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ABSTRACT 

This paper proposes a new adaptive prognostics approach 

consisting of hybrid feature selection and remaining-useful-

life (RUL) estimation steps for railway point machines. In 

step-1, different time-domain based features are extracted 

and the best ones are selected by the hybrid feature selection 

method. Then, a degradation model is fitted to each of the 

selected features and the parameters are estimated. In step-2, 

the RUL of the component is predicted by using the proposed 

adaptive prognostics approach. The adaptive prognostics is 

based on the weighted likelihood combination of the 

estimated model parameters. The model parameters each of 

which estimated by curve fitting are used in the calculation 

of the likelihood probability weights. Then, an adaptive 

degradation model is built by using the weighted combination 

of the model parameter estimates and the component RUL is 

estimated. The proposed approach is validated on in-field 

point machine sliding-chair degradation and the results are 

discussed. 

1. INTRODUCTION 

An improvement of reliability, availability and passenger 

safety has been one of the main concerns for many years in 

the railway industry. Thus, it is important to develop 

predictive maintenance strategies to monitor railway 

infrastructures such as bogies (Ashasi-Sorkhabi, Fong, 

Prakash, & Narasimhan, 2017; Atamuradov, Medjaher, 

Dersin, Lamoureux, & Zerhouni, 2017), gearbox (Ashasi-

Sorkhabi et al., 2017), breaking systems (Lee, 2017), 

overhead contact lines (Brahimi, Medjaher, Leouatni, & 

Zerhouni, 2017), tilting actuators (Martin, Dellacasa, Jacazio, 

& Sorli, 2017) and point machines (Böhm, 2017). 

Railway turnout system, which consists of sliding-chair 

plates, point machine, stock rails and locking systems are 

used to control the train turnouts at a distance (Eker et al. 

2011). In literature, the point machine failure diagnostics 

(Atamuradov, Medjaher, Lamoureux, Dersin, & Zerhouni, 

2017; García Márquez, Roberts, & Tobias, 2010) and 

prognostics (Letot et al., 2015) have been studied extensively. 

However, there still remain many problems that need to be 

studied to increase the accuracy while minimizing the 

uncertainty in RUL prediction. One of the key steps in the 

development of robust and accurate fault prognostics is the 

selection of good prognostics features. 

In literature, feature evaluation and selection techniques are 

classified as a) inherent: which uses ranking metrics to filter 

out least interesting feature (e.g. trendability, monotonicity 

(J. B. Coble, 2010) and seperability (Camci, Medjaher, 

Zerhouni, & Nectoux, 2013), etc.), b) consistent: which filters 

out the least correlated feature from the given feature 

population, and c) hybrid: which is the combination of 

inherent  and/or consistent techniques (Lei et al., 2018). The 

authors in (Javed, Gouriveau, Zerhouni, & Nectoux, 2015) 

proposed an inherent feature selection technique to increase 

the prognostics accuracy. In (Liao, 2014) an inherent feature 

evaluation metric was integrated with genetic algorithm (GA) 

to discover good prognostics features for RUL prediction. 

The authors in (J. Coble & Hines, 2009) developed a hybrid 

feature selection technique for prognostics based on the 

linearly weighted combination of the inherent and consistent 

Vepa Atamuradov et al. This is an open-access article distributed under 
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ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

 

2 

techniques. In this proposed technique, the weights were 

optimized by utilizing the GA. However, despite the good 

optimization performance, feature selection techniques based 

on heuristic algorithms, e.g. GA, might be computationally 

expensive, particularly if there is a big amount of feature 

samples. Hence, the development of computationally 

efficient feature selection techniques is necessary to improve 

the failure prognostics accuracy. Then, the selected 

prognostics features can be used to train the prognostics tools 

for RUL prediction.   

The failure prognostics can be defined as the process of 

predicting the remaining time (RUL) at which a component 

will no longer perform a particular function. The authors in 

(Omer F Eker & Camci, 2013; Omer Faruk Eker et al., 2011), 

developed a state duration based prognostics approach for 

point machine monitoring. The developed approach gave 

better RUL prediction results when compared with different 

prognostics tools. A data-driven failure prognostics model 

was proposed by (Letot et al., 2015) for point machine 

monitoring based on the power signals to predict the RUL. A 

similar data-driven prognostics approach based on a 

Bayesian parameter update was also proposed in (Ashasi-

Sorkhabi et al., 2017), for train gearbox monitoring using 

vibration signals. A failure of train braking system was 

studied in (Lee, 2017). The authors developed an air leakage 

detection and prediction approach based on a density-based 

clustering and logistic function. Since prognostics 

approaches deal with the prediction of the future component 

health states, the uncertainties in system parameters, nominal 

system model, degradation model, RUL prediction, and 

failure threshold should be well quantified in component 

health assessment (Atamuradov, Medjaher, Dersin, et al. 

2017; Sankararaman & Goebel, 2015). 

To fill the aforementioned gaps in the literature, this paper 

proposes a new adaptive prognostics approach based on 

hybrid feature selection for railway point machine sliding-

chair degradation. The proposed approach is composed of 

two steps. 

In step-1, a hybrid feature selection method is developed. It 

is based on the affinity matrix and inherent feature 

evaluation. The affinity matrix is built to calculate the 

features’ relative importance weights (RIWs). The inherent 

feature evaluation deals with the calculation of monotonicity, 

correlation and robustness metrics of each feature. Then, a 

hybrid fitness function is constructed by combining the 

weighted (with RIWs) inherent feature metrics and the 

features are ranked accordingly. The features with the highest 

hybrid ranking value are selected and used in prognostics. 

In step-2, a degradation model is defined to each of the 

selected features and the model parameters are estimated. 

Then, a likelihood probability of each parameter is calculated 

by using the estimated model parameters of each feature. 

Afterward, an adaptive degradation model is constructed by 

using the weighted combination of the estimated model 

parameters with the likelihood probabilities. The adaptive 

degradation model parameters are estimated and updated at 

each prediction time, iteratively, to estimate the RUL.  

The paper contains four sections. After the introduction, 

Section 2, describes the main steps of the proposed 

prognostics approach. Section 3 presents the experimental rig 

setup, data collection and the results of the proposed 

approach. Section 4 concludes the paper.  

2. PROPOSED APPROACH 

In this section, the hybrid feature selection and the adaptive 

prognostics steps will be explained in detail. The overall 

scheme of the proposed approach is depicted in Figure 1.  

 
Figure 1. Step1: a) Raw measurements (𝐷𝑁 is the 𝑁𝑡ℎ sample), 

b) extracted feature population (𝑓𝑀,𝑁) and c) selected features 

(𝑓𝐾,𝑁, where   𝐾 < 𝑀), Step2: Adaptive prognostics. 
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2.1. Hybrid feature selection 

First, time-domain based features such as skewness, root 

mean square (rms), kurtosis, mean, standard deviation 

(stdev), variance (var), crest factor (crfactor) and peak-to-

peak (p2p) are extracted from the raw measurements. The 

features in different scales are normalized before selection by 

using equations (1) and (2).   

𝐹𝑖 =
(𝐷𝑖−min (𝐷𝑖))

(max (𝐷𝑖)−min (𝐷𝑖))
; 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖,𝑡 =

𝑓𝑖,𝑡

max(𝑓𝑖)
   (1) 

 

 

𝐹𝑖 =
(𝐷𝑖−min (𝐷𝑖))

(max (𝐷𝑖)−min (𝐷𝑖))
; 𝑤ℎ𝑒𝑟𝑒 𝐷𝑖,𝑡 =

min (𝑓𝑖)

𝑓𝑖,𝑡
  (2) 

 

𝑓𝑖,𝑡  is the 𝑖 th feature data point at time index 𝑡 (𝑡 =
1, … , 𝑇), 𝑇  is the feature length and 𝐹𝑖 is the 𝑖th normalized 

feature.  

The hybrid feature selection is carried out in two-steps. In 

step-1, the affinity matrix (4) is built using the Euclidean 

distance (3).  

𝑑𝑖𝑠𝑡(𝑓𝑝, 𝑓𝑞) = √∑(𝑓𝑝,𝑖 − 𝑓𝑞,𝑖)
2

𝑁

𝑖=1

 
      

(3) 

where 𝑁 is the length of the given features 𝑝 and 𝑞. 

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦𝑀×𝑀  = {
0 𝑖𝑓 𝑝 = 𝑞

𝑑𝑖𝑠𝑡(𝑓𝑝, 𝑓𝑞) 𝑖𝑓 𝑝 ≠ 𝑞
  (4) 

where 𝑑𝑖𝑠𝑡(𝑓𝑝, 𝑓𝑞)  is the Euclidean distance between the 

features 𝑓𝑝  and 𝑓𝑞 from the feature population with a size of  

𝑀 . The relative importance weight 𝑤𝑖  of the 𝑖𝑡ℎ (∀𝑖 =
1 … 𝑀)  feature is then derived by using the exponential 

membership function (5).  

𝑤𝑖 = 𝑒𝑥𝑝 (−1 ×
∑ 𝑑𝑖𝑠𝑡(𝑓𝑖,1)𝑀

𝑖=1

𝑀
) (5) 

In step-2, inherent metrics such as monotonicity (𝑀𝑜𝑛𝑖 ), 

correlation (𝐶𝑜𝑟𝑟𝑖) and robustness (𝑅𝑜𝑏𝑖) are calculated by 

using equations (7), (8) and (9). The features monotonicity 

metric is used to extract increasing or decreasing trend 

information.  

𝑀𝑜𝑛𝑖(𝑓𝑖) = (|
#

𝑑

𝑑𝑓𝑖
>0 

𝑁−1
−

#
𝑑

𝑑𝑓𝑖
<0

𝑁−1
|)  

 (6) 

where 𝑀𝑜𝑛𝑖 is the monotonicity value for the 𝑖𝑡ℎ feature (𝑓𝑖) 

with length of 𝑁 . The absolute value of the difference 

between number of positive (#
𝑑

𝑑𝑓𝑖

> 0) and negative (#
𝑑

𝑑𝑓𝑖

<

0)  derivatives gives the monotonicity value. The features 

correlation measures the linearity statistics between the 

failure propagation and time.   

𝐶𝑜𝑟𝑟𝑖(𝑓𝑖, 𝑇𝑖) = (
𝑐𝑜𝑣(𝑓𝑖,𝑇𝑖)

𝜎𝑓𝑖𝜎𝑇𝑖
)   (7) 

where 𝑐𝑜𝑣 is the covariance of  𝑖𝑡ℎ feature (𝑓𝑖) with the time 

vector  𝑇, and 𝜎  is the standard deviation. The robustness 

metric stands for the features’ resistance to the measurement 

noise and it is calculated by decomposing the feature into 

trend (𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑓𝑖) and residual (𝑟𝑒𝑠𝑓𝑖)  components by 

using equations (8) and (9). 

𝑟𝑒𝑠𝑓𝑖 = 𝑓𝑖 − 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑓𝑖    (8) 

𝑅𝑜𝑏𝑖(𝑓𝑖) =  (
∑ exp (−|

𝑟𝑒𝑠𝑓𝑖
𝑓𝑖

|)𝑁
𝑛

𝑁
)   (9) 

where 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑_𝑓𝑖 is the smoothed feature, 𝑁 is the length 

of 𝑖𝑡ℎ feature (𝑓𝑖). Then, the hybrid ranking function is built 

by using equation (10), which is the combination of the 

inherent metrics weighted by the corresponding relative 

importance weights. 

ℎ𝑅𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝑖 = 

∑ [𝑤𝑖 × 𝑀𝑜𝑛𝑖 , 𝑤𝑖 × 𝐶𝑜𝑟𝑟𝑖 , 𝑤𝑖 × 𝑅𝑢𝑏𝑖]
𝑀
𝑖=1   (10) 

Finally, the ℎ𝑅𝑟𝑎𝑛𝑘𝑖𝑛𝑔 vector is sorted in descending order 

starting from the highest relevant feature to the lowest 

relevant feature. Once the feature ranking step is completed, 

the top best (𝑓𝐾) features are selected and used in prognostics.  

2.2. Adaptive prognostics approach 

In this study, a polynomial function with a degree of 3 is used 

to model the sliding chair degradation due to its good 

degradation representability. This model is given in equation 

(11). The steps of the adaptive prognostics approach are 

illustrated in Figure 2.  

 𝑓(𝑡)𝐻𝐼 = 𝛼 × 𝑡3 + 𝛽 × 𝑡2 + 𝛿 × 𝑡 +  𝛾  (11) 

where 𝑓(𝑡)𝐻𝐼 is the model output at time 𝑡 and 𝛼, 𝛽, 𝛿, 𝛾 are 

the model parameters to be estimated. The model parameters 

of each of the selected features are estimated by using a curve 

fitting toolbox of MATLAB. Then, the estimated parameters 

are used to build an adaptive degradation model for RUL 

prediction. 

A similar work based on the Dempster-Shafer evidence 

theory to build a prior model for battery degradation was 

proposed in (He, Williard, Osterman, & Pecht, 2011). The 

belief measure was assigned to each of the estimated 

parameters of the corresponding feature, by comparing the 

parameter confidence intervals. The basic idea was to assign 

a more belief weight to the parameter interval that includes 

the other parameter intervals to be used in parameter 

combination. However, the disadvantage of this evidence 

theory-based approach is that if there are no any such interval 

subsets, then it combines the parameters with the equal 

weights resulting in a simple weighted arithmetic mean 

combination. 

The difference between our approach and the work in (He et 

al., 2011) is that the calculation of parameter likelihood 
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Figure 2. The adaptive prognostics approach steps. 

 

weights are not limited to the confidence interval length. 

Instead, in our work, the estimated parameters get varying 

likelihood weights, as follows: 

 If there is no parameter confidence interval that includes 

the other parameter intervals, then each parameter gets a 

varying likelihood weights proportional to their values. 

 If one of the parameter intervals includes the other 

parameter interval(s) or has wider interval length, then a 

more likelihood weight is assigned to this parameter(s). 

Note that, our approach does not compare the parameter 

intervals, but only the likelihood of the estimated parameters. 

If one of the estimated parameters is bigger than the others, 

then, theoretically, it should have the wider length of the 

confidence interval (i.e. the estimated parameter is the mean 

of the confidence interval estimates).   

Let’s assume that there are 𝑓𝐾  selected features and the  

𝑒𝑃𝐾,𝑗 = {𝛼𝐾,𝑗 , 𝛽𝐾,𝑗 , 𝛿𝐾,𝑗 , 𝛾𝐾,𝑗 , 𝑗 = 1, . . ,4}  are the estimated 

initial parameters from each features’ degradation model. 

Then, the likelihood probability weight for the 𝑒𝑃𝐾,𝑗=1 (i.e. 

the 1st estimated parameter of model 𝐾  ) is calculated by 

using equation (12).  

ℓ𝐾,𝑗=1 =
𝑒𝑃𝐾,1

∑ 𝑒𝑃𝐾,1
𝐾
𝑖=1

=
𝛼𝐾,1

∑ 𝛼𝐾,1
𝐾
𝑖=1

;  ∑ ℓ𝐾,1 = 1

𝐾

𝑖=1

  (12) 

The same equation (12) is used to build the likelihood 

probability weights for the other 𝛽𝐾,1, 𝛿𝐾,1, 𝛾𝐾,1 parameters. 

After the calculation of ℓ𝐾,𝑗 values, the adaptive degradation 

model parameters 𝑝1 , 𝑝2, 𝑝3, 𝑝4  can be estimated by the 

weighted arithmetic mean function, which is given in (13). 

𝑝𝑗 = ∑ ℓ𝐾,𝑗 × 𝛼𝐾,𝑗;  𝑗 = 1, … ,4

𝐾

𝑖=1

  (13) 

The adaptive degradation parameters are updated at each 5-

time stamp, then the adaptive RUL is estimated. The RUL 

prediction accuracy (𝑃𝐴𝑐𝑐) is calculated by using equation 

(14) (Tobon-Mejia, Medjaher, & Zerhouni, 2012). 

𝑃𝐴𝑐𝑐 =
1

𝐵
∑ −exp |𝑅𝑈𝐿𝑟(𝑏) − 𝑅𝑈𝐿𝑒(𝑏)| 𝑅𝑈𝐿𝑟(𝑏)⁄𝐵

𝑏=1   (14) 

where 𝐵 is the number of data points used in RUL prediction. 

For the best prediction performance, the 𝑃𝐴𝑐𝑐  produces 1, 

and 0 for the worst.   

3. APPLICATION AND RESULTS 

This section explains the experimental rig setup and data 

collection procedures for point machine and presents the 

proposed approach results.  

3.1. System description and data collection 

In this study, we investigated the dry sliding-chair failure 

mode of the point machine, which is generated by an 

accelerated aging procedure (i.e. a manual contamination 

process such as soiling or scratching out the grease) of the 

sliding-chair plates. Figure 3 a) shows the in-field 

experimental test-rig setup, Figure 3 b) the turnout system 

and Figure 3 c) installed sensors for data acquisition. 

Sliding-chair plates are the metal assets of the turnout system 

that assist the point machine drive rods in moving the rail 

blades easily. The dry sliding-chair degradation data were 

generated on the real turnout system with 12 sliding-chair 

plates, in total. At first, all 12 plates were individually 

lubricated and the point machine was run 10 times in each 

movement to get the first healthy (fault-free) measurements. 

Afterward, the accelerated aging procedure took place by 

contaminating the three farthest (10th, 11th, and 12th) plates 

from the point machine to get an initial faulty state.  
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Figure 3. a) Experimental setup, b) railway turnout system and c) installed sensors. 

 

The second faulty state was generated by contaminating the 

9th plate after the first process. After each step of the 

contamination process, the point machine was run 10 times 

from normal-to-reverse (forth) and reverse-to-normal (back) 

positions to collect the measurements. The contamination on 

sliding-chair plates results in variation of performance 

measurement signals (e.g. force, current, voltage, etc.) due to 

the increasing friction force against the turnout driving rod 

force applied to move the blades. The accelerated aging 

procedure was repeated until a final and complete sliding-

chair failure state was reached.  Note that no trains went 

through the turnout system during the data acquisition 

operation. It was temporarily reserved for experimentation 

purposes only. The force and current sensor measurements 

are the most commonly used data in the literature for point 

machine diagnostics and prognostics (García Márquez & 

Schmid, 2007). In this study, the force measurements are 

used to validate the proposed approach.  

3.2. Results and Discussions 

Figure 4 shows the extracted features and normalized features 

from the raw measurements (equations (1) and (2)).  

The hybrid feature selection step-1 results are given in Table 

1 and step-2 results are given in Table 2. Table 2 presents the 

ranked features (F1{skw}, F2{krt}, F3{rmse}, F4{avg}, 

F5{stdev}, F6{Var}, F7{crst} and F8{p2p}) in descending 

order. Then, the first three features F5, F3 and F8 were 

selected as the best prognostics features and used in model 

training for the RUL prediction.  

Table 3 shows the results of the model goodness-of-fit 

statistics (R2) and the estimated parameters for each of the 

features by using the curve fitting toolbox of MATLAB. The 

R-statistics indicates that the polynomial model is suitable to 

represent the degradation of the sliding-chair plate. 

Table 1. Affinity matrix and calculated relative importance 

weights (step-1). 

 F1 F2 F3 F4 F5 F6 F7 F8 

F1 0 3.10 2.44 2.52 2.59 2.01 4.63 2.66 

F2 3.10 0 1.11 0.97 1.02 1.81 2.79 0.97 

F3 2.44 1.11 0 0.38 0.26 0.71 3.16 0.60 

F4 2.52 0.97 0.38 0 0.37 0.96 2.83 0.40 

F5 2.59 1.02 0.26 0.37 0 0.88 3.05 0.41 

F6 2.01 1.81 0.71 0.96 0.88 0 3.56 1.13 

F7 4.63 2.79 3.16 2.83 3.05 3.56 0 2.75 

F8 2.66 0.97 0.60 0.40 0.41 1.13 2.75 0 

w 0.08 0.22 0.33 0.34 0.34 0.24 0.05 0.32 

Table 2. Hybrid feature ranking results (step-2). 

 Monotonicity Correlation Robustness hRanking 

F5 0.48 0.85 0.75 0.71 

F3 0.50 0.76 0.71 0.67 

F8 0.46 0.82 0.71 0.65 

F4 0.34 0.64 0.78 0.61 

F6 0.48 0.85 0.69 0.50 

F2 0.22 0.60 0.74 0.35 

F1 0.02 0.45 0.66 0.09 

F7 0.26 0.34 0.76 0.07 

a) in-field Experimental setup b) Railway turnout system 

c)
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rs
 

Force sensor Current sensor 
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Figure 4. a) Raw measurements, b) extracted features and c) 

normalized features. 

Table 3. Estimated parameters including the 95% 

confidence interval bounds with R-statistics. 

 R2 Parameter 
Low 

bound 
Mean 

Upper 

bound 

F5 0.98 

𝛼1 9.882e-07 1.541e-06 2.093e-06 

𝛽1 -0.000135 -5.012e-05 3.475e-05 

𝛿1 -0.00466 -0.00096 0.00273 

𝛾1 -0.0157 0.0276 0.071 

F3 0.97 

𝛼2 1.119e-06 1.734e-06 2.348e-06 

𝛽2 -0.000168 -7.363e-05 2.077e-05 

𝛿2 -0.00494 -0.000833 0.00328 

𝛾2 -0.0136 0.0347 0.0828 

F8 0.97 

𝛼3 4.814e-07 9.391e-07 1.397e-06 

𝛽3 -4.991e-05 2.039e-05   9.07e-05 

𝛿3 -0.0059 -0.00286 0.00019 

𝛾3 0.0370 0.07295 0.1089 

Before triggering the prognostics tool, a faulty state from the 

degradation data should be detected first. In this paper, the 

faulty state was obtained by projecting the F5-F3-F8 feature 

combination in the representation space (Soualhi, Medjaher, 

& Zerhouni, 2015) as depicted in Figure 5.  

 

Figure 5. State detection by representation space projection. 

The representation space of the feature combination allows 

identifying the health state transitions of the sliding-chair 

degradation. Since the training features F5, F3 and F8 have 

correlated degradation pattern, it was assumed that they have 

the same cycle number where an incipient fault occurs. After 

the detection of the incipient fault, which is at cycle 69, the 

feature degradation models (𝑚1, 𝑚2, 𝑚3) are trained and the 

initial parameters are estimated as shown in Table 4.  

Table 4. Initial parameter estimates after fault detection. 

 𝛼 𝛽 𝛿 𝛾 

𝐹3(𝑚1) -4.258e-07 8.055e-05 -0.0024 0.0243 

𝐹5(𝑚2) 2.688e-07 -6.901e-06 -0.00024 0.0174 

𝐹8(𝑚3) -1.38e-06 0.0001895 -0.0055 0.0763 
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By using the equation (12) the likelihood probability weights 

of the training model parameters were calculated and the 

results are given in Table 5. 

From the initial parameter estimates (see Table 5), the 

combined parameters can be estimated by using equation 

(13). The combined parameters 𝑝1, 𝑝2, 𝑝3, 𝑝4 for the adaptive 

degradation model (𝑎𝑀) are given in Table 6. Figure 6 shows 

that the combined parameters and their confidence intervals  

(C.I.)  are adapted to the change of the initial model parameter 

estimates and their C.Is. The parameter updating is iteratively 

repeated as new data points are available until the end-of-life 

(EoF) threshold value (see Figure 2).  

Table 5. Calculated likelihood probability weights. 

𝑚1 ℓ1,𝑗=1 𝑚2 ℓ2,𝑗=1 𝑚3 ℓ3,𝑗=1 

𝛼1 0.1355 𝛼2 0.2177 𝛼3 0.6468 

𝛽1 0.5102 𝛽2 0.1890 𝛽3 0.3008 

𝛿1 0.1316 𝛿2 0.5170 𝛿3 0.3515 

𝛾1 0.3400 𝛾2 0.3281 𝛾3 0.3319 

Table 6. Combined adaptive degradation model parameters. 

 𝑝1 𝑝2 𝑝3 𝑝4 

𝑎𝑀 -1.4038e-06 1.6133e-04 -0.0044 0.0569 

Figure 7 shows the RUL prediction results for the models 

𝑚1(𝑝𝑅𝑢𝑙1), 𝑚2(𝑝𝑅𝑢𝑙2), 𝑚3(𝑝𝑅𝑢𝑙3)  and 𝑎𝑀(𝑎𝑅𝑢𝑙) , 

whereas Table 7 presents the RUL prediction accuracies 

(𝑃𝐴𝑐𝑐𝑚1, 𝑃𝐴𝑐𝑐𝑚2, 𝑃𝐴𝑐𝑐𝑚3 , 𝑃𝐴𝑐𝑐𝑎𝑀). As can be seen from 

the given Table 7 , the proposed adaptive prognostics 

approach improved the RUL prediction accuracy, which 

proves the applicability in railway point machine monitoring.   

 

Figure 6. Estimated parameter confidence intervals (C.I.). 

Table 7. RUL prediction accuracy. 

 𝑃𝐴𝑐𝑐𝑚1 𝑃𝐴𝑐𝑐𝑚2 𝑃𝐴𝑐𝑐𝑚3 𝑃𝐴𝑐𝑐𝑎𝑀 

𝑃𝐴𝑐𝑐 0.84 0.83 0.91 0.92 

 

 

Figure 7. RUL prediction results for a) m1, b) m2, c) m3 and d) adaptive degradation model. 
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4. CONCLUSION 

In this paper, a new adaptive prognostics approach based on 

a hybrid feature selection method was proposed for point 

machine sliding chair monitoring. A polynomial model was 

defined for each of the selected features and the model 

parameters were estimated. Then, the adaptive degradation 

model was built based on the likelihood probability weights 

calculated by using the initial model parameter estimates of 

the selected prognostics features. The model parameters were 

updated, iteratively, and the RULs were estimated. The 

results showed that the proposed prognostics approach 

improved the RUL prediction accuracy for the sliding-chair 

degradation.    

As a future work, we plan to extend the proposed approach 

and to develop an adaptive system-level prognostics 

approach based on the extracted features from different 

components for condition monitoring and predictive 

maintenance. 
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