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Abstract In a high speed milling operation the cutting tool
acts as a backbone of machining process, which requires
timely replacement to avoid loss of costly workpiece or
machine downtime. To this aim, prognostics is applied for
predicting tool wear and estimating its life span to replace
the cutting tool before failure. However, the life span of cut-
ting tools varies between minutes or hours, therefore time
is critical for tool condition monitoring. Moreover, complex
nature of manufacturing process requires models that can
accurately predict tool degradation and provide confidence
for decisions. In this context, a data-driven connectionist
approach is proposed for tool condition monitoring applica-
tion. In brief, an ensemble of Summation Wavelet-Extreme
Learning Machine models is proposed with incremental
learning scheme. The proposed approach is validated on
cutting force measurements data from Computer Numeri-
cal Control machine. Results clearly show the significance
of our proposition.

Keywords Applicability · Data-driven · Ensemble ·
Monitoring · Prognostics · Robustness · Reliability

Introduction

The high speed milling process has become the most impor-
tant and cost-effective means in manufacturing industry, to
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produce parts with high surface quality due to advantages
like: high productivity, reliable and repeatable accuracies,
good surface finish, etc., (Zhai et al. 2010; Saikumar and
Shunmugam 2012; Rizal et al. 2013). This process is
performed in a dynamic environment and under diverse con-
ditions, where a cutting tool acts as a backbone of machining
process. The high speed milling manufacturing is of com-
plex nature, and requires special care since its performances
are closely related to the conditions like cutting tool wear,
hardness variations, and abrupt breakage of cutter. More-
over, life span of the cutting tools varies between minutes or
hours, and failure of cutting tool can affect product quality
and cause machine down-time (Wu et al. 2015; Zhou et al.
2011). Therefore, ensuring high surface quality of the work-
piece and avoiding machine down-time, requires the cutting
tool to be replaced before the tool wear passes failure thresh-
old. This task can be achieved through condition monitoring
and prognostics (Benkedjouh et al. 2013). In fact, prognostics
has been investigated for several applications like: epidemiol-
ogy prediction, weather forecasting, stockmarket prediction,
etc., Fig. 1.

Prognostics for manufacturing refers to tool wear predic-
tion and estimation of its life span for timely replacement.
More precisely, for tool conditionmonitoring application, the
prognostics model uses monitoring data from sensors (e.g.
vibration, force or acoustic emission) to predict tool wear
after each cut and to determine the number of cuts that could
be made safely before failure.
In recent years, research on prognostics for manufactur-
ing has grown rapidly, and a vast number of prognostics
algorithms are introduced to enable short-term or long-term
decisions, particularly from data-driven category. According
to literature, for prediction inmilling operations theArtificial
neural networks (ANNs) are the most widely used connec-
tionist methods among data-driven prognostics approaches
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Fig. 1 Predictive science and manufacturing application (Gao et al.
2015)

(Grzenda and Bustillo 2013). As for some examples from
the recent publications: Pal et al. (2011) used a standard
back-propagation neural network and a Radial Basis Func-
tion network for predicting tool condition. This work also
evaluated the robustness of ANNs against uncertainty of
input data. Das et al. (2011) used a ANN approach to learn
relationship of extracted features and the wear magnitude
of cutting tool. In Wang and Cui (2013), a Levenberg Mar-
quardt algorithm is introduced to improve the accuracy of
auto associative neural network for tool wear monitoring.
Wu et al. (2015) proposed bayesian-multilayer perceptron
approach to estimate tool wear. Cojbasic et al. (2015) pro-
posed one-passExtremeLearningMachine (ELM) algorithm
to estimate roughness of machined surface.
Although several works have been proposed for tool condi-
tionmonitoring application, however, the issueswith existing
connectionist approaches are as follows.

• Cutting tools life varies between minutes/hours, there-
fore time for tool condition monitoring is critical, which
requires rapid connectionist approaches.

• The common drawbacks of classical connectionist
approaches are model complexity, slow iterative tuning,
imprecise learning rate, presence of local minima and
overfitting.

• Due to uncertainties fromdifferent sources like tool degra-
dation process, data, operating condition and model, it is
essential to manage and quantify uncertainty to enable
decisions.

• It is difficult to generalize tool wear prediction model on
cutting tools data that are not included in the learning
phase.

To address those issues, this paper contributes relatively
a new data-driven connectionist approach for tool condi-

tion monitoring application. More precisely, an ensemble of
SummationWavelet-Extreme LearningMachine (SW-ELM)
models is proposed with incremental learning scheme to
update model parameters on-line, predict tool wear, estimate
tool life span and give confidence for decision making. The
proposed SW-ELM ensemble (SW-ELME) is validated on
cutting force measurements data from Computer Numeri-
cal Control machine (CNC). This contribution is achieved
through following objectives.

1. Define prognostics modeling challenges.
2. Compare SW-ELM with rapid learning approaches.
3. Build SW-ELME with incremental learning scheme.
4. Validate SW-ELME on unknown cutting tools data.

The remaining paper is organized as follows. “Towards an
enhanced data-driven prognostics” section gives the back-
ground of data-driven framework for tool condition monitor-
ing, defines prognostics modeling challenges and discusses
the choice of data-driven connectionist approach according
to those challenges. “Proposed data-driven approach” section
dedicated to our basic SW-ELM algorithm and SW-ELM
ensemble with incremental learning scheme for tool con-
dition monitoring. “Case study: tool condition monitoring”
section presents a comparison of basic SW-ELM with ELM
and Echo State Network (ESN) to encounter prognostics
challenges and demonstrates the performances of SW-ELM
ensemble on real data of cutting tools from CNC machine.
Finally, “Conclusion” section concludes this work and gives
future perspectives.

Towards an enhanced data-driven prognostics

Data-driven tool wear monitoring framework

To transform raw monitoring data into relevant behavior
models, the framework of data-driven tool wear monitoring
is based on the following steps (Fig. 2).

Data acquisition

During the cutting treatment of metal workpiece, the cut-
ter wear can increase due to varying loads on its flutes
that are always engaged and disengaged with the surface of
workpiece (Das et al. 2011). This may result in increased
imperfections in the workpiece surface i.e., dimensional
accuracy of finished parts.Most CNCmachines are unable to
detect tool wear on-line, which is measured by using optical
or electrical resistance sensors. Therefore, the estimate of
cutting performance is usually performed through indirect
method of tool condition monitoring (without shutting down
the machine), by acquiring data that can be related to suit-
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Fig. 2 Data-driven tool wear monitoring for on-line decisions

able wear models (Zhou et al. 2011). The most commonly
employed are: cutting vibration (Haddadi et al. 2008), and
force signals (Zhai et al. 2010). Such data are collected at
regular intervals under given operating conditions.

Data processing

The cutting vibration measurements benefit from wide fre-
quency range and are easy to implement (Ding andHe 2011).
Whereas, cutting force signals aremore sensitive to tool wear
than vibration (Ghasempoor et al. 1998), and preferred for
modeling due to good measurement accuracy (Zhou et al.
2006). Also they are easy to manipulate and considered as
the most useful to predict cutting performance (Zhai et al.
2010; Zhou et al. 2009).
The raw monitoring data acquired from the cutting tools
are redundant and noisy, which can not be used directly
for tool wear prediction. The data processing step enables
extracting and selecting features from vibration/ force mea-
surements, preferably having monotonic trends (Javed et al.
2015). The selection of features can be done by transform-
ing them to another space or based on highest information
content (Benkedjouh et al. 2013; Javed et al. 2015).

Prognostics modeling

This step aims at building an effective model that is capa-
ble of predicting the tool wear during machining process and
estimating its life span to enable short-termor long-termdeci-
sions. The data-driven tool wear modeling is achieved in two
steps: learning and testing. In the learningphase, data are used
to establish model which learns a relation between input fea-
tures and target measured wear. The learning step is directly
linked to tool wear prediction performances in the test phase.
For example lack of data, uncertainty of data collection/
processing, and varying context, etc., can strongly impact
model performances. Moreover, in the learning phase model
complexity, parameter initialization and computational time
are the factors which should be properly addressed to build
a right model.
In the testing phase, the learned model is used to predict the
tool condition online and to estimate its life span, when the

Fig. 3 Illustration of challenges: a robustness, b reliability

predicted wear intersects the failure threshold. However, in
this step it is essential to provide confidence to the predic-
tions, without that prognostics is not useful (Fig. 2).

Open challenges of prognostics modeling

According to literature, various approaches for prognostics
exist, i.e., physics based, data-driven and hybrid approaches
(Javed 2014). However, real prognostics systems to meet
industrial challenges are still scarce. This can be due to inher-
ent uncertainties associated to deterioration process, lack
of sufficient data quantities, sensor noise, unknown operat-
ing conditions, and engineering variations, which prevents
building prognostics models that can accurately capture the
evolution of degradation. In other words, highly complex and
non-linear operational environment of industrial equipment
makes it hard to establish efficient prognostics models, that
are robust enough to tolerate uncertainty of data, and reliable
enough to show acceptable performances under diverse con-
ditions (Javed et al. 2012; Hu et al. 2012; An et al. 2015).
Robustness of prognostics models appears to be an important
aspect (Liao 2010), and still remains an important issue to
be resolved (Javed et al. 2012; Camci and Chinnam 2010).
Besides that, reliability performance is also crucial to prog-
nostics. A reliable prognostics model should be capable of
dealing with variations in data, that are directly associated to
the context (e.g. for machining its variable geometry/ dimen-
sions of cutters, materials differences of components, etc.). It
is found that robustness and reliability of a prognosticsmodel
are closely related (Peng et al. 2010), and both should be con-
sidered as essential to ensure accuracy of estimates (Javed
et al. 2012). Moreover, prognostics model has to be chosen
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Fig. 4 Enhancing prognostics—frame and expected performances

according to implementation requirements and constraints
that can limit its applicability (Javed et al. 2012; Sikorska
and Hodkiewicz 2011).
Finally, prognostics model should be enhanced by handling
simultaneously all three challenges, robustness, reliabil-
ity1 and applicability, which are still open areas. However,
practitioners still encounter difficulties to identify their rela-
tionships and to define them. On the basis of our previous
work we define them as follows (Javed et al. 2012).

• Robustness of prognostics—it can be defined as “the abil-
ity of a prognostics approach to be insensitive to inherent
variations of the input data”.

It means that, whatever the subset from the entire learn-
ing frame is used, the performances of a robust prognostics
model should not impair (i.e., steady performance). In other
words, robustness validates prognostics performance when
exposed to variations in learning data having same context,
i.e., operating conditions, geometrical scale,material, etc. An
illustration is given in Fig. 3.

• Reliability of prognostics—it can be defined as “the abil-
ity of a prognostics approach to be consistent in situations
when new/ unknown data are presented”.

It means that, reliability validates prognostics performances
when data with different context are presented to the model
i.e., geometrical scale, material, operating conditions, etc. In
otherwords, a reliable prognosticsmodel can adapt variations
related to context and candealwith uncertaintywhenexposed
to new data with small deviation from learned cases (i.e.,
context is partially known), or when totally unknown data

1 Note: classical definition of reliability “the ability of an item to
perform a required function under given conditions for a given time
interval” (NF EN 13306 2010) is not retained here. Actually, the accep-
tion used in this paper is according to application of machine learning
approaches in PHM, that do not consider reliability as dependability
measure (Bosnić and Kononenko 2009).

with large deviations are presented (i.e., unknown context).
An illustration is given in Fig. 3.

• Applicability of prognostics—it can be defined as “the
ability of a prognostics approach to be practically applied
under industrial constraints”.

The applicability verifies suitability or ease of implemen-
tation of a prognostics model for a particular application,
i.e., requirements like failure definition, human intervention,
model complexity, computation time, and theoretical limits
of the approach or any hypothesis. A synthetic scheme of
robust, reliable, applicable prognostics is shown in Fig. 4.
Thus, validating the robustness, reliability performances and
verifying the applicability of prognostics will enable practi-
tioners to build an efficient prognostics model.

Choice of data-driven prognostics approach

The data-driven approaches are considered model free, as
they do not needmathematical formulation of the process and
solely depend on the data. To capture complex nonlinear rela-
tionships among data (e.g. features and tool wear) they learn
from examples. In general, data-driven approaches have bet-
ter applicability as compared to other prognostics approaches
i.e., physics based or hybrid, due to their following advan-
tages.

1. Better generality and system wide scope.
2. Do not require degradation process model.
3. Easy to implement and have low complexity.
4. Require few knowledge of the equipment.
5. Usually have low computation time.

With the advance ofmodern sensor, data storage and process-
ing technologies, data-driven prognostics is becoming pop-
ular (Hu et al. 2012). According to literature, among data-
driven approaches the Artificial neural networks (ANNs) are
a special case of connectionist networks that are most com-
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monly used for prognostics (Zemouri et al. 2010; Ren et al.
2015), and for prediction in milling operations (Grzenda and
Bustillo 2013). However, according to discussions in “Open
challenges of prognosticsmodeling” section, to select a prog-
nostics approach for a particular application, the applicability
requirementsmust be verified. In addition, the robustness and
reliability of the prognostics model must improved and val-
idated, to ensure its effectiveness.

Brief overview of ANN architectures

Constructing a good neural network model is non-trivial task
and practitioners still have to encounter several issues that
may affect the performance of ANNs and limit their applica-
bility (Singh and Balasundaram 2007). As for examples,
such problems involve: parameter initialization, complexity
of hidden layer, activation functions, slow iterative tuning,
local minima, over-fitting, generalization ability, etc., (Javed
et al. 2012).
In general, ANNs are classified into two types of architec-
tures: a feed-forward network (FFNN) and a recurrent neural
network (RNN). A FFNN has connections in forward direc-
tion, and RNN has cyclic connections Fig. 5. It is mentioned,
that around 95% of literature is on FFNNs (Feng et al. 2009).
However, such systems must be tuned to learn parameters
like weights and bias, in order to fit the studied problem.
According to literature, the most popular learning scheme
for FFNN is Extreme LearningMachine (ELM) (Huang et al.
2004), and for RNN its Echo State Network (ESN) (Jaeger
2001). Unlike classical techniques for ANNs, the ELM and
ESN avoid slow iterative learning and they are based on
random projection. In brief, with ELM/ ESN algorithms,
input-hidden layer/reservoir parameters are randomly initial-
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Fig. 5 ELM for FFNN and ESN for RNN (Jaeger 2002)

ized, and learning is only achieved by solving the inverse of
a least square problem. In addition, both are sensitive to the
number of neurons in the hidden layer/ reservoir. The main
differences of ELM and ESN are depicted in Fig. 5.
To the best of our knowledge, ELM has been proved for its
universal approximation capability (Huang and Chen 2007,
2008; Huang et al. 2006), whereas for ESN its not the case.
In addition, recent survey shows the advantages of ELM over
conventional methods to train ANNs (Huang et al. 2011). As
a matter of fact, ELM is an effective algorithm with several
advantages like: ease of use, quick learning speed and capa-
bility for nonlinear activation (Shamshirband et al. 2015).
Such findings highlight the importance of ELM as a suitable
candidate for prognostics.

The Extreme Learning Machine

Basically, ELM is a batch learning scheme for single hidden
layer feed forward neural networks (SLFNs). A slight differ-
ence in architecture of ELM and typical SLFN is that, there
is no bias for the neurons in the output layer. To initiate rapid
learning operation, the input weights and hidden neurons
biases are chosen randomly without any prior knowledge of
hidden to output layers weights. The random parameters are
also independent from the learning data. Consequently, ELM
transforms into a system of linear equations and the unknown
weights between the hidden layer and the output layer nodes
can be determined analytically by applying Moore–Penrose
generalized inverse method (Rao and Mitra 1971; Petkovi
et al. 2016).
Let note n and m the numbers of inputs and outputs (i.e.,
targets), N the number of learning data samples (xi , ti ),
where i ∈ [1 . . . N ], xi = [xi1, xi2, . . . , xin]T ∈ �n and
ti = [ti1, ti2, . . . , tim]T ∈ �m , and Ñ the number of hidden
nodes, each one with an activation function f (x). To min-
imize the difference between network output o j and given

target t j ,
∑Ñ

j=1

∥
∥o j − t j

∥
∥ = 0, there exist βk , wk and bk

such that:

Ñ∑

k=1

βk . f (wk .x j + bk) = t j , j = 1, 2, . . . , N (1)

where wk = [wk1, wk2, . . . , wkn]T ∈ �n , is an input weight
vector connecting the kth hidden neuron to the input layer
neurons, (wk · x j ) is the inner product of weights and inputs,
and bk ∈ � is the bias of kth neuron of hidden layer.
Also, βk = [βk1, βk2, . . . , βkm]T ∈ �m , is the weight vector
to connect the kth neuron of hidden layer and output neurons.
Eq. 1 can be expressed in matrix form as,

Hβ = T (2)
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H
(
w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ

)

=
⎡

⎢
⎣

f (w1.x1 + b1) . . . f (wÑ .x1 + bÑ )
... · · · ...

f (w1.xN + b1) . . . f (wÑ .xN + bÑ )

⎤

⎥
⎦

N×Ñ

(3)

β =
[
βT
1 · · · βT

Ñ

]

Ñ×m
and T = [

t T1 · · · t TN
]
N×m (4)

The least square solution of the linear system defined in
Eq. (2),

β = H†T =
(
HT H

)−1
HT T (5)

where H† is the Moore–Penrose generalized inverse.
In view of expected performances of a prognostics model
highlighted in “Open challenges of prognostics modeling”
section, practical considerations related to model accuracy
and implementation issues should be addressed for real appli-
cations. In context to that, benefits, issues and requirements
of ELM algorithm are given as follows.

Benefits

• ELM does not require slow iterative learning and it is
one-pass algorithm.

• ELM has only one control parameter to be manually
tuned, i.e. number of hidden neurons.

In general, rapid learning ability and less human interven-
tion shows the better applicability of ELM, which makes it
suitable for real applications (Huang et al. 2006; Bhat et al.
2008). Also, recent study confirms the advantages of ELM
over earlier approaches for ANN (Huang et al. 2011).

Issues and requirements

• Due to random initialization of parameters (weights and
bias), ELM model may require a complex hidden layer
(Rajesh and Prakash 2011). This may cause ill-condition,
and reduce robustness of ELM to encounter variations
in the input data, and the expected output of the model
may not be close to the real output (Zhao et al. 2009).
The variance of randomly initialized weights can affect
model generalization ability which should also be con-
sidered. Moreover, random initialization of parameters
results poor consistency of the algorithm. In other words,
the algorithm gives different solution for each run, which
makes it less reliable.

• It is required to carefully choose hidden neuron activation
functions that can participate in better convergence of the
algorithm, ability to handle nonlinear inputs, and also

result to a compact structure of network for a suitable
level of accuracy (Javed et al. 2012; Jalab and Ibrahim
2011; Huang and Chen 2008).

• ELM does not quantify uncertainty of model like any
ANN. Therefore, in terms of prognostics, a single ELM
model lacks in real tangible foresight. Thus, it is required
to bracket unknown future to show reliability of estimates
and to enable timely decisions.

Obviously no model is perfect, following topic presents
the proposition of an improved data-driven connectionist
approach to encounter robustness and reliability challenges
of prognostics modeling. The proposed approach is based
on our improved variant of ELM namely, the Summation
Wavelet-Extreme Learning Machine with new incremental
learning scheme.

Proposed data-driven approach

Summation Wavelet-Extreme Learning Machine

SW-ELM combines ANN and wavelet theory for estimation
or predictions problems, which appears to be an effective
tool for different applications in industry (Javed et al. 2014).
SW-ELM also represents one-pass learning for SLFN . It
benefits from an improved parameter initialization phase to
minimize the impact of random weights and bias (of input-
hidden layer), structure with dual activation functions that
can handle nonlinearity in a better manner and it also works
on actual scales of the data.

Structure and parameters

To address the issues and to meet the requirements high-
lighted in “The Extreme Learning Machine” section, the
differences with ELM are as follows:

• Structure: each hidden node holds a parallel conjunction
of two different activation functions ( f1 and f2) rather
than a single activation function. Output from a hidden
neuron is the average value from dual activations ( f̄ =
( f1 + f2)/2) (see Fig. 6).

• Activation function: convergence of algorithm is
improved by an inverse hyperbolic sine (Eq. 6) and a
Morletwavelet (Eq. 7) as dual activation functions,which
operate on array (X ) element-wise (x j , j = 1, 2, . . . , n).

f1 = θ (X) = log

[

x +
(
x2 + 1

)1/2
]

(6)

f2 = ψ (X) = cos (5x) e
(−0.5x2

)

(7)
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Fig. 6 Machine learning view
of SW-ELM
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• Parameter initialization: to provide a better starting point
to the algorithm, two types of parameters have to be con-
sidered: those from thewavelets (dilation and translation)
adapted by a heuristic procedure (Oussar and Dreyfus
2000), and those from the SLFN (weights and bias
for input to hidden layer nodes), initialized by Nguyen
Widrow (NW) procedure (Nguyen and Widrow 1990).

Learning scheme

Given N learning data samples (xi , ti ) and the number of
hidden nodes Ñ , each with activation functions f1 and f2.
To minimize the difference between network output o j and

target t j ,
∑Ñ

j=1

∥
∥o j − t j

∥
∥ = 0, there exist βk , wk and bk

such that:

Ñ∑

k=1

β̂k f̄
[
(θ, ψ)

(
wk .x j + bk

)] = t j , j = 1, 2, . . . , N

(8)

Equation (8) can be expressed in matrix form as,

Havgβ̂ = T (9)

Havg
(
w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ

)
(10)

= f̄ (θ, ψ)

⎡

⎢
⎣

(w1.x1 + b1) . . .
(
wÑ .x1 + bÑ

)

... · · · ...

(w1.xN + b1) . . .
(
wÑ .xN + bÑ

)

⎤

⎥
⎦

N×Ñ

(11)

β̂ =
[
βT
1 · · ·βT

Ñ

]

Ñ×m
and T = [

t T1 · · · t TN
]
N×m (12)

The least square solution of the linear system defined in
Eq. (9).

β̂ = H†
avgT =

(
HT
avgHavg

)−1
HT
avgT (13)

where H†
avg represents the Moore–Penrose generalized

inverse. The SW-ELM algorithm is given in algorithm 1.

SW-ELM ensemble with incremental learning

Although, ELM based algorithms have several advantages
over traditional methods for SLFN, but the main shortcom-
ing can be that their solution vary for each run due to random
parameters initialization, which can result poor reliability
performances. This issue is also for classical ANNs. Also,
such methods do not furnish any indication about the quality
of outcomes in order to facilitate practitioner with decision
making. That is, considering the uncertainties which arise
either due to model misspecification or either due to vari-
ations of input data by probabilistic events (Khosravi et al.
2011). Although there is no single algorithm or model for
prognostics that works for all sorts of situations, the ensem-
ble of multiple models appears to be less likely in error than
an individual model (Khosravi et al. 2011; Hu et al. 2012).
Due to such issues, in literature it is preferred to apply an
ensemble of multiple models to improve robustness and to
show reliability of estimates (Hu et al. 2012). Therefore, the
combined estimate obtained from an ensemble of models is
more accurate as compared to a single model. That also indi-
cate the presence of uncertainty and can facilitate decision
making for further plan of actions. A detailed review about
ELM ensembles can be found in Huang et al. (2011). In
this paper, the ensemble strategy is achieved by integrating
several SW-ELM models, where each individual model is
initialized with different parameters (Fig. 7). Following that,
the desired output O can be obtained by averaging outputs
from multiple SW-ELM models.

O j = 1

M

M∑

m=1

ômj (14)

where ômj is the predicted output of mth model against the
j th input sample. Tool wear prediction task continues with
each input sample (i.e., after a cut) along with confidence
bounds. The life span of cutting tool is estimated when the
predicted value O j intersects the failure threshold (FT), as
given in Eq. (15).

123



J Intell Manuf

Algorithm 1 Learning scheme of the SW-ELM

Require - N learning data samples (xi , ti ), n inputs ( j = 1 . . . n), Ñ hidden nodes (k = 1 . . . Ñ ).
- An inverse hyperbolic sine and a Morlet activation functions (θ and ψ).

Ensure - Initialize weights and bias from SLFN, initialize Morlet parameters.
- Find output weights matrix β to minimize the difference between the network outputs and the targets.

SW-ELM learning procedure
1: Initialization of wavelet parameters
2: - Define the input space domain intervals
3: - Compute [x jmin ; x jmax ]: {domain containing the input item x j in all observed samples}
4: - Define dilation and translation parameters per domain
5: - Compute dkj = 0.2 × [x jmax − x jmin]: {temporal dilatation parameter for input item x j}
6: - Compute mkj = [x jmin + x jmax ]/2: {temporal translation parameter for input item x j}
7: - Initialize Morlet parameters (ak and bk )
8: - Compute ak = mean(dkj ) j=1...n : {dilatation factor}
9: - Compute bk = mean(mkj ) j=1...n : {translation factor}
10: Initialization of weights and bias parameters by Nguyen Widrow (NW) approach
11: - Initialize small (random) input weights wk(old) in [−0.5 ; +0.5]: {weights from input nodes to hidden nodes}
12: - Adjust weights parameters by applying NW approach

13: - Compute β f actor = C × Ñ
1
n : {C is a constant ≤ 0.7}

14: - Compute wk(new) = β f actor × wk(old)‖wk(old)‖ : {normalized weights}

15: - Initialize bias values bk
16: - bk = random number between −β f actor and +β f actor
17: Adjust linear parameters: the ones from the hidden to the output layers
18: - Obtain hidden layer output matrix Havg using Eq. 11
19: - Find the output weight matrix β̂ in Eq. 13 by applying Moore–Penrose generalized inverse procedure
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Fig. 7 Structure of SW-ELM ensemble

O j ≥ FT (15)

According to data-driven framework (“Data-driven tool
wear monitoring framework” section), trained model in used
to predict tool wear online. However, throughout the predic-
tion process the model parameters remain static, which can
lead to poor predictions. To address this issue a new incre-
mental learning procedure is proposed, which uses the input
features data and re-simulated data from predictions (up to
current time), to retrain the data-driven model online.
In order to elaborate incremental learning procedure for the
ensemble structure, consider learning data record of 630 sam-
ples (inputs and targets) from two cutting tools. During an

online application on a new cutting tool, the input features
data sample (after a cut) and their corresponding predicted
tool wear value from the SW-ELME are stored sequentially
in the learning data record (which becomes 631 samples).
Following that, the SW-ELME is retrained with that data and
model parameters (i.e., weights and bias) are updated before
the next input. The learning procedure continues after each
cut until the FT is reached. This proposition allows perform-
ing incremental learning without actual tool wear values and
using artificial data from predictions, which enables improv-
ing the adaptability of prognostics model and managing its
uncertainty.
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Fig. 8 a Work piece and cutter, b cutter berfore and after

Note that, due to rapid learning ability of SW-ELM algo-
rithm, the proposed incremental learning can be compu-
tationally efficient. However, the computational time can
increase with the complexity of ensemble structure.

Case study: tool condition monitoring

Experimental arrangements

To investigate suitability of the proposed approach, real data
from a high speed CNC machine are used to monitor condi-
tion of the cutting tools. The experimental data related towear
of cutting tools are provided by SIMTECH Institute in Sin-
gapore, where a high-speed CNC milling machine (Roders
Tech RFM 760) was used as a testbed under constant operat-
ing conditions. In the machining treatment, the spindle speed
was set to 10,360 rpm. The material of workpiece used was
Inconel 718. Also, 3 tungsten carbide cutters with 6mm ball-
nose/ 3-flutes were used in the experiments. To achieve high
quality surface finish, the metal workpiece was made via
face milling to remove its original skin layer of hard parti-
cles Fig. 8a. Duringmilling, the feed rate was 1.555mm/min,
the Y depth of generated cuts was 0.125mm and the Z depth
of cuts was 0.2mm (Massol et al. 2010).

Data acquisition and processing

During the cutting operation, authors of the experiments
recorded data from cutting force and vibrationmeasurements
Fig. 9. The cutting operation was stopped after each cut and
tool wear was measured via Olympic microscope, Fig. 8b.
The acquired data are composed of 315 cuts made by three
different cutters, namely C33, C18 and C09. In this paper,
the cutting force data are used for tool condition monitor-
ing (“Data processing” secion). A total of 16 main features
are derived from force signals and a subset of four features
are selected to train models (Table 1). Figure 9c, d gives an
illustration of force features and the tool wear. The details of

feature extraction and selection are given in (Li et al. 2009;
Zhou et al. 2006; Massol et al. 2010).

Most importantly, even if the operating conditions are con-
stant, cutting force is affected by: cutter geometry, coating
and properties of workpiece, which impacts the reliability of
tool wear estimation models. Considering complications of
tool wear modeling, it is important to highlight the character-
istics of all cutters that were used. That is, cutting tools C33
and C18 had the same geometry but different coatings, while
cutting tool C09 has its own geometry and coating, Table 2.

Tool wear model settings and performance metrics

Simulations in following sections are given in two parts.

1. Acomparisonof toolwear predictionmodels to encounter
prognostics challenges (“Open challenges of prognostics
modeling” section).

Given a learning dataset for a model (SW-ELM, ELM or
ESN), 100 trials are performed and test performances are
averaged for different complexities of hidden layer/ reser-
voir (i.e., 4–20 hidden nodes). It should be noted that,
either for model robustness or reliability analysis (“Robust-
ness and applicability: results discussion” and “Reliability
and applicability: results discussion” sections), the model
performance for a single trial is equal to an accumulated
performance from ten different simulations for which data
subsets (of cutters) are learned after random permutation
(to introduce data uncertainty). The tests are performed on
remaining data in chronological order (Fig. 10).
Besides that, to improve the generalization performance of
ELM small random weights of input-hidden nodes are ini-
tialized i.e., [−0.1,+0.1] rather than [−1,+1]. The ESN is
used according to its default settings given in (Echo state
network).

2. Adaptive ensemble to predict tool wear, estimate tool life
span and give confidence for decision making.

The simulations aim to show improved reliability of the
proposed SW-ELME model and its applicability for an
online application. Learning and testing are performed using
leave-one-out strategy with three different cutters data. For
example, learn data from cutters C33, C18 and test cutter
C09 to predict tool wear until the failure threshold (FT) is
reached, which is the max value of tool wear. However, it
can be difficult to generalize tool wear prediction model on
cutting tools data that are not included in the learning phase.
Therefore, complexity of tests can be clearly understood by
comparing wear patterns from all three cutters in Fig. 11.
Further details on simulation setting are given in “Adaptive
SW-ELME and its reliability” section.
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Fig. 9 Cutter C33 a Acceleration, b force signals, c force features and d tool wear (C33)

Table 1 Selected force features

No Force feature

1 Maximum force level

2 Total amplitude of cutting force

3 Amplitude ratio

4 Average force

To discuss the robustness, reliability, and applicability of
the wear estimation (“Open challenges of prognostics mod-
eling” section), model performances are assessed in terms of

Table 2 Type of cutting tools used during experiments

Cutters Geometry Coating

C33 Geom1 Coat1

C18 Coat2

C09 Geom2 Coat3

accuracy, network complexity and computation time. More
precisely, metrics for performance evaluation are: coefficient
of determination (R2) that should be close to 1, complexity
of hidden layer, and learning/testing time in seconds (s).
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Fig. 10 Tests for robustness and reliability

0 50 100 150 200 250 300 350 0 

20 

40 

60 

80 

100 

120 

140 

160 

Cuts (tool life)  

C
ut

tin
g 

to
ol

 w
ea

r (
10

 -3
  m

m
) 

C09 
C18 
C33 

Fig. 11 Wear patterns from all cutters

Comparison of connectionist approaches

Robustness and applicability: results discussion

This case aims at evaluating the robustness of toolwearmodel
when exposed to variations in the learning data having same
context. Therefore for learning, the dataset from a single
cutting tool is created by randomly selecting 150 data sam-
ples, while rest of the data of 165 samples are presented in
chronological order to test the accuracy of the learned model
(Fig. 10a). This procedure is repeated ten times for themodel-
cutting tool couple and considered as a “single trial”. That is
creating random training input datasets and assessing model
accuracies on test sets to evaluate robustness. A comparative
analysis on robust tool wear prediction performances is given
in Table 3.

Among model-cutting tool couples and even with small
learning data, the SW-ELM model showed better robustness
for all tests as compared toELMandESN.However, the aver-
age learning time of ELM is faster than other approaches. The
detailed simulations results are presented in Fig. 12. In brief,
Fig. 12a, shows an average accuracy (R2) performances for
five different network complexities, where the best results

Table 3 Robustness and applicability for a single cutter model

Cutter 09 SW-ELM ELM ESN

Hidden nodes 16 16 16

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.0009 0.0005 0.014

R2 0.824 0.796 0.542

Cutter 18 SW-ELM ELM ESN

Hidden nodes 12 12 12

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.0007 0.0004 0.013

R2 0.955 0.946 0.59

Bold values indicate the better results

are achieved by SW-EM for tests on cutter C09 and C18
(with no. of hidden nodes 16 and 12). Figure 12b compares
the steadiness of all models (SW-ELM, ELM and ESN) for
100 trials. One can see that SW-ELM is more robust to input
variations as its accuracy (R2) is stable for 100 trials, for the
tests on both cutters. Figure 12c compares average results of
tool wear prediction (from 100 trials) on cutter C09.

Reliability and applicability: results discussion

Reliability on partially known data This case aims at eval-
uating the reliability of tool wear model when exposed to
variations in the data from multiple cutters having different
attributes (geometrical scale and coating). In order to build a
“multi-cutters” model, a partial dataset of 450 samples from
all cutters are presented in random order for learning and
data of 165 samples in chronological order from any of these
cutters are used for the test (Fig. 10b). Like the previous
case “Robustness and applicability: results discussion” sec-
tion, this procedure is repeated 10 times for eachmulti-cutters
model and considered as “single trial”. A comparative analy-
sis on reliable tool wear prediction performances is given in
Table 4.
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Fig. 12 Robustness analysis with partially unknown data for a “single cutter” model

It can be observed from results that, even if the learning
data are increased, ELM based methods are still faster than
ESN. The average learning times for both tests show that,
ELM is less time consuming for the same complexity ofmod-
els. As far as accuracy (R2) is concerned, SW-ELM showed
better reliability performances on cutters data with differ-
ent attributes. The detailed simulations results are presented
in Fig. 13. In brief, Fig. 13a, shows an average accuracy
(R2) performances for 5 different network complexities,
where best results are achieved by SW-EM for tests on cutter
C18 and C33 (with no. of hidden nodes 20 and 16). Con-
sidering these results, Fig. 13b compares the steadiness of
all models (SW-ELM, ELM and ESN) for 100 trials. One

can see that SW-ELM is more stable to input variations,
as its test accuracy (R2) is consistent for 100 trials on cut-
ters i.e., C18 and C33. Finally, Fig. 13c compares average
results of tool wear prediction (from 100 trials) on cutter
C33.

Reliability on totally unknown data This case aim at evalu-
ating the reliability performances of wear estimation models
(SW-ELM, ELM and ESN) when unknown cutters data with
different attributes (geometrical scale and coating) are pre-
sented for tests. For this purpose, test performances are
assessed by leave-one-out strategy. That is, by establishing a
referencemodel from learning complete data of two different
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Table 4 Reliability and applicability for three cutters models

Train: C33, C18, C09 SW-ELM ELM ESN
Test: C18

Hidden nodes 20 20 20

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.002 0.001 0.04

R2 0.837 0.836 0.817

Train: C33, C18, C09 SW-ELM ELM ESN

Test: C33

Hidden nodes 16 16 16

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.002 0.0009 0.04

R2 0.847 0.80 0.75

Bold values indicate the better results

cutting tools and testing its tool wear prediction capability
on data from another cutter that was totally unknown. There-
fore, learning data of 630 samples from two different cutters
are presented randomly to train the model, whereas 315 data
samples from a third cutter are presented in a chronologi-
cal order for testing i.e., performed once for a trial unlike
previous cases (see Fig. 10c). This procedure is repeated for
100 trails for different model complexities (i.e., no. of hid-
den neuron 4–20). Averaged performances from each case of
multi-tool model are given in Table 5.

It can be observed form all tests that SW-ELM has better
reliability performance as compared to ELM and ESN. The
averaged accuracy performance of SW-ELM for the tests
is also improved from our previous results in (Javed et al.
2012). Note that, for the tests on cutters C33 and C09 the
accuracy of each approach decreased to a poor level i.e.,
R2 < 0. Therefore, the model reliability still needs to be
improved when totally unknown data of different attributes
are used, which is the aim of the following proposition. The
detailed simulations results from the best tests case (for SW-
ELM, ELM and ESN models) is illustrated in Figs. 14 and
15.

According to results in Fig. 14, the SW-ELM has better
prediction performances as indicated by the stability of R2
values for 100 trials. The prediction results in Fig. 15 show
that except SW-ELM all other models are unable to estimate
tool initial wear (i.e., ELM and ESN). Moreover, all models
are unable to estimate tool worn out state from the data of
unknown cutter C18.

Synthesis

Themain points from the results comparison are summarized
as follows.

• All connectionist algorithms discussed above (SW-ELM,
ELM, ESN), are based on random projection.

• For all tests on robustness and reliability performances,
the SW-ELM outperform ELM and ESN algorithms.

• SW-ELM has better performances due to improved para-
meter initialization and structure with dual activation
functions.

• SW-ELM algorithm requires two parameter to be set by
the user, i.e., hidden neurons and parameter initialization
constant C .

• SW-ELM takes twice the learning time than ELM.
• ELM algorithm has better applicability with only one
parameter to manually tune and fastest training time.

• ESN requires several parameters to be set by the user and
more training time as compared to ELM based methods.

• For somecases on reliability performance, ELMandESN
showed close accuracy performances.

• ESN is much more sensitive to input variations as com-
pared to ELM based methods.

• Like any ANN, the SW-ELM, ELM and ESN can not
quantify or manage prediction uncertainty.

Adaptive SW-ELME and its reliability

Considering the better performances of SW-ELM over ELM
and ESN. This topic presents the reliability of SW-ELM
ensemble with incremental learning scheme.

Simulation settings

The initial step is to determine complexity of hidden layer for
a single SW-ELM model, which results satisfactory perfor-
mances. Following that, multiple SW-ELM models of same
complexity are integrated to produce averaged output. The
complexity of hidden layer of each SW-ELMmodel is set to
7neurons and the number of SW-ELMmodels for an ensem-
ble is set to 50 (Fig. 7).
To reduce the uncertainty of estimates, features from each
cutter data are filtered to obtain smooth trends by applying
rloess filter with span value 0.9 (Fig. 9). Basically, rloess is
a robust local regression filter that allocates lower weight to
outliers, see Mathworks (2010). Each individual model is
learned with same dataset, but initialized with different para-
meters, i.e., weights and bias. The parameter initialization
constant is set to C = 0.0001.
The tests are performed on cutters data using leave-one-out
strategy, e.g., learning C33, C18 and testing C09. The cutting
tool life span determined when the predicted wear inter-
sects FT (Eq. 15), which is set to the maximum tool wear
at 315 cuts. For each test, the lower and upper confidence
of tool wear predictions and the evolution of probabil-
ity density function are given to quantify the uncertainty
(Fig. 16). Also, the total time to learn-test SW-ELME

123



J Intell Manuf

4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

# Hid. Neurons

 R
2 

Average accuracy for 100 trials with  C33

4 6 8 10 12 14 16 18 200.55

0.6
0.65
0.7

0.75
0.8

0.85

# Hid. Neurons

 R
2 

Average accuracy for 100 trials with C18

0 10 20 30 40 50 60 70 80 90 100
0.76

0.78

0.8

0.82

0.84

0.86

# of Trials

R
2

Cutter C18 accuracy with #Hid-Neurons =20

10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

# of Trials

R
2

Cutter C33 accuracy with #Hid-Neurons =16

SW-ELM ELM ESNSW-ELM ELM ESN

SW-ELM ELM ESN SW-ELM ELM ESN

(b) (a) 

(c)

150 170 190 210 230 250 280 300
40

60

80

100

120

140

160
Comparison of tool  wear prediction results from 100 trails

Cuts (tool life)

To
ol

 w
ea

r (
10

-3
m

m
)

Actual

SW-ELM

ELM

ESN

Cutters C33, C18 and C09 (# Hid-Neuron=16)
- train: 450 samples, all cutters (rand.)
- test: 165 remaining samples of C33

230

Fig. 13 Reliability analysis with partially unknown data for “multi-cutter” model

online is given to show its suitability for a real applica-
tion.

SW-ELME: results discussion

Results from all test cases (i.e., C33, C18 andC09) using SW-
ELMEmodel are summarized in Table 6. According to those
results, the SW-ELME has superior accuracy than a single
SW-ELM model, which is indicated by low error values of

estimated life span (i.e., number of cuts) in comparison to
actual 315 cuts. Here, we compare the previous results on
reliability of SW-ELM on unknown data from Table 5 and
the results of SW-ELME from Table 6, one by one. In case
of test cutter C18, the R2 is improved from 0.701 to 0.745.
For test cutter C33 the R2 is improved from−0.5 to 0.89 and
for cutter C09 the R2 is improved from −0.9 to 0.52, which
is a significant improvement.
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Table 5 Reliability and applicability for unknown data

Train: C33 & C09 SW-ELM ELM ESN
Test: C18

Hidden nodes 4 4 4

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.0009 0.0004 0.055

R2 0.701 0.44 0.6

Train: C09 & C18 SW-ELM ELM ESN

Test: C33

Hidden nodes 4 4 4

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.0008 0.0004 0.054

R2 −0.5 −1.3 −1.9

Train: C33 & C18 SW-ELM ELM ESN

Test: C09

Hidden nodes 16 16 16

Activation function asinh & Morlet sigmoid tanh

Training time (s) 0.0026 0.0013 0.058

R2 −0.73 −1.2 −0.98

Bold values indicate the better results
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Fig. 14 Reliability analysis with totally unknown data

Moreover, for each test case the lower and upper confidence
bounds indicate that the final target values are within the
confidence level (Fig. 16). Finally, due to ensemble strategy
and increased data, for each test case the total time for learn-

0 50 100 150 200 250 300 350
20

40

60

80

100

120

140

160
Comparison of tool  wear prediction results from 100 trails

Cuts (tool life)

To
ol

 w
ea

r (
10

-3
m

m
)

Actual
SW-ELM
ELM
ESN

Cutters C33, C09 and C18
- train: all data C33, 09 (630 samples - rand.)
- test: all data C18 (315 samples)

Fig. 15 Prediction results on unknown data

ing and testing (online) is around 2 minutes, which is quite
satisfactory from practical point of view.

Conclusion

In this paper a data-driven prognostics approach is proposed
for tool condition monitoring during high-speed milling
operation. The proposed approach aims at transforming the
monitoring data (from the cutting tool) into relevant mod-
els for predicting tool wear and estimating life span prior
to costly failure. Considering highly complex and nonlin-
ear nature of real industrial equipment, building accurate
prognostics models is not a trivial task. Therefore, open
challenges for prognostics modeling are defined for build-
ing an efficient prognostics approach, namely “robustness”,
“reliability”, and “applicability”. The data-driven models are
established using rapid learning connectionist algorithms
that are, Extreme Learning Machine (ELM), Summation
Wavelet-Extreme Learning Machine (SW-ELM) and Echo
State Network (ESN). The performances of connectionist
algorithms are compared to encounter prognostics challenges
using data from cutting tools with different geometric scale,
coating and under constant operating conditions. Experimen-
tal results show that, SW-ELM algorithm outperforms ELM
and ESN in terms of robustness and reliability performances
for estimating tool condition, without compromising rapid
learning ability. This shows better applicability of the SW-
ELM.
Finally, an ensemble of SW-ELM (SW-ELME) models
is proposed with incremental learning scheme to further
improve the reliability of toolwearmonitoring. The proposed
SW-ELME enables predicting the tool wear and estimating
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Fig. 16 Cutting tools wear
estimation and uncertainty
quantification
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Table 6 Reliability and applicability for unknown data

Tool Cuts Estimated Error R2 Time

C33 315 313 2 0.89 119 (s)

C18 315 311 4 0.74 133 (s)

C09 315 303 12 0.52 112 (s)

life span online, with computation time around two minutes.
Moreover, the SW-ELME provides confidence to predictions
to facilitate decision making. Tool wear prediction results on
all cutters data clearly show the significance of our propo-
sition. However, reliability of the SW-ELME still needs to
be addressed for tool condition monitoring application under

variable operating conditions, which is the aim of our future
works.
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