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Abstract This paper addresses the problem of Hidden Markov Models (HMM)
training and inference when the training data are composed of feature vectors plus
uncertain and imprecise labels. The “soft” labels represent partial knowledge about
the possible states at each time step and the “softness” is encoded by belief func-
tions. For the obtained model, called a Partially-Hidden Markov Model (PHMM),
the training algorithm is based on the Evidential Expectation-Maximisation (E2M)
algorithm. The usual HMM model is recovered when the belief functions are vacu-
ous and the obtained model includes supervised, unsupervised and semi-supervised
learning as special cases.

1 Introduction

Hidden Markov Models (HMM) are powerful tools for sequential data modelling
and analysis. Many applications for several decades have found solutions based on
HMM such as discovering word sequences based on speech audio recordings [9],
gene finding based on a DNA sequence [8], and performing prognostics and health
detection of ball bearings degradation based on noisy sensors [6, 10]. In the sequel,
we consider sequential data taking the form of a time-series of length T where each
element is a multidimensional feature vector xt ∈ ℜF , t = 1 . . .T also called vector
of observations [9]. The modelling part assumes that the system (a speaker, a DNA
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sequence or a ball bearing) generating the time-series is a Markov process with
unobserved (hidden, latent) discrete states. In HMMs, the states are not visible but
when the system is entering in one of the states, the features follow a particular prob-
ability distribution. The sequence of observations thus provides information about
the sequence of states. One of the most powerful characteristics of HMMs, account-
ing for its wide range of applications, is the possibility to estimate the parameters
efficiently and automatically. Given a training dataset composed of the observed
data X = {x1, . . . ,xt , . . . ,xT} (where xt can be continuous or discrete), and denoting
by K the number of hidden states such that the state variable yt at time t can take a
value in

ΩYYY = {1, . . . , j, . . . ,K} , (1)

the following parameters have to be estimated:

• ΦΦΦ = {φφφ 1, . . . ,φφφ j, . . . ,φφφ K} is the set of parameters characterising the probability
distribution of observations given each state:

b j(xt) = P(xt |yt = j;φφφ j), j = 1 . . .K (2)

• AAA = [ai j] with

ai j = P(yt = j|yt−1 = i), i = 1 . . .K, j = 1 . . .K (3)

that is the probability of the system to be in state j at time-instant t, given the
system was in state i at t−1, with ∑ j ai j = 1.

• ΠΠΠ = {π1, . . . ,π j, . . . ,πK}, where

π j = P(y1 = j) (4)

is the probability of state j at t = 1, such that ∑i πi = 1.

In the sequel, all these parameters are aggregated in a vector θ :

θ = {A,ΠΠΠ ,ΦΦΦ} . (5)

These parameters can be estimated using an iterative procedure called the Baum-
Welch algorithm [1, 9] and relying on the Expectation-Maximisation process.

There are applications where some observations xt in the training data X are
associated to a label that actually represents the state at time t. Instead of considering
the labelling process as a binary one, where states can be known or unknown, we
address the problem of partially-supervised HMM training, assuming the labels to
be represented by belief functions. These functions can represent uncertainty and
imprecision about the states and can be in time-series modelling and analysis.

The contribution of this paper holds in the development of a model called
Partially-Hidden Markov Model (PHMM) that manages partial labelling of the
training dataset in HMMs. Compared to [3], we take into account the temporal de-
pendency into account, helping in time-series modelling. The proposed approach is
based on the Evidential Expectation-Maximisation (E2M) algorithm [5].
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Partially-Hidden Markov Models 3

2 Partially-Hidden Markov Models (PHMM)

Given the observation sequence X = {x1,x2, . . . ,xT}, there are three main problems
of interest in connection with HMMs [9]:

Problem 1: Given a model θ = {ΠΠΠ ,AAA,ΦΦΦ}, how to compute its likelihood L(θ ;X)?
Problem 2: Given a model θ , how to choose the state sequence Y∗= {y∗1,y∗2, . . . ,y∗T}

that best explains observations?
Problem 3: How to estimate parameters θ = {ΠΠΠ ,AAA,ΦΦΦ} of a model?

These problems have been solved in different ways for some decades in HMM [9].
In the sequel, we present the solutions for the case where partial information on
states is available in the form of a set of belief functions m defined on the set of states
ΩYYY . States are then “partially hidden” and the case of completely hidden states is
recovered when all the masses are vacuous.

The main idea behind the solutions of partially-supervised training in statisti-
cal models is to combine the probability distributions on hidden variables with the
belief masses m. This combination can be computed from the contour function pl
associated to m.

The next paragraph describes the main features of the E2M algorithm in order
to introduce the conditioning process that plays a central role in solutions for prob-
lems 1, 2 and 3. The E2M algorithm will be used in the last paragraph dedicated to
parameter estimation in PHMMs.

2.1 Generalized likelihood function and E2M algorithm

The Evidential EM (E2M) [5] is an interative algorithm dedicated to maximum
likelihood estimation in statistical models based on uncertain observations encoded
by belief functions. As for the usual EM algorithm, the E2M algorithm does not
maximise directly the observed-data likelihood function denoted here L(θ ;X,m)
but it focuses instead on a lower bound called the auxiliary function [2], and usually
denoted by Q and defined as:

Q(θ ,θ (q)) = E
θ (q) [logL(X,Y;θ)|X, pl] , (6)

where pl denotes the contour function associated to m and θ (q) is the fit of param-
eter θ at iteration q, and Q represents the conditional expectation of the complete-
data log-likelihood. In the E-step of the E2M algorithm, the conditional expecta-
tion in the auxiliary function Q is taken with respect to γ

′ def
= P(·|X, pl;θ (q)) =

P(·|X;θ (q))⊕ pl, that is the combination of the expectation, denoted γt , with the
plausibilities using Demspter’s rule [4, 5]. The new expectation is then defined for
each state j at time t by γ

′
t ( j|pl;θ (q)) = P(yt = j|X, pl;θ (q)):
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4 Emmanuel Ramasso and Thierry Denœux and Noureddine Zerhouni

γ
′
t ( j|pl;θ

(q)) =
γt( j;θ (q)) · plt( j)

L(θ (q);X, pl)
(7)

and the auxiliary function becomes:

Q(θ ,θ (q)) =
∑Y P(Y|X;θ (q)) · pl(Y) · logL(X,Y;θ)

L(θ (q);X, pl)
. (8)

The M-step is similar to to that of the usual EM algorithm and consists in max-
imising Q with respect to θ . The maximisation is ensured to increase the likelihood
of observed data since E2M inherits the monotonicity of EM as for any sequence
L(θ (q);X, pl), q = 1,2 . . . , we have L(θ (q+1);X, pl)≥ L(θ (q);X, pl).

2.2 Solution to problem 1 in PHMM

Using a similar process as in usual HMM (see [2] for details on HMM), the marginal
posterior distribution on latent variables for the set of parameters θ (q) at iteration q
of E2M can be rewritten as:

γ
′
t = P(yt |X;θ

(q))⊕ plt = α
′
t ·βt (9)

with α
′
t

def
= P(X1:t ,yt |pl;θ (q)) and β

′
t

def
= P(Xt+1:T |yt ;θ (q)). The definition of β re-

mains the same as in the standard algorithm with βt(i;θ (q)) = ∑ j βt+1( j;θ (q)) ·
b j(xt+1) ·a ji, t = 2 . . .T starting from βT (i;θ (q)) = 1,∀i. The probability of jointly
observing a sequence X1:t up to t and state j at time t given the parameters
and the uncertain data is given by the modified forward variable α

′
t such that

α
′
t ( j;θ (q)) = P(X1:t ,yt = j|pl;θ (q)) with:

α
′
t ( j;θ

(q)) =
αt( j;θ (q)) · plt( j)

L(θ (q);X, pl)
(10)

and therefore

γ
′
t ( j;θ

(q)) =
αt( j;θ (q)) · plt( j) ·βt( j;θ (q))

L(θ (q);X, pl)
. (11)

Variables α and β are the same as in HMM [2].
Summing Eq. 11 over latent variables gives the observed data likelihood. There-

fore, to assess the likelihood function L(θ (q);X, pl) at the current iteration of the
E2M algorithm, we simply need to choose a time index t. A good candidate is the
index T since in this case we do not need to evaluate βT (that equals to 1) reducing
the computation load:

L(θ (q);X, pl) =
K

∑
j=1

αT ( j;θ
(q)) · plT ( j) (12)
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Partially-Hidden Markov Models 5

Practically, we can use the normalization process proposed in [9] in order to cope
with the limited machine precision range.

2.3 Solution to problem 2 in PHMM

The Viterbi algorithm [7] was defined in order to retrieve the best sequence of hidden
states within the noisy observations. The best sequence is found in K2×T opera-
tions (instead of KT for a greedy search) and is ensured to be the one with the highest
likelihood. Given the observed data X, the Viterbi algorithm finds the maximum a
posteriori (MAP) sequence Y∗ = {y∗1, . . . ,y∗t , . . . ,y∗T},y∗t ∈ΩY. In PHMM, the MAP
criterion is modified by taking soft labels into account, i.e., P(Y∗|X, pl;θ (q)) or,
equivalently, logP(X,Y∗|pl;θ (q)). In HMMs, the Viterbi algorithm is called the
max-sum product algorithm and it is equivalent to a forward propagation with con-
ditioning at each time-step by the potential predecessors of each state. In PHMMs, a
similar reasoning can be applied where conditioning (by singletons states) naturally
leads to the use of plausibilities. The MAP criterion can be written as:

δ
′
t ( j;θ

(q)) = max
i

[
δ
′
t−1(i;θ

(q)) ·ai j

]
·b j(xt) · plt( j), t = 2 . . .T (13)

starting from δ
′
1( j;θ (q)) = π j · plt( j) · b j(x1). Keeping track of the argument max-

imising this expression as ψ
′
t ( j) = argmax i

[
δ
′
t−1(i;θ (q)) ·ai j

]
, the backtracking of

the best state sequence ending in y∗t = j at time t is given by y∗t−1 = ψ
′
t (y
∗
t ).

2.4 Solution to problem 3 in PHMM

In the E2M algorithm, the auxiliary function is given by Eq. 8. In order to define
the maximisation step, the Q-function has to be computed. For that purpose, we
introduce the multinomial representation of variables such that yt j = 1 if state j at
time t is true, else yt j = 0. Then, we can write:

P(Y,X;θ) =

(
K

∏
j=1

π
y1 j
j

)
·

(
T

∏
t=2

K

∏
i=1

K

∏
j=1

a
yt−1,i,yt j
i j

)
·

(
T

∏
t=1

K

∏
j=1

b j(xt)
yt j

)
(14)

Taking the logarithm of the above expression leads to the complete-data log-
likelihood. In this paper, partial knowledge on yt j is assumed to be represented by
a belief function (and in particular by its contour function plt( j),∀t = 1 . . .T, j =
1 . . .K). The auxiliary function Q thus becomes:
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6 Emmanuel Ramasso and Thierry Denœux and Noureddine Zerhouni

Q(θ ,θ (q)) = E
θ (q) [logP(X,Y;θ)|X, pl] (15a)

= Qπ(θ ,θ
(q))+QA(θ ,θ

(q))+QΦΦΦ(θ ,θ (q)) , (15b)

with Qπ(θ ,θ
(q)) = ∑

K
j=1Eθ (q)

[
y1 j|X, pl

]
· logπ j given by:

Qπ(θ ,θ
(q)) =

K

∑
j=1

γ
′
1( j;θ

(q)) · logπ j , (16)

and QA(θ ,θ
(q)) = ∑

T
t=2 ∑

K
i=1 ∑

K
j=1Eθ (q) [yt−1,iyt j|X, pl] · logai j with:

QA(θ ,θ
(q)) =

T

∑
t=2

K

∑
i=1

K

∑
j=1

ξ
′
t−1,t(i, j;θ

(q)) logai j , (17)

and QΦΦΦ(θ ,θ (q)) = ∑
T
t=1 ∑

K
j=1Eθ (q) [yt j|X, pl] · logb j(xt) given by:

QΦΦΦ(θ ,θ (q)) =
T

∑
t=1

K

∑
j=1

γ
′
t ( j;θ

(q)) · logb j(xt) . (18)

In the above expressions we have:

γ
′
t ( j;θ

(q)) =
γt( j;θ (q)) · plt( j)

∑
K
l=1 γt(l;θ (q)) · plt(l)

, (19)

which is the marginal posterior distribution of a latent variable y j at t given pl, and

ξ
′
t−1,t(i, j;θ

(q)) =
ξt−1,t(i, j;θ (q)) · plt−1(i) · plt( j)

∑
K
l=1 ξt−1,t(i, l;θ (q)) · plt−1(i) · plt(l)

(20)

is the joint probability of two consecutive latent variables yt−1,i and yt j given pl. The
optimal parameters at each iteration of E2M are given by using a similar reasoning
as in the standard algorithm, but the posterior probability over latent variables now
depends on the plausibilities:

π
(q+1)
j =

γ1( j;θ (q)) · pl1( j)
K

∑
l=1

γ1(l;θ
(q)) · pl1(l)

(21a)

a(q+1)
i j =

T

∑
t=2

ξt−1,t(i, j;θ
(q)) · plt−1(i) · plt( j)

T

∑
t=2

K

∑
l=1

ξt−1,t(i, l;θ
(q)) · plt−1(i) · plt(l)

(21b)
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Partially-Hidden Markov Models 7

The maximisation of QΦΦΦ(θ ,θ (q)) depends on the form of the distribution of obser-
vations given the latent variable j.

3 Partial results, conclusion and further work

Partial results: To illustrate this approach, we considered that observations can be
modelled by mixtures of Gaussians. We proceeded as in standard HMM to derive
the M-step in PHMM and to estimate the parameters of the distributions. Equations
are however not reported in this paper.

For illustration purpose, we used the dataset of the PHM’08 data challenge [12]
concerning the health state of a turbofan engine. It was manually segmented into
four states (to evaluate the results) such that each time-series is accompanied by a set
of labels reflecting the current state of the fan, that is normal, transition, degrading
or faulty mode. Each label corresponds to a mass function focused on a singleton,
except in the transitions where doubt between two labels is defined. The segmen-
tation and the associated BBA are available at http://www.femto-st.fr/
˜emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.
html. The BBA were then transformed into plausibilities. For these tests, we cor-
rupted them by additive noise: plt( j)← plt( j)+σk ·εt( j), where σk ∈{0,0.1, . . . ,1}
and εt( j) ∼U[0,1] was drawn from a uniform distribution. For each noise level, we
considered the influence of the number of unlabelled data νk ∈{0%,10%, . . . ,100%}.
The partitioning of time-series in the testing dataset estimated by HMM and PHMM
using the Viterbi algorithm as defined in HMM (since we do not know the labels for
the testing) were compared using the Folkes and Mallows index (F ∈ [0,1]) [11]
by computed the relative performance improvement G = Fpshmm/Fhmm − 1 with
G ∈ [−1,1] such that if G > 0 (resp. G < 0), the proposed PHMM provided a better
(resp. worse) segmentation of the time-series into states.

The evolution of G is given in Figure 1 that shows an improvement by several per-
cents when using the proposed PHMM (up to 12%). When all data were unlabelled
and with no noise (bottom right hand-side corner), both models provided exactly
the same results, as expected. When the noise increased, the performance decreased
but was still higher than that of the standard HMM. The most difficult cases were
encountered when the noise was high (top of figure), where PHMM improvements
were between [2%,5%].

Conclusion and further work: Taking partial knowledge into account is of crucial
importance in many statistical models. Encoding prior information by belief func-
tions leads to simple modifications of the initial estimation formula while remaining
theoretically sound. The statistical model considered in this paper was the Hidden
Markov Models. Further work remains to be done in order to compute in developing
reestimation formula for various distributions of observations given latent states.

Acknowledgements: This work was partially supported by a PEPS-INSIS-2011
grant from the French National Center for Scientific Research (CNRS) under the
administrative authority of the French Ministry of Research.
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Fig. 1 Performance (G-index): median value over 10 runs with different initialisation. Positive
value reflects an improvement provided by PHMM. Here almost all values are positive except
darkest areas.
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