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Abstract—The rapid advancements of the Internet of Things
(IoT) enables maintenance strategies to be applied everyday to all
sectors, IoT based health management plays an important role
For producing quickly, with high quality while decreasing the
risk of production break due to a machine stop, it is necessary
to maintain the equipment in a good operational condition.
This requirement can be satisfied by the implementation of
maintenance strategies for faults detection . In this paper, a
novel method called deep learning based on Short-Time Fourier
Transform (STFT) is developed for fault diagnosis. An experi-
mental analysis is carried out using a dataset under different
operating conditions of speed and loading to substantiate the
utility of the proposed strategy. Also a multi-fault deep learning
classifier based on STFT is constructed for different faults in this
paper. Hence, the purpose is to design an automatic detection
system for mechanical components defects based on supervised
classification. The diagnosis accuracy assessment is carried out by
conducting various experiments on acceleration signals collected
from a rotating machinery under different operating conditions.

Index Terms—Deep learning, CNNs, Diagnostics, faults detec-
tion, classification, STFT

I. INTRODUCTION

The ability to forecast machinery failure can help reducing

maintenance costs, operation breakdowns and safety risks and

gaining importance in industry since it may limit the loss

of production due to a machine stopping [1]–[3]. Traditional

signal processing techniques, including time-domain [4], time-

frequency analysis [5] , linear prediction cepstral coefficients

(LPCC) [6]...etc. They may result in false information, because

the mechanical faults may be non-stationary and the random

nature of defect growth by crack propagation in mechanical

components, because each feature is effective for a defect

at certain stage [7]. For improving the efficiency and ef-

fectiveness of fault diagnosis of rotating machines; Artificial

intelligence have been widely developed in recent years, such

as hidden Markov model (HMM) [8], expert systems [9].

Neural networks, depend upon the statistical characteristics of

large-scale samples [10]. It is impossible to obtain good gener-

alization performances when the number of training samples is

insufficient. Because a neural network usually uses a gradient

descent algorithm to update its weights, generalization of the

method is poor. Moreover, there are some defects in neural

networks that are difficult to solve. For example, the number

of hidden neurons is difficult to determine and the final weights

are greatly influenced by the choice of initial weights.

The recent developments of failure prognostics have focused

on implementing advanced time-frequency analysis to extract

the robust features for representing the health indicator [11].

The concept of feature extraction for accurately assessing the

bearing performance degradation is a critical step toward re-

alizing an online bearing condition monitoring platform. Peng

et al. [12] provided a review and summarized the development

and applications of wavelet transform on machine condition

monitoring and fault diagnosis over the past years.

Several research have been studied the feasibility of ANN

for faults detection and isolation. However, its accuracy is

highly dependent on the neural networks structure such as

number of hidden layers and kernel function. for the im-

provement of the traditional RNN, a long short term memory

based neural network scheme was proposed by Yuan et al.

[13] utilizing Long Short-Term Memory neural network to

get good diagnosis and prediction performance in the cases

of complicated operations, hybrid faults and strong noises for

RUL estimation of aero-engines in the cases of complicated

operations, hybrid faults and strong noises. However, it still

to develop an effective approach based on historical data

such as deep learning. some properties which make intelligent

conditions monitoring method difficult to develop such as: the

high dimension, randomness and low SNR (signal-to-noise

ratio) [14].

Recently, several learning methods has emerged called as

deep learning that improved to learn higher level abstractions

from the raw data [15]–[18], deep learning models automati-

cally learn a hierarchical feature representation from raw data.

CNNs, auto-encoders and deep belief network are the mostly

known models in deep learning. and applied in many research

area such as: speech recognition [19], image processing [20],

[21], machinery condition monitoring and health assessment

[22]–[25]. CNNs have gained a special status over the last

few years as an especially promising form of deep learning.

The aim of this study is to estimate the RUL of aero-engine

units accurately. A good prognostic performance prediction

is achieved with the proposed approach using raw feature

selection, data preprocessing and sample preparation with time

window.
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The main contribution of this paper is to improve the accu-

racy of fault diagnosis of rotating machinery using STFT and

deep learning. This approach is divided in two phases: features

extraction phase and applying the CNNs for data classification

and visualization phase. This step, called the convolution step.

In CNNs, the STFT matrix is called the ’kernel’ and the

matrix formed by sliding the filter over the feature map and

computing the dot product is called the ’Convolved Feature’

or the ’Feature Map’. It is important to note that filters

act as feature detectors from the original input matrix; To

overcome the difficulties and applied it to fault detection and

classification in this paper Pan et al. [14] the network consists

of split layer, predict layer, update layer, pooling layer and full-

connection layer. The split layer used to reduces the length

of representations. Predict and update layer used to extract

and deep representations of input data. After that, the pooling

layer is used to reduce data volume, and the last step a full

connection layer used for data classification. The advantages of

this proposed approach is used to reduces the need for feature

extraction and selection. The architecture that can be adapted

to the problems easily. Firstly, the collected vibration signals

are processed by STFT which decomposes them into a short

frame. Finally, the performance of the proposed method was

verified by a fault diagnosis case in a gearbox. The results

indicated that this new method could judge and classify the

multi-fault of rotating machinery quickly and effectively. This

technique used for enhancing mechanical components fault

diagnosis. Particularly, we investigate how can deep learning

select features from STFT matrix in order to maximize the

performance of the classifier.

This paper is organized as follows. Section 2 presents the

description of the proposed method. Section 3 presents the

STFT technique. Section 4 describes the proposed method

based on CNNs for classification. Section 5 is dedicated to

the experimental verification and results discussion and finally,

section 6 concludes the paper.

II. DESCRIPTION OF THE PROPOSED METHOD

The rapid advancements of the Internet of Things (IoT)

enables maintenance strategies to be applied everyday to all

sectors, thus creating a standard shift that is opening up signif-

icant new business opportunities. Developments are illustrated

with cases of inventions from industrial manufacturing and

consumer products. IoT based health management plays an

important role For increasing plant reliability and availability,

stabilizing the power supply with fewer current interruptions,

and providing the industry with a good reputation and trust.

Another advantages is ensuring that aging power infrastructure

is appropriately monitored for unplanned failures.

Various conditions monitoring research works have been

conducted for improving the performance classification. In

Fig.2, the three main steps of a generic condition based

maintenance CBM process are indicated; namely: data ac-

quisition, processing and maintenance decision making steps.

Data acquisition step is intended to collect the data related to

system health. Data processing phase is devoted to analyze the

Fig. 1. Open monitoring system architecture.

acquired data and finally, in the maintenance decision-making

step, effective maintenance policies will be obtained based on

information analysis.

Decision

Raw signal
- Acceleration

- Speed

- Torque

- Filtering

- Features extraction

- Selection

Diagnostic
- Faults detection

- Isolation

Maintenance
- Planning

- Scheduling

Data collection Preprocessing

Fig. 2. Steps of a condition monitoring System.

III. PRINCIPLE OF STFT

Short-Time Fourier Transform (STFT) is a popular method

for analyzing nonstationary signals and is one of the most

straightforward frequency domain. The basis for the STFT

is a series of sinusoids. The visual representation in the

time-frequency domain using STFT called spectrogram, and

a scalogram uses the WT. Spectrograms add time to the

analysis of FFT allowing the localization of both time and

frequency. The STFT was introduced by Gabor and applied in

many research area such as: speech processing image . First

Gabors truncated Gaussian window was replace by optimal

finite duration windows having better spectral properties, such

as the Hamming and Kaiser windows. Second, zero-padding

was introduced to increase the resolution in the frequency

domain, to any desired degree.

The STFT of the signal x(t) is defined as:

X(t, f) =

+∞∫
−∞

x(τ)h(t− τ)e−j2πfτdτ (1)
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where h(t) should be a lowpass filter, and ‖h‖2 = 1.X(t, f)
can be interpreted as the correlation between x(τ) and

h(t− τ)e−j2πfτ . Note that h(t− τ)e−j2πfτ has its energy

concentrated at time t and frequency f .Thus, |X(t, f)|2 can

be viewed as the energy in x(t) at frequency f and time t.
Often, one displays the energy at each time and frequency

pair, i.e.,P (t, f) = |X(t, f)|2P (t, f) is known as the spec-

trogram (SP ) of x(t). The STFT has a fundamental property

that simplifies the interpretation of the resultant distribution:

magnitude-wise shift invariance in both time and frequency,

this is one of the most important properties.

IV. DEEP CNNS-BASED GEARBOX FAULTS DIAGNOSIS

This section presents the architecture of deep learning CNNs

for health assessment and RUL estimation from different

sensor signals. The inputs features are extracted and selected

from different operating condition history. The output values

are the RUL of bearings at corresponding lifetime. In honor

Yann LeCun [26] an early pioneer of CNNs and the first

to reduced them to practice by training them with gradient

descent . for image processing, which is featured by two key

properties: spatially shared weights and spatial pooling

The deep learning algorithms are machine learning tech-

nique based on distributed representations. Deep learning

attempts to learn high-level features in data by using struc-

tures composed of multiple non-linear transformations. The

frequently used models are CNNs ans Deep Belief Network

(DBN).

CNNs is also a type of feedforward neural network which is

composed of alternating convolutional and subsampling layer

[27], [28]. CNNs are designed to use minimal amounts of

preprocessing, which is the main difference compared to other

deep architectures.

Firstly, we assume that the input sequential data is y =
[y1, ...yn] that n is the length of the sequence and yi ∈ �d at

each time step. Convolution: the dot product between a filter

vector u ∈ �md and an concatenation vector representation

yi:i+m−1 defines the convolution operation as follows:

ci = ϕ(uT yi:i+m−1 + b) (2)

where b and ϕ denotes bias term and non-linear activation

function, respectively. yi:i+m−1 is a m − length window

starting from the ith time step, which is described as:

yi:i+m−1 = yi ⊕ yi+1 ⊕ ...⊕ yi+m−1 (3)

As defined in Eq. 3, the output scale ci can be regarded as

the activation of the filter u on the corresponding subsequence

yi:i+m−1. By sliding the filtering window from the beginning

time step to the ending time step, a feature map as a vector

can be given as follows:

cj = [c1, c2, ..., cl−m+1] (4)

where the index j represents the jth filter. It corresponds to

multi-windows as:

{y1:m, y2:m+1, ..., yl−m+1:l}. Max-pooling: Pooling layer is

able to reduce the length of the feature map, which can

further minimize the number of model parameters. The hyper-

parameter of pooling layer is pooling length denoted as s.

MAX operation is taking a max over the s consecutive values

in feature map cj .

Then, the compressed feature vector can be obtained as:

h =
[
h1, h2, ..., h l−m

s +1

]
(5)

where hj = max
(
c(j−1)s, c(j−1)s+1, ..., c(js−1

)
. Then, via

alternating the above two layers: convolution and max-pooling

ones, fully connected layers and LSTM layer are usually added

as the top layers to make estimation.

First feature map after 
convolution

First feature map 
after pooling

Second feature map 
after convolution

Output Layer

-
-
-Speed
-Torque

Input Data

First pooling layer

second pooling layer

Class1 Class2 Class3 ...... Class N

Fig. 3. Illustrations of the proposed CNNs for faults diagnosis

The proposed method diagram for the bearings health

assessment and RUL estimation shown in figure 5. The

method is decomposed into two main phases the preprocessing
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data and training data using deep CNNs. the bearing dataset

prepared for the training by computing the features extraction

selected in this study using CNNs. Then training and testing

datasets are prepared for deep CNNs. In the second phase,

which is achieved on-line, deals with the utilization of the

model generated continuously to assess the health state of

the bearing and RUL prediction. All the layers use activation

functions tanh,

V. RESULTS AND DISCUSSION

A. Experimental setup

To demonstrate the effectiveness of our developed clas-

sification framework, figure 4 illustrates the experimental

setup used to accomplish our experience and data collection.

The shaft is driven by an electric motor and the rotation

speed was varied between 0 and 6000 rpm. The bearings

typeMBManufacturingER− 10K have 8 ball rollers in a

single row, the pitch diameter is 33.5 mm , the roller element

diameter is 7.93 mm and the contact angle is 0◦. The measured

signals consist of two acceleration signals given by an Endevco

6259M31 Accelerometer (10mv/g, +/- 1% error, Resonance

� 45KHz) which is installed in input and output position

on the gearbox housing. The data sampling rate was 66666.67

Samples per Second (200KHz/3). The gearbox contains three

shafts, 4 gears ( the number of teeth is 32, 96, 48 and 80) and

6 bearings. The overall objective of the data was to specify

the condition of each of the mechanical components and to

specify the particular fault if it was not in a healthy state.

Fig. 4. Experimental setup.

B. Experimental verification

In this section, a detailed description of our proposed

algorithm is given. Before stating the approach, a flowchart

of the classification system is depicted in Figure .5 .

The diagram of the CNNs method proposed for conditions

monitoring shown in Figure 5. The method is decomposed

into two main steps. The first step is done off-line and aims at

STFTs generating and classification. When the CNNs classifier

is trained, the kernel function must be determined by user. The

second step, which is achieved on-line, utilizes the trained data

to predict the faults.

Raw signalRaw signal

CNNs Classifier

Output

CNNs Classifier

STFTSTFT

Features extraction

OfflineOnline

TrainingTesting

Fig. 5. Framework of the faults detection procedure

Figures 6 show the sensor measurements of the healthy and

degraded state of the system (Acceleration) respectively.

Fig. 6. Acceleration signals measurement of healthy system (top) and defect
(bottom)

We decompose the monitoring signals of each loading data
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above two conditions with STFTs method for computing the

feature extraction. It is noticed by signal analysis that the

defect information of bearings and gears is mainly included

in the first three STFTs components. To find more than two

classes in fault diagnosis of rotating machinery there are

several fault classes such as bearing faults, gears broken,

chipped, misalignment...etc. The fault types and numbers are

shown in I and the same defect with helical gear. Here we

consider healthy as a special fault class.

TABLE I
THE DIFFERENT FAULTS CLASS

Part Gear Bearing
Class 32T 96T 48T 80T IS:IS ID:IS OS:IS

Spur 1 G G G G G G G
Spur 2 C G E G G G G
Spur 3 G G E G G G G
Spur 4 G G E B Ball G G
Spur 5 C G E B Inner Ball Ooter
Spur 6 G G G B Inner Ball Outer
Spur 7 G G G G Inner G G
Spur 8 G G G G G Ball Outer
Good (G); Broken (B); C (C); Eccentric (E); Input Shaft (IS);
Output Shaft (OS); Idler Shaft (ID).

For the gears faults identification with multiple-class (crack

teeth ,broken teeth and shipped ... etc.), generalizing method

can be introduced to decompose the multiple-class problems

into two-class problems which then can be trained with CNNs.

In general, vibration signals of healthy bearings are Gaus-

sian in distribution. The value of speed and load, therefore the

value of the kurtosis is close to three for the vibration signals

of a healthy system .

To select the optimal feature STFTs that can well represent

the condition of rotating machinery, a feature selection method

based on the performance classification is shown in table II.

in order to show the effectiveness of the approach, algorithm

performance has been compared with SVM and MFCC (see

[29] ) respectively. The fault detection rates on our test dataset

are shown in Fig.7. As a binary classification, our algorithm

has achieved ideal results. deep learning method can learn the

data’s structural and distributed characteristics, and fully tap

the local features and global features.

In Table II, classification process by CNNs performed on

the (STFTs) for features extraction. The classification ratio of

this process among 88.52% until 100%.

TABLE II
PERFORMANCES CLASSIFICATION COMPARISON

Gear Defect B C I O
Spur Rate %(SVM) [29] 100 100 99.28 100

Helical Rate %(CNNs) 100 100 100 100
Spur Rate %(SVM) [29] 88.52 93.64 95.28 90.71

Helical Rate %(CNNs) 98.56 99.45 100 97.89

The multi-fault classifier is trained by 50 training samples,

which include 8 fault classes, with 6 samples for each fault

class. The faults and fault number are shown in Table I. We

compute directly using original data without preprocessing the

signal to extract its features. There are 8 fault classes (include

healthy class). Choosing a kernel function for classifiers has

considerable impact on classification results.

However, there does not exist general rules for choosing

the kernel function, the best kernel function depends on the

classification problem considered. the limitation of the other

technique such as support vector machine that the theory

only really covers the parameters determination for a given

regularisation value and kernel parameters . In a way the

SVM moves the problem of over-fitting from optimizing the

parameters to model selection. Sadly kernel models can be

quite sensitive to over-fitting the model selection criterion

[30]. In general, SVM with kernal trick is equivalent to

deep learning with only one hidden unit and cannot handle

multilayers of features, as deep learning does. This difference

between svm and deep learning becomes important if you

have a big data sets with complicated structures. for the same

problem of our study the svm is limited to 10 classes for

classification.

Fig. 7. Faults classification for different classes

In figure 7 shown the comparison between the proposed

method. The CNNs based on STFT successfully adapted to

classification task and achieved better accuracy.

It is worth noting that the Gaussian kernel is the only kernel

function used in our experiments. In fact, on each dataset

we perform search for optimal combination of kernel width

and the number of principal components for transformation.

To speed up the search, we discard any eigenvector whose

corresponding eigen value is smaller than 104. To achieve this,

the CNNs based on STFTs is proposed; as it is a very powerful

tool that can determine a good classification of the system.

To further verify the accuracy of the proposed STFTs, the

experiment of testing samples of eight classes shown in 4

collected for different loading and speed. The previous trained

CNNs classifier is employed to test the robustness of the

feature extraction algorithm. Table II lists the classification

accuracies of the four defects (B, C, I, O), respectively. As

shown in the table, CNNs combining with the STFT works

well in general. The recognition rate of faults detection is

higher to 99%.

that is 100%. Employing the proposed STFTs features, the

classification performance is generally better than using the

original STFTs and the motor speed. The experiment results in
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this work indicated that the CNNs based on STFTs method has

better effectiveness than traditional artificial neural network.

The multi-class faults classifier designed in this study has

many advantages: simple algorithm, good classification and

high efficiency. It is very suitable for online monitoring and

diagnosis. CNNs provides us a new and useful method for

developing intelligent diagnosis.

VI. CONCLUSION

To construct an efficient monitoring system, we investigated

the acceleration signal based fault detection of gearbox in

this paper. An enhanced vibration feature extraction algorithm

based on the popular STFT has been developed. The multi-

class classification algorithm has been then built on the CNNs

technique. Real vibrations signals of eight representatives fault

components have been collected to test the effectiveness of

the proposed algorithm. The proposed method were developed

based on the acceleration signals measurements the robustness

of the algorithm on vibration signals captured under different

loading and speed motor has been presented. However, the

automatic feature selection using CNNs is better than the other

selection techniques. The real collected testing results shown

that our algorithm is able to provide promising performance

in faults detection gearbox equipment classification. The po-

tential of STFT-CNNs has been highlighted for classification.

Particularly, the simulation results of CNNs classier have ver-

ied that the proposed method has good efciency in classifying

eight types of defect with different characteristics.
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