() )7 IOU(() ))5(& _ 6)55 (8)
k (Po, B~ po)

Fit to composite theory

R » 3 boundary value problems per direction.
» The VG'OCity surface Veff(k) IS obtained by SOIViﬂg » Fit for Orthotropic Composites_
only one boundary value problem per direction.

» Orthotropic composites:
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_\ /2 - 2 — .2
pVi(¢) = C11cos” ¢ + Cozsin” ¢ (5)
5 o sl | Figure: Steel. C3 symmetry
) xvelocity (i) and/or 3 symmetry planes.
el Figure: Water/air 1D sonic
cveloty i * crystal (orthotropic).
> = ™ Eigure: 'Uniaxial’ water 2D N Figure: Steel. One
o] ‘ sonic crystal (orthotropic). T Neewms  gymmetry plane.
w1 Gan be realized with tubes
vty (mi) filled with water.
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