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Abstract
Prognostics and health management (PHM) for condition monitoring systems have been proposed for predicting faults
and estimating the remaining useful life (RUL) of components. In fact, in order to produce quickly, economically, with
high quality and reduce machine tool downtime, a new intelligent method for tool wear condition monitoring is based on
continuous wavelet transform (CWT) and blind source separation (BSS) techniques. CWT is one of the most powerful
signal processing methods and has been widely applied in tool wear condition monitoring. The CWT used to transform one
set of one-dimensional series into multiple sets of one-dimensional series for preprocessing. After that, BSS was applied
to analyze the wavelet coefficients. The signal energy evolution of each independent source obtained by BSS was used for
health assessment and RUL estimation, the idea is based on the computation of a nonlinear regression function in a high-
dimensional feature space where the input data were mapped via a nonlinear function. Experimental results show that the
proposed CWT-BSS method can reflect effectively the performance degradation of cutting tools for the milling process. The
proposed method is applied on real-world RUL estimation for a given wear limit based on extracted features.

Keywords CNC milling · Tools wear · CWT · BSS · Feature extraction · RUL

1 Introduction

Machining process performances become a key issue for
reliability improvement. In order to decrease the loss of
production and probability of failure, condition-based main-
tenance (CBM) used condition monitoring technologies to
detect and predict the risk failure of equipment working
under different operating conditions [1–5]. In view of its
importance in automation, modernization, sustainability, cost
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reduction, and control of manufacturing processes, extensive
research has been carried out in the area of tool condition
monitoring (TCM).

Several signal processing methods for failure prognostic
are closely related to feature extraction from collected signals
[6–8]. Many of these methods are analyzing the signal in
time domain, frequency, and time-frequency domains [9,
10]. Lauro et al. [11] present a discussion for the first
steps involved in choosing and defining various techniques
that may be used to monitor machining processes. The
limitation of these methods are sensitive to the cutting
conditions and cannot be used to estimate the current state
of the wear in the presence of different cutting conditions
throughout the process [12]. The cutting force signals,
vibration table, spindle power consumption, and cutting and
acoustic emission are all shown to be correlated with tool
wear [13, 14]. The force signal is the most widely used
measurement in TCM. Due to the differences in the nature
of sensors, each can extract different information from
the machine [15]. Moreover, it has been shown that time-
frequency analyses such as continuous wavelet analysis
or wavelet packet decomposition can provide valuable
information about the health state of the tool in different
machining operations [16].
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When monitoring complex systems, mixtures of signals
have been measure by sensors that are unique to compo-
nent. The different signals collected from these components
during operation contain information about the component
conditions or machine. The isolating component signal from
sensor signals can be a challenge. As an example, in condi-
tion monitoring of a rotating machine, if some components
generate vibration signals at the same frequencies, they can-
not be separated using traditional signal processing. The dif-
ferent signals collected by sensors (vibrations, forces, and
acoustic emission) for TCM are defined by the combina-
tion of vibration energy produced by different components
such as spindle, cutting tool, electric motor, workpiece, etc.,
in addition to the noise. In this mixture of signal measure-
ments, it is difficult to obtain reliable monitoring criteria
to identify in situ tool failure during the machining pro-
cess because the collected signals are usually contaminated
with a great deal of noise. However, developing degrada-
tion signals from component sensors is an important issue
to estimating the remaining useful life (RUL). However,
in practice, the collected vibration signals are mixed with
many vibration signals relevant to the cutting tool, which
contaminate with each other in feature extraction processes
and decrease the monitoring reliability. In this study, blind
source separation (BSS) has been proposed for signal sepa-
ration in milling operations for identifying different source
collected data.

Therefore, it is important to develop a robust filtering
scheme for improving the signal and feature extraction.
A BSS proposed for recovering the various independent
sources exciting a system was given only in the measure-
ments of the outputs of that system [17–20]. BSS has
become an appealing field of research with many technolog-
ical applications areas such as medical, image processing,
and communications. Lately, it was applied to condition
monitoring of rotating machinery [21–24]. However, lit-
tle has been investigated with the application of the BSS
for tool wear condition monitoring. Shao et al. [25] devel-
oped BSS technique to separate those source signals in
the milling process. A single-channel BSS method based
on wavelet transform and independent component analysis
(ICA) is used, and source signals related to a milling cut-
ters and spindle are separated from a single-channel power
signal. Zhu et al. [26] introduces a FastICA algorithm as
a preprocessor to provide noise-free forces for later corre-
lation to tool flank wear. It was identified that there exist
both Gaussian and non-Gaussian noises. It applies the Fas-
tICA for these blind source separation and then discards the
separated noise components. The BSS process is treated as
signal denoising in this approach. Shi et al. [27] proposed an
approach based on empirical mode decomposition and inde-
pendent component analysis is presented to deal with the

blind source separation problem of cutting sound signals in
face milling with the objective of separating cutting oriented
sound signals from those background noises. Gandini et al.
[28] developed a convolutive version of ICA to overcome
technical and metrological problems arising. This convolu-
tive modification of ICA was used to demix the recorded
signal and to recover the technological fingerprint over it.

The purpose of this research is focused on the separation
of dependent sources and proposes an algorithm combining
continuous wavelet transform (CWT) and BSS. The CWT
is used to reduce the computational cost of covariance
estimation.The method consists of three processing stages.
In stage one, the sensor signal collected from milling cutters
decomposed into several groups of signals based on CWT.
In stage two, the BSS algorithm is used to deal with these
CWT signals, and hence to complete the separation process.
In addition, the proposed CWT-BSS algorithm processes the
multi-channel cutting signals [29]. Finally, the health state
of cutting tools was identified by health state calculation
of cutting tools, the health indicator obtained by computing
signal energy of independent signals.
The main investigation objectives of this paper are as
follows:

– Proposes a new data-driven approach for prognostics
based on CWT and BSS

– The model parameters are optimized by testing different
techniques for BSS that facilitates the application of the
proposed method

– The combination of CWT and BSS techniques is very
significant

– The degradations dataset [29] and comparisons with the
related state-of-the-art results validate the effectiveness
and superiority of the proposed method

– The BSS method-based CWT is developed, and source
signals related to a milling cutter and machine are
separated

– To the best of our knowledge, the BSS method based on
CWT is applied to predict tool wear for the first time

– Experimental results shown that the predictive model
trained by CWT and BSS is very accurate

– The experiments with different cutting tools illustrate
that the separation strategy is robust and promising for
cutting process monitoring.

The paper is organized as follows: Section 2 gives a
description of the proposed method; we describe the CWT-
based BSS algorithm for dependent sources in detail. In
Section 3, CWT-based BSS algorithm and the procedure
of the proposed BSS algorithms are given. Simulations
illustrate the good performance of the proposed method,
a case study utilizing a real data to validate the proposed
method. Finally, Section 4 concludes the paper.
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Fig. 1 Steps of the proposed method

2 Description of the proposedmethod

Various prognostic research works have been conducted for
predicting the RUL prediction. In Fig. 1, there exist three
steps to be followed in the TCM process:

The data acquisition step is to collect the data related to
system health; data preprocessing is to analyze the acquired
signals including centering and filtering to remove the
offset in the measured signals. In the preprocessing step,
a CWT is used to decompose signals into coefficients for
taking a certain scale of wavelet coefficients that contains
information about sources as the input signal for BSS. The
energy signal of independent source-based regression was
used for the health assessment; in maintenance decision-
making step, effective maintenance policies will be obtained
based on information analysis.

2.1 Basics of continuous wavelet transformation

Wavelet transform is a mathematical tool that converts a signal
into a different form. CWTwas developed as an alternative to
the short-time Fourier transformation in order to overcome
typical resolution problems [30]. The wavelet used in CWT
is defined by different wavelet basis function [31].
Given a mother wavelet function ψ(t) , a series of wavelet
can be defined as:

ψ(t)a,b(t) = 1√|a|ψ(
t − b

a
), a, b ∈ �, a �= 0 (1)

where a is the scale parameter and b is the translation
parameter.

Mathematically, a wavelet is a square integrable function
ψ(t) that should satisfy the condition:

Cψ =
∫

R

|ψ(ω)|2
|ω| dω < ∞ (2)

where ψ(ω) denotes the Fourier transform ofψ(t) , and
R represents the real number. The continuous wavelet
transform of a signal x(t) can be described as follows:

WT (a, b) = √|a|F−1 [
X(f )�∗(af )

]
(3)

whereX(f ) and�(f ) are the Fourier transform of x(t) and
ψ(t), respectively, and F−1 represents the inverse Fourier
transform.

Accordingly, the CWT can be viewed as a filtering of the
signal by a dilated version of the mother wavelet ψ(t). The
bandwidth and central frequency of the filter is determined
by the scale parameter a of the wavelet function.

2.2 Background on blind source separation

BSS is a method for recovering the signal produced by
individual sources from their mixtures (Fig. 2). In the
simplest case, m mixed signals from m different sensors
xi(k) are assumed to be linear combinations of unknown
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mŝ
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Fig. 2 Blind source separation model
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mutually statistically independent signals from n vibrating
components sj (k) with noise. This can be stated as:

X(t) = A.S(t) + N(t) (4)

The mixed sources or the coefficients obtained by CWT,
S(t) = [S1(t), ..., Sn(t)]T is mixed using a matrix, A =[
aij

] ∈ �m×n to produce a set of “mixed” source signals,
X(t) = [X1(t), ..., Xn(t)]T as follows, in this case m = n.
If m > n, then the equations system is overdetermined
and can be unmixed using a conventional linear techniques.
If n > m, the system is underdetermined and a nonlinear
techniques must be employed to recover the unmixed source
signals (Fig. 2).

Several methods for BSS have been reported in the
literature [32, 33]. These techniques can be classified
into several major approaches: non-gaussianity, maximum
likelihood, minimum mutual information, neural network
modeling, and algebraic [34, 35]. Moreover, there are
several famous algorithms which are based on the algebraic
approach [24] such as FastICA, AMUSE, SOBI, JADE, and
COMBI. Five algorithms implemented in this study were
selected from the most used in the fault diagnosis [36]
presented in this paper. The performance of each technique
is tested and the results were shown from different mixed
signals used (vibrations, force, and acoustic emission).

In order to obtain an accurate and quantitative measure
of the performance of the algorithms, Chen et al. [37]
examined various performance measures used in different
BSS implementations. The performance measuring criteria
used here are crosstalk, performance index, signal-to-
interference ratio, and distance to the diagonal matrix.
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3 Proposed strategy of combining BSS
with wavelet

The proposed method of the CWT-BSS for tool’s wear
estimation was given in Fig. 3. The method is decomposed
into two main phases. The first phase is performed off-
line and aims at generating an appropriate model that
allows describing the behavior of the cutter’s degradation.
Specifically, the goal of this phase is to compute the model
by regression. The second phase, which is achieved on-
line, deals with the utilization of the model generated
continuously to assess the health state of the tools and to
predict its future one leading to a calculation of the RUL
value.

3.1 Experimental setup

The experimental study shown in Fig. 4 is for tool wear
condition monitoring in high-speed milling cutters [38].
Provided by Simtech Institute in Singapore is a high speed
CNC milling machine (Roders Tech RFM 760) [29]. The
data collected from three kinds of sensors (accelerometer,

Table 1 Cutting conditions

Cutters 6 mm Ball nose tungsten carbide

Materials Inconel 718 (Jet engines)

Spindle speed 10400 RPM

Feed rate 1.555 mm/min (50 μm/tooth)

Y cut depth (radial) 0.125 mm

Z cut depth (axial) 0.2 mm

Sampling data 50 KHz/channel



Int J Adv Manuf Technol

Table 2 Data acquisition files
Column Measurement (unit) Type

1 Force (N) Kistler 9257BA dynamometer triaxial

2 Vibration (g) Kistler 8762A50 ceramic shear triaxial

3 Acoustic emission-RMS (V) Kistler 8152B121

4 Tool wear measurement Olympic microscope

5 Data acquisition PCI 1200 board

force, and AE) are attached to the workpiece shown in Table 2.
Six individuals of three flute cutters (C1, C2,. . . C6). Each
tool cutter completes 315 cuts with the same work piece,
with identical condition, and with the same cutter; the
cutting condition and the data acquisition (315 files have
created a total of 6 sets) were shown in Table 1.

The proposed approach for data-driven prognostics
was based on BSS and CWT, where xi =
(Fx, Fy, Fz, Vx, Vy, Vz, AE). The input data description
can be found in Table 2. The dynamometer consists of
three-component force sensors in three dimensions. Each
dynamometer sensor contains three pairs of quartz plates;
in the z direction, the sensor is sensitive to pressure and in
the x and y direction, the sensor is sensitive to shear. Three
accelerometers with type Kistler 8762A50 ceramic shear
triaxial, mounted on the workpiece, were used for vibration
measurements in three perpendicular axes. An AE sensor
was used to monitor a high-frequency oscillation, mounted
on the workpiece. The data used in this study was obtained
from [29, 39]. Some details of the experiment are presented
in this section.

3.2 Source separation

Figure 5 show the sensor measurements of the first and last
cycle of machining for different sensors (force, acceleration,
and AE). The decomposed results of signals with degraded
cutter by using CWT are given in Fig. 6. That has six
levels. In general, the raw signals of healthy cutting tool
are Gaussian in distribution for any value of speed and
load; the kurtosis value is close to three .The appearance of
wear degradation on the cutting surfaces resulted in kurtosis
values that are greater than three; if the damage increases,
the kurtosis values are back to three.

In this study, the wavelet Daubechies “db4” have
been used to decompose cutting forces into six levels.
The different frequency bands represent the force from
different wear levels. In the process of signal analysis, the
CWT is employed firstly to decompose the raw cutting
signal by CWT and get the coefficients. Through CWT
decomposition, the coefficients are obtained. Figure 6
shows the coefficients extracted from collected signals
(vibrations, force, and AE).
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Fig. 6 CWT coefficients of
force signal in x dimension
(left), source separation using
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Separated signals based on Ewasobi [40, 41] are shown in
Fig. 6. The proposed algorithm was performed on multiple
channel cutting signals. Cutting force signals in the milling
process had been collected using three kinds of sensors in
three dimensions (Fig. 4).

The force signal correlates well with tool wear condition
monitoring [26]. However, the noise component in the signal
is very difficult to separate. The noise component in the
signal for TCM is usually very high and difficult to separate
[9]. Figure 6 shows a force signal and noise. It can be
observed that the force signal is very highly non-stationary.

3.3 Statistical dependence

In order to confirm the validity of the proposed method
CWT-BSS, the source correlation values of different sources
obtained by CWT coefficients are shown in Table 3 for the
vibration signal in Z dimension at the cycle 150.

Separated signals based on efficient weights-adjusted
second-order blind identification algorithm (EWASOBI)
that are shown in Fig. 6 have high dependent; the other
BSS technique does not have a good separation of the
original source signals, but the proposed approach based
CWT can separate the desired signals properly and given
a good correlation. The proposed CWT-BSS algorithm can
separate the signals properly. Next, for comparison between
different BSS algorithms along the performance criteria that
are statistical, the results are shown in Table 1.

In order to verify the advantage of the proposed CWT-
BSS method, signal processing with BSS only was carried
out in the present work. The signal collected in milling
process had been collected using three sensors (vibrations,
force, and acoustic emission) shown in Fig. 4. The observed
signals obtained by computing the wavelet coefficients have
been selected as the mixtures for BSS only. Figure 6 shows
the separated results with EWASOBI.

Table 3 The correlation values between sources

CWT coefficients Ŝ1 Ŝ2 Ŝ3 Ŝ4 Ŝ5 Ŝ6

Source 1 −0.9997 0.0087 0.0222 −0.0165 −0.0058 0.0358

Source 2 0.0442 −0.9984 −0.0473 −0.0304 0.0265 0.0150

Source 3 0.0130 −0.0227 −0.9922 −0.1838 0.0970 0.0067

Source 4 0.0012 −0.0062 −0.1048 0.9847 0.0206 −0.1125

Source 5 0.0205 −0.0177 −0.0929 −0.0250 0.9918 −0.0009

Source 6 0.0212 0.0270 −0.0051 0.0944 −0.1317 −0.9997



Int J Adv Manuf Technol

Table 4 Performance criteria
for various BSS algorithms Algorithm SOBI JADE FastICA COMBI FPICA EWASOBI

PI 0.2856 0.2589 0.2748 0.2345 2.9865 0.02468

SIR 18.4563 33.1525 29.5452 9.4672 12.6003 15.3135

�(D) 0.2654 0.3156 0.3138 0.2439 0.2397 0.2133

Fig. 7 Norm of demixing matrix
of all cutters
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for the cutter C1 in three
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Fig. 9 AE signal energy for the
cutter C1
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Fig. 10 Force noise energy for
the cutter C1 in three dimensions

Cycle
0 50 100 150 200 250 300

)
%(

ygrenE
esio

N

0

0.5

1

1.5

2

2.5

3

3.5

X dimension
Y dimension
Z dimension

Table 5 Feature extraction
Norm of demixing matrix (Frobenius norm) ‖A‖
Eigenvalue trace of demixing matrix T race(A) =

n∑
i=1

Aii

Root mean square (energy of mixed sources) RMS =
√

1
N

N∑
i=1

x(t)2i

Root mean square (energy of estimated sources ) RMS =
√

1
N

N∑
i=1

s(t)2i

Root mean square (noise energy ) RMS =
√

1
N

N∑
i=1

N(t)2i
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Fig. 11 Force signal energy for
the cutter C1 in three dimensions
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In order to confirm the validity of the proposed method
CWT-BSS, the dependence between estimated sources can
be measured by using some performance criteria shown in
Table 4 of various algorithms [42].

Table 4 shown the performance evaluation of source
separation; the value of performance index (PI) is less
than 5% and the techniques COMBI and WASOBI give
a good separation with a small time computing, whereas
JADE, FastICA, and SOBIRO has the lowest performance
(Figs. 7, 8, 9, and 10).

3.4 Feature extraction

In this section, we present the feature generation from CWT-
BSS for the force signals. More advanced prognostics are
interested in performance degradation assessment, so that

failures can be predicted and prevented. The concept of
feature extraction for accurately assessing the cutting tool
performance degradation is a critical step toward realizing
an online tool condition monitoring platform. Many original
features that can be extracted from raw signals have
been investigated. This section presents a comprehensive
discussion of feature extraction from time domain signal
separation shown in Table 5.

In this study, the energy signal of each level was used in
regression for performance degradation assessment. In this
combination strategy, the raw signal is first decomposed in
different scales by CWT with the given scaling function
and wavelet function. Accordingly, it is expected that the
proposed CWT-BSS model can more accurately model and
compensate the performance degradation of the raw signal
characteristic.

Fig. 12 Force signal energy for
the cutter C2 in three dimension

Cycle
0 50 100 150 200 250 300

)
%(

ygrenE

0

0.2

0.4

0.6

0.8

1

1.2

X dimension
Y dimension
Z dimension 
Max energy



Int J Adv Manuf Technol

Fig. 13 Force signal energy for
the cutter C4 in three dimension
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The feature evolution is represented by the node energy
of the respective CWT node shown in Figs. 11, 12, 13,
and 14.

The node energy value has been used to follow up the
level or the system severity. In experimental setup, this
value is used to monitor the overall signal force level. The
RMS value of the signal force is a very good temporal
descriptor of the overall condition for the other monitor
signal vibration in Fig. 9 and AE in Fig. 9.

The estimated wear value shown in Fig. 15 based on
typical training sets of the force signals of the six datasets
reflects high accuracy and dependencies of the obtained
models by CWT-BSS. The computing errors obtained only
in the final part of the models that were the observed wear
values are great. From the results, it is seen that all the
predictors perform very well.

In Fig. 15, in the maximum node energy of force signal,
we can observe three different regions. The first region

Fig. 14 Force signal energy for
the cutter C5 in three dimension
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Fig. 15 Maximum energy of
force signals of each cutter
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between zero and six cycles of machining is representing
the normal cutting operation. The second region between
6 and 150 machining cycles is characterized by fluctuating
the energy with a mounting development; this region is
associated with wear initiation and propagation along the
three flutes of cutters; the last region, an extends exponential
behavior at the time of damage initiation to until total failure
(Fig. 16).

3.5 RUL estimation

The collected signals were used in this paper [29]. The
experimental datasets are generated from cutting tool run-
to-failure tests under constant load conditions. In order to
prove the effective prediction of the CWT-BSS method, six
datasets were used with the same operating condition of the
machining process.

Fig. 16 RUL for all cutters
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Table 6 Prediction performance

Cutter Regression function : f (x) = a ∗ xb + c SSE RMSE R2

C1 f (x) = 4.259e − 07 ∗ x2.549 + 0.1561 0.3959 0.03562 0.9853

C2 f (x) = 2.175e − 08 ∗ x3.077 + 0.1485 0.0750 0.01550 0.9974

C3 f (x) = 1.302e − 06 ∗ x2.362 + 0.1492 0.6888 0.04699 0.9770

C4 f (x) = 9.708e − 07 ∗ x2.421 + 0.1351 0.8946 0.05355 0.9726

C5 f (x) = 9.179e − 08 ∗ x2.839 + 0.2332 0.4813 0.03927 0.9858

C6 f (x) = 6.336e − 07 ∗ x2.496 + 0.1340 0.4113 0.03631 0.9873

The regression results are presented in Table 6 in terms
of the factors of determination R2 for the different training
models. The R values indicating the fraction of the total
variance that could be explained by the model are very high.
From the results, it is seen that all the predictors perform
very well. The objective is to apply the best exponential fit
on the degradation model. The validation of these results
is shown in Table 6 by computing of the sum square error
(SSE), R2, and root mean square error (RMSE).

The goal of this technique is to analyze prediction
capabilities by using CWT-BSS for TCM. A comparative
study between different algorithms used in BSS on
reliability performance analysis was summarized in Table 4.

4 Conclusion

In this paper, the tool wear prediction in milling operations
was conducted using CWT and BSS. The dataset collected
from 315 milling tests was used for the performance
evaluation of the proposed approach including RMSE, R2,
and SSE. The study of tool wear degradation assessment
is done by using the multisensory signal (force, vibrations,
and acoustic emission) in milling operations. The features
were extracted from separated sources by computing the
signal energy for the performance degradation assessment.
The potential of CWT-BSS was shown in this paper for
performance degradation assessment. It is expected that
with additional development, CWT-BSS can drastically
improve the accuracy of RUL estimation-based tool wear
condition monitoring across the full range of the machining
process. In this study, we demonstrate that the health
indicator can reflect effectively the tool wear.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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