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Abstract—This paper focuses on the design of a 6 degrees-
of-freedom (DoF) visual servoing control law. Instead of use of
geometric visual features in standard vision-based approaches,
the proposed controller makes use of wavelet coefficients as
control signal inputs. It uses the multiple resolution coefficients
representing the wavelet transform of an image in the spatial
domain. The main contributions are the definition of the multiple
resolution wavelet interaction model that links the time-variation
of wavelet coefficients to the robot spatial velocity and the
associated task function controller. The proposed control law
was tested and validated experimentally using a commercial
micromanipulator in an eye-to-hand configuration. To be able to
judge the efficiency of the control law, several validation tests
were carried out under different conditions of use i.e., large
illumination variations, noisy images, partial occlusions and using
unknown 3D scenes. It is also demonstrated experimentally that
the proposed approach outperforms, the well-known photometry
visual servoing as well as a feature-based visual servoing, namely
in unfavorable conditions of use.

I. INTRODUCTION

A. Overview and Motivations

THE control of a dynamic system through real-time and
continuous visual feedback is known as visual servoing

[1], whereas the continuous observation of objects and the
extraction of the corresponding visual features (usually geo-
metric information) is referred to as visual tracking. Obviously,
there is duality between both themes. In feature-based visual
servoing, the success of the designed control law depends
imperatively on the success of the spatio-temporal tracking
method (speed, accuracy, robustness, redundancy of the visual
features, etc.). Designing an efficient and robust visual tracking
algorithm is a non-trivial task and it is considered as one of
the bottlenecks of the expansion of visual servoing in different
applications [2].

To tackle this limitation, new visual servoing paradigms
have appeared in the literature which demonstrate that the
design of a vision-based control law can completely over-
come the visual tracking task in the control loop. These
approaches are referred to as featureless visual servoing [3]
also known as direct visual servoing methods. Thus, during
the last decade, several methods were proposed using the
global image information as the signal input into the control
loop: image-intensity [4]–[8], spatio-temporal gradients [9],
histogram-based method [10], photometric Gaussian mixtures
[11], photometric moments [12], etc. Using global image
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information allows also improving both the accuracy and the
robustness of visual servoing tasks thanks to the redundancy
of the information used to design the interaction model [5]. In
[13], the authors have investigated the use of neural network to
estimate the interaction matrix of a direct visual servoing under
several pertubations (occlusions, lighting variations, etc.). It
has been demontrated that using the neural network, it allowed
to overcome the photometric visual servoing drawbacks.

Although these techniques are different from the conven-
tional geometric feature-based control schemes, their aim re-
mains the same. This means that the robot, from its initial pose
r(t) (r ∈ SE(3)), must reach accurately a desired pose r∗ using
an optimization algorithm of the associated cost-function.
The camera velocity twist is then computed using the time-
derivation of the cost function with respect to the camera pose
r. As mentioned above, the direct methods have demonstrated
very interesting behavior in terms of accuracy and robustness.
However, it has been shown that these approaches suffer in
term of convergence domain as well as important environment
variations compared to the traditional visual servoing [5].

To overcome these limits, additional kinds of information
have been studied such as mutual information [15]. This
method does not consider directly the pure image information
(e.g., pixels intensities) but the mutual dependence signal (e.g.,
the joint-entropy) between a pair of images. Thereby, if two
images are perfectly aligned, the mutual information value
must be higher than the shifted image. In this work, the authors
demonstrated that mutual information-based visual servoing is
more robust with respect to the image-intensity-based method,
namely in unfavorable conditions.

Another trivial solution to increase the robustness of the
visual servoing control law with respect to unfavorable signal-
to-noise ratio and important environment variations, is to
use noise-free global image information. Indeed, instead of
using a spatio-temporal image information (intensity, gradi-
ent, entropy, etc.), it is possible to consider original image
information such as time-frequency image representations.
Thereby, this paper addresses a new direct visual servoing
scheme which uses wavelet coefficients as the signal input
into the control loop. In fact, wavelets theory present a stable
mathematical tool for multiscale image representation. Inci-
dentally, wavelet transform is a representation of a signal by
an orthonormal series of functions called wavelets [16], [17].
It was demonstrated that wavelet transform yields an efficient
and simultaneous representation of the signal in both time and
frequency domains as well as a lossless inverse transform.
Consequently, wavelet transform has been widely considered
in numerous image processing and vision domains: image
and data compression (JPEG2000) [18], image smoothing and
denoising [19], visual tracking [20], etc.

Traditionally, continuous wavelets can be viewed as an



extension of Fourier transform. The main difference consists in
that wavelets allow a simultaneous representation of the signal
(respectively, the image) in both time and frequency domains,
whereas the standard Fourier transform is only localized in
the frequency domain. Fourier transform was investigated
in the past to design control laws and it has demonstrated
interesting properties of robustness and accuracy [21]–[23].
More recently, shearlet image decomposition was studied in
[24]–[26] showing also interesting performances to achieve 6
DoF positioning tasks.

B. Contributions

In this paper, we develop a 6 DoF visual servoing control
law based on the multi-resolution wavelet transform. Unlike
the image intensities-based approaches, our approach uses
the wavelet coefficients to build the control law. To do this,
we established the interaction model (i.e., interaction matrix)
between the time-variation of the wavelet coefficients and the
spatial robot velocity. In this work, we combined Mallat’s
multiple resolution wavelet algorithm [27] with the optical
flow constraint equation (OFCE) for the derivation of the
interaction matrix. Due the fact that the wavelet transform
is multiscale, then the interaction model is also trivially
multiscale. This means that, it becomes possible to switch from
different interaction matrices (without additional calculation)
in function of the positioning task to be performed.

Furthermore, wavelet transform can be seen as a spatio-
temporal filter which is able to separate the signal of interest
from the noise even when there spectral overlap between both
(e.g., image contours) [28]. Thereby, to the best of our knowl-
edge, we propose for the first time (put aside our preliminary
conference paper [14]) a robust and accurate visual servoing
control law tacking into account the wavelet coefficients as the
control signal inputs. Complementary to [14], this paper pro-
vides a complete and optimized reformulation of the wavelet-
based visual servoing control law by taking into account the
multiresolution aspect of the wavelet coefficients during the
design of the related interaction matrix. For instance, the
extended method offers the possibility to adapt the interaction
matrix in function during the achievement of the positioning
task without any additional computation. As example, the
operator can choose a high resolution at the beginning of
the positioning task and decrease automatically the resolution
in function of the positioning error. This allows enhancing
the convergence domain while guaranteeing high accuracy at
the end of the positioning task. In fact, we were interested
in tudying the impact of the wavelet coefficients resolution
on the controller behavior and performances. The proposed
method and materials were validated in both simulation and
experimental manners using various favorable and unfavorable
scenarios. Finally, a comparison study with the photometry as
well as the conventional points-based visual servoing methods
was provided.

In the remainder of this paper, Section II reminds the
basics of a visual servoing scheme. Section III presents a
general formulation of the multiresolution wavelet decom-
position which allows following the different steps of the

design of the new visual servoing control law. The time-
variation of the wavelet coefficients with respect to the camera
displacement as well as the derived visual servoing control
law are detailed in Section IV while its simulation as well
as experimental validations are shown in Section V. Also, the
proposed method is compared to both the photometric and the
points-based visual servoing methods in Section VI. This paper
ends with a discussion about the potential of such controller
in medical context, e.g., high accurate automatic positioning
of an OCT (Optical Coherence Tomography) probe in case
of repetitive optical biopsies investigation (preliminary results
are discussed).

II. BASICS OF VISUAL SERVOING

A. Feature-based Visual Servoing

According to [1], the aim of a visual servoing is to control
the motion of a dynamic system in order to allow a set of
geometric visual features s (s ∈ Rk) defining a robot pose
r(t) ∈ SE(3)

(
i.e., s = s

(
r(t)
))

to reach a set of desired ones

s∗ (s∗ ∈ Rk) by minimizing a visual error given by

e = s
(
r(t)
)
− s∗ (1)

The time-variation of s is linked to the velocity twist v =

(vx vy vz ωx ωy ωz)
> of the camera frame by

�
s=Lsv,

where Ls ∈ Rk×6 is commonly called the interaction matrix
(or Jacobian image in certain papers).

From (1), the variation of the visual error e due to the visual
sensor velocity is

�
e = Lsv−

�
s
∗
. (2)

If
�
s
∗
= 0 and if one want to ensure an exponential decoupled

decrease of the error e (
�
e = −λe), it becomes possible to

express the velocity tensor, using (2), as follows

v =−λL̂s
+
(
s(t)− s∗

)
(3)

where λ is a positive gain and L̂s
+
(

L̂s
+
=
(
L̂s
>

L̂s
)−1L̂s

>)
is the Moore-Penrose pseudo-inverse of the approximated
interaction matrix denoted L̂s.

Not that the stability issues regarding this kind of controller
are discussed in [?].

B. Direct Visual Servoing

Generally, in a direct visual servoing approach (e.g., pho-
tometry), the control task is considered as an alignment
between the current image I(r) and the desired one I (case of
static desired position). For instance, in [5], the visual servoing
task is treated as an optimization problem defined as follows

argmin
r

∑
∥∥I(r)− I∗

∥∥ (4)

To solve this optimization problem, [5] consider the optical
flow constraint equation of a world point between two succes-
sive images. This allows writing

I(x, t) = I(x+δx, t +δt) (5)



where δx is small displacement of a point x during a short
time interval δt.

The time-derivation of (5) allows writing
�
I+5I> �

x = 0 (6)

where 5 is the image gradient.
By introducing the 2D-point interaction matrices Lx and Ly

(as defined in [1]) and some mathematical manipulations, the
authors of [5] obtain the global interaction matrix for each
pixel

LI =−
(
5 IxLx + 5 IyLy

)
(7)

As can be shown, the interaction matrix LI depends on the
image intensities as well as the image gradient. This can raise
some problems concerning robustness of this approach in case
of unstable illumination.

III. MULTIPLE RESOLUTION WAVELET
COEFFICIENTS AS VISUAL SIGNAL

As claimed before, in this paper, the use of wavelet coef-
ficients as visual features to build our control law constitutes
the core of this work. Consequently, for a better understanding
of the different followed steps to design the visual servoing
control law, it is appropriate to remember some basics of the
wavelet decomposition.

First, a wavelet transform is defined as a L2-inner product
between a 2D signal F and a wavelet function Ψ given by

〈F,G j,m〉=
∫∫
R2

F(x,y)D j
2TmΨ(x,y)dxdy (8)

where j ∈ Z defines the scale and m = (m1,m2) ∈ Z2 the
location of the wavelet Ψ j,m = D j

2TmΨ. The squeezing and
stretching the generator Ψ are obtained by applying the dyadic
scaling operator D j

2 which varies the wavelet spatial frequency
and by the translation operator Tm which defines the wavelet
localization.

This transform can be categorized into different groups as
continuous [16], discrete [17] and multiple resolution [27].
In [31], we developed a direct pose-based visual servoing
control law in which the control signal inputs consisted of the
frequency spectral information computed by the continuous
wavelet transform. However, it has been shown that the
calculation of the out-plane rotations remains very challenging.
Therefore, in this paper, we will focus of the second family
of wavelets, i.e., the multiple resolution decomposition.

A. Multiple Resolution Wavelet Transform

The multiple resolution wavelet transform (MRWT) has
essentially the ability to represent an image at different reso-
lutions without any loss of information, in both decomposition
or re-composition of the image without loss of the signal
details. Actually, the difference of information subtracted
in the decimation is trivially and simultaneously accessible
through the wavelet coefficients. Indeed, at resolution 2− j,
the MRWT decomposes the image into sub-images, which
are: 1) the new filtered image at a resolution 2−( j+1), and

2) the difference of inormation between the two consecutive
resolutions.‘

The MRWT method computes the orthogonal projections
(coordinates) of the signal F on the sub-spaces V2 j and(
Wk

2 j

)
(k=0,...,n) related to the new image and the difference

of information, respectively. More precisely, these coordinates
are computed thanks to two functions:
• scaling function Φ defined by

Φ j,m =
√

2− jΦ2 j(m−2− jk) (9)

where m is the signal coordinates, k = (k1,k2) are inte-
gers.

• and the mother wavelet Ψ is given by

Ψ j,m =
√

2− jΨ2 j(m−2− jk) (10)

The multiresolution wavelet decomposition offers numerous
interesting properties. For instance, it leads to compute the
coefficients coordinates using a linear filtering and decimation
(∆) (i.e., keep one pixel of two). An algorithm was developed
by Mallat [27] in which it is proposed to discretize (9) and
(10), using low and high pass discrrete filters. In our approach,
we choose the fourth order Daubechies wavelet filters (db4)
[17] accessible from the wavelets MATLAB toolbox. These
filters are defined by the following convolution masks:
• Scaling function Φ is a low

pass discrete filter ldb4
(

fx,ξl
)

=
{−0.01,0.03,0.03,−0.18,−0.02,0.63,0.71,0.23}.

• Mother wavelet Ψ is a high
pass discrete filter hdb4

(
fx,ξh

)
=

{−0.2,0.7,−0.63,−0.02,0.18,0.03,−0.03,−0.01}
and constructed from Φ, fully respecting the conditions
cited in [27].

The pair of filters is applied to the image through a set of
4 combined operations [27] as follows

Γ
0 =

(
∆◦ ldb4

)
◦
(

∆◦ ldb4

)
(11)

Γ
H =

(
∆◦hdb4

)
◦
(

∆◦ ldb4

)
(12)

Γ
V =

(
∆◦ ldb4

)
◦
(

∆◦hdb4

)
(13)

Γ
D =

(
∆◦hdb4

)
◦
(

∆◦hdb4

)
(14)

where the operator ◦ represents a convolution operation.
The set of inner products (8) using the N×M image I(2−( j))

and the wavelet function (11), allows writing

I2−( j+1)(u,v) =
(〈

I2− j(x,y),Γ0(x,y)
〉)

N×M
(15)

where I2−( j+1) is the new image at resolution j+1 (i.e., N
2( j+1) ×

M
2( j+1) ) called the approximation signal.

Then, the computation of (8) with the image I2−( j) and the
wavelet functions (12) to (14) gives the so-called detail signal
or difference of information

(
dk

2−( j+1)

)
(k=H,V,D)

as

dk
2−( j+1)(u,v) =

(〈
I2− j (x,y),Γk(x,y)

〉)
N×M

,∀k = H,V,D(16)

with H the horizontal, V the vertical, and D the diagonal
orientations.



B. Building the Visual Features Vector
The mathematical model for optical flow constraint is based

on the time-independent of the brightness assumption [30].
Indeed, it is possible to generalize the optical flow constraint
equation (OFCE) given in (5) to a whole image I. Thereby,
according to [32], the OFCE can be extended to the MRWT.
Therefore, for each image point having the coordinates p =
(u,v)>, it is possible to write〈

I2−( j+1)(u,v),
∂ΓH(u,v)

∂u

〉
�
u+
〈

I2−( j+1)(u,v),
∂ΓV (u,v)

∂v

〉
�
v

+
∂

∂t

〈
I2−( j+1)(u,v),Γ0(u,v)

〉
= 0 (17)

To simplify the notation, let us introduce

gH
2−( j+1)(u,v) ,

〈
I2− j(u,v),

∂ΓH

∂u
(u,v)

〉
(18)

gV
2−( j+1)(u,v) ,

〈
I2− j(u,v),

∂ΓV

∂v
(u,v)

〉
(19)

and reformulate (17) as

gH
2−( j+1)(u,v)

�
u+gV

2−( j+1)(u,v)
�
v+

∂

∂t
I2−( j+1)(u,v) = 0 (20)

or, in a matrix form

d
dt

I2−( j+1)(u,v) =
[
gH

2−( j+1)(u,v) gV
2−( j+1)(u,v)

][ �
u
�
v

]
(21)

where,
�
u and

�
v are obtained from

�
x and

�
y by the camera

calibration matrix. Thus,(
�
u
�
v

)
=

(
αu 0
0 αv

)( �
x
�
y

)
(22)

where αu and αv represent the focal length in terms of pixels
and

�
x and

�
y represent the velocity of an image point of the

coordinates (x,y)>.
So, by merging (22) in (23), we obtain

d
dt

I2−( j+1)(u,v) =
[
gH

2−( j+1)(u,v) gV
2−( j+1)(u,v)

](
αu 0
0 αv

)( �
x
�
y

)
(23)

Furthermore, it is possible to express
�
x and

�
y as function of the

camera velocity tensor cvc thanks to the 2D-point interaction
matrix L2D as defined in [1]. Thus,

[
�
x
�
y

]
= Lc

2Dvc (24)

where,

L2D =

(
−1/Z 0 x/Z xy −(1+ x2) y

0 −1/Z y/Z −(1+ y2) −xy −x

)
(25)

By introducing (24) and (25) in (23), and by omitting the
pixel coordinates in various frames for the sake of readability,
we finally get

∂

∂t
I2−( j+1) =−

[
gH

2−( j+1) gV
2−( j+1)

](
αu 0
0 αv

)
L2D

cvc (26)

The interaction matrix associated to the wavelet coefficients
is then expressed in each pixel as follows

Lw
2−( j+1) =−

[
gH

2−( j+1) gV
2−( j+1)

](
αu 0
0 αv

)
L2D (27)

From (26), it can be underlined that the interaction matrix is
built using the time-derivative wavelet coefficients. The depth
Z is estimated once at the desired position.

Now, let us consider the down sampled image I2−( j+1) of
size of N

2( j+1) × M
2( j+1) , as a visual feature vector w. Thus,

w2−( j+1) = vec
(
I2−( j+1)

)
=


I2−( j+1)(1,1)
I2−( j+1)(1,2)

...
I2−( j+1)(M,N)

 (28)

Thus, we can write the whole wavelet variation in function
of the robot velocity thanks to the whole wavelet interaction
matrix Lw

2−( j+1) as

�
w = Lw

2−( j+1)
cvc (29)

which is obtained by the vertical concatenation of all
Lw

2−( j+1) ’s in (26) as follows

Lw =


Lw

2−( j+1) (1,1)

Lw
2−( j+1) (1,2)

...
Lw

2−( j+1) (M,N)

 (30)

IV. CONTROL

A. Control Law

Having the analytical wavelet interaction matrix, it becomes
trivial to design the related control law. Actually, following (3)
allows writing the following controller

cvc = −λL̂+
w
(
w−w∗

)
(31)

Actually, to ensure a stable and smooth control, we use
the Levenberg-Marquardt method [33] rather than the usual
Gauss-Newton or Gradient descent optimization as addressed
in [5]. The choice of Levenberg-Marquardt leads us to write
the robot velocity in the camera’s frame R c as

cvc = −λ

(
µI6×6 + L̂w

>
L̂w

)−1
L̂w

+
(w−w∗) (32)

where µ is a constant positive scalar, and I6×6 is the identity
matrix.

Our system (Fig. 6) is designed in an eye-to-hand configu-
ration. Thus, the relation between the robot velocity

�
q and the

camera one cvc is obtained as follows
�
q =−eKb

bVc
cvc (33)

where eKb is the inverse kinematic Jacobian matrix of the
robot in the base frame R b, and bVc is the transformation
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Fig. 1: Closed loop visual servoing using the half resolution wavelet coefficients as visual feature.

matrix associated to the velocity change frame from R b to
R c (i.e., the camera frame). The latter is constructed as

bVc =

[bRc
[

btc
]
∧

bRc

0 bRc

]
(34)

where bRc is the 3×3 rotation matrix from Rc to Rb, btc is
the 3× 1 associated translation vector, and ”∧” is the skew
symmetric matrix associated to the vector cross-product. The
proposed control law follows the flowchart illustrated in Fig. 1.

B. Impact of the Wavelet Resolution on the Control Perfor-
mances

As mentioned above, the multiresolution interaction matrix
is designed. Thereby, it is possible to intuitively switch from
one resolution to another without additional calculation. Here,
the idea is to judge the capability of the controller to work
with high resolution approximation signal as well as with low
ones. Thus, we computed and plotted the cost-functions of
different wavelet coefficients resolutions j = [0,1,2,3] using
Lena photography as the scene viewed by the camera Fig. 2.
This will allow us to objectively choose the approximation
signal resolution j in order to obtain the best cost-function
possible (i.e., convex shape, wide at the top, tight at the bottom
and having a single global minimum and smooth as possible).
As claimed in the introduction, direct visual servoing tech-
niques are distinguished by their high performances in terms of
accuracy and robustness to the expense of lower convergence
domain with respect to the traditional feature-based visual ser-
voing. However, this limitation of the convergence capabilities
of the wavelet-based visual servoing can be tackled using the
multiresolution aspect of the developed interaction matrix. For
instance, it is possible to consider high scale of the wavelet
coefficients (e.g., j = 0) to increase the convergence domain
and switch continuously (during the positioning task) towards
a lower resolution (e.g., j = 1,2, ... etc.) until reaching the
desired position in order to guarantee high accuracy. Switching
from interaction matrix resolution to another can be performed
in function of the positioning error e: higher value of e involves
higher value of the scale j and conversely.

V. VALIDATION

A. Simulation Validation

1) Accuracy: First the proposed controller was evaluated
in simulation using a developed simulator using the Visual
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Fig. 2: From left to right and from top to bottom: computed
cost-functions for j = [0,1,2,3] resolutions, respectively.

Servoing Platform (ViSP) framework (visp.inria.fr). The sim-
ulation scenario consists of the achievement of an automatic
6 DoF positioning task (in SE(3)) under nominal conditions.
We also quantify the convergence domain depending on the
used resolution j in the interaction matrix.

Firstly, the test of nominal conditions is performed using the
photography of Lena. Fig. 3 depicts some snapshots captured
during the positioning task achievement. As can be seen in
Fig. 3(d), the normalized difference image between I and I∗
in completely gray (perfect overlaping between the final and
desired images) which means that the robot reaches accurately
the desired position. Both initial and final positioning errors
are reported in TABLE I. As can be highlighted, the final
linear and rotational errors (obtained using the simulated
anthropomorphic robot encoders) are extremely low.

TABLE I: [Simulation - Nominal Conditions] - Numerical
values in case of nominal conditions

(
4Ti (mm) and 4Ri (◦)

)
pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -15 -15 10 8 -7 -5
desired 0.0 0.0 0 0.0 0.0 0.0
final error 10−8 10−7 10−5 10−6 10−5 10−6

The error decay in each DoF as well as the norm of the
global error are recorded and plotted in Fig. 4(a) and (b),
respectively. One can underline that all the errors converge
towards zero. By the same manner, the camera linear and



(a) (d)(b) (c)

Fig. 3: [Simulation - Nominal Conditions] - Image sequence
captured during the 3D positioning task. (a): I(r), (b): I(r)∗,
(c): I(r - I(r)∗, and (d) final error showing that the controller
reaches accurately r∗.

angular velocities are plotted in Fig. 4(c) and (d), respectively.
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(b) Camera velocities. Left: linear velocities (vx,vy,vz)
> and right: angular

velocities (ωx,ωy,ωz)
>.

Fig. 4: [Simulation - Nominal Conditions] - Errors and
velocities evolution vs. number of iterations.

2) Convergence Domain: Here the idea is to perform the
same positioning task, i.e., using the same initial and desired
positions as well as the same control gains, however we modify
the resolution j from one test to another. The aim is to show
the variation of the convergence domain as a function of
the resolution j. Thereby, spiderweb-like representations were
used to compare each convergence domain depending on the
chosen resolution (Fig. 5). Each line from the center to the
border of the spiderweb represents an initial error between
the initial image I and the desired image I∗ in translation
(left spiderweb) or rotation (right spiderweb) in the positive
or negative directions of displacement.

It can be highlighted that the convergence domain of the
proposed approach is naturally related to the wavelet coeffi-
cients resolution. This means that higher resolution provides
larger convergence domain and conversely. Also, the proposed
method showed a better functioning in Z+ direction comparing
to Z− one. This can be explained, at least partially, by the fact
the Z used in 2D interaction matrix (25) is approximated (not
computed accurately) only one time at the desired position).
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B. Experimental Validation

To demonstrate the effectiveness of the developed controller,
we have designed an eye-to-hand experimental set-up (Fig. 6).
It is based on a 6 DoF parallel robotic structure: a 3PPSR
robot SpaceFAB SF-3000 BS from Micos1. The latter is
characterized with the following features: translation ranges
(Tx,Ty,Tz)

>
max = (50, 100, 12.7)> [mm] and rotation ranges

(Rx,Ry,Rz)
>
max = (10, 10, 10)> [◦], a linear resolution of 0.2µm

(repeatability of ±0.5µm) and an angular one of 0.0005◦

(repeatability of ±0.0011◦). Also, a Firewire monochrome
CCD camera is attached on top of the robot platform. The
camera runs at 25 frames per second (fps) for a resolution
of 640 × 480 pixels. Two computers equip the experimental
platform: the first one (a 3.20-GHz i5 core Intel CPU with
a Linux distribution) is dedicated to computer vision and the
proposed control (image acquisition, and control calculation,
etc.) when the second one (a 2.33-GHz Xeon Intel CPU with
a Windows distribution) is used for the robot inner control
(inner PID loop, static and differential kinematic models).
The computers communicate asynchronously using a TCP/IP
protocol.

As can be underlined, the robotic workcell is dedicated
to micromanipulation and micropositioning tasks. This means
that, the linear and angular stages are limited in terms of
translation and rotation ranges, comparing to a conventional
robotic platform. Also, the used camera is equipped with a
high magnification objective-lens in order to fit the micromet-
ric resolution provided by the robotic setup. Consequently, the

1http://www.pimicos.com



positioning task studied below are limited to small displace-
ments. However, in visual servoing, these displacements are a
function of the field of view of the used camera i.e., the wider
the field of vision, the larger the displacements and vice versa.

C. Experimental Validation Methodology

In order to study the behavior of the developed controller,
several scenarios are carried out, in different conditions of use:
1) favorable: nominal conditions, 2) unfavorable: illumination
variations, partial occlusions, different scenes (2D and 3D),
etc. To do that, the studied positioning task consists of reaching
a desired position r∗ ∈ SE(3) (desired image) from an arbitrary
initial position r ∈ SE(3) (initial image). The final positioning
error is computed using the high resolution robot encoders
supplied by the robot software. Likewise, the proposed control
law is also compared to both the photometric visual servoing
and traditional points-based visual servoing.

D. Nominal Conditions

The first test consists of the validation of the wavelet-based
control law in nominal conditions, i.e., using a stable illumina-
tion source and precise calibration parameters (camera param-
eters matrix K3×3 and eye-to-hand transformation

(cVb
)

6×6).

The initial error is ∆r[mm, deg] =
(
11, 11, 5, 9, 8, 5

)>
(a) (b) (c) (d)

1 cm1 cm

Fig. 7: [Experiment - Nominal Conditions] - Achievement
of a 3D positioning task. (a) (I(r∗), (b) (I(r), (c) the initial
image difference, and (d) the final one.

In Fig. 7(a) and (b) are depicted the desired and the initial
images, respectively, when Fig. 7(e) shows the initial error(
I(r)− I(r∗)

)
between the desired and the initial images. The

image difference at convergence in represented in Fig. 7(f)
showing that the controller converges smoothly and accurately
towards r∗. Note that a completely gray image difference is
synonymous of a perfect overlapping between the final and
desired images.

TABLE II: [Experiment - Nominal Conditions] - Numerical
values in case of nominal conditions

(
4Ti (mm) and 4Ri (◦)

)
pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -6.001 6.001 78.001 4.001 4.001 3.001
desired 5.000 -5.000 74.000 -5.000 -4.000 -2.000
reached 5.009 -4.992 74.036 -4.981 -4.061 -2.014
final error 0.009 0.008 0.036 0.019 0.061 0.014

The positioning errors (e = r− r∗) are computed using
the robot encoders and forward kinematic model (assumed
perfectly calibrated). TABLE II gives the final obtained error
in the Cartesian space demonstrating the accuracy of the
proposed approach as shown by the following numerical
values: average linear error = 17.66µm and average angular
error = 0.031◦.
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Fig. 8: [Experiment - Nominal Conditions] - Cartesian errors
evolution vs. number of iterations i. right: for each DoF, left:
norm of the error.

In Fig. 8(a)(left) is illustrated the pose error decay with
respect to the number of iterations i (each iteration takes
0.4 seconds for non-optimized implementation). It can be
seen that the different components converge to their desired
values. In the same way, Fig. 8(a)(right) depicts the norm of
error decay ‖e‖ = ‖I(r)− I(r∗)‖. It can be noticed that the
experimental results look like the simulation ones and confirm
our expectations in terms of accuracy and behavior.

E. Robustness to Illumination Variations and Specularity

In these experiments, the appearance of the scene was mod-
ified during the positioning task by changing the illumination
conditions and or by creating specularity effects in the scene.
The image-intensities methods (e.g., photometry) are usually
defeated because of unstable lighting conditions during the
positioning task. Also, non-optimal light conditions can be
a problem for feature-based methods when the extraction of
geometric features (visual tracking algorithms) is not trivial.

Fig. 9: [Experiment - Illumination Variations] - Snapshots
captured during the positioning task performed under lighting
variation, (a) is I∗ acquired under a stable lighting, (b) is I
captured using another lighting source, (c) initial error and (c)
final error.

As can be seen in Fig. 9(c) and (d), despite the change
of the scene texture during the positioning task process, the
controller converges to the desired position (the error decreases
smoothly to become almost null). The final positioning error
remains very low: the linear average error is 45.66µm when
the angular average is 0.10◦ (see TABLE III).

TABLE III: [Experiment - Illumination Variations] - Nu-
merical values in case of lighting variations

(
4Ti (mm) and

4Ri (◦)
)

pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -5.001 5.001 78.001 3.001 3.001 3.001
desired pose 3.000 -3.000 74.000 -7.000 -4.000 -2.000
reached pose 3.091 -3.021 73.975 -7.066 -5.110 -2.139
final error 0.091 0.021 0.025 0.066 0.110 0.139



As for the nominal conditions, we plotted the regulation to
zero of the error in Cartesian space (Fig. 10(a)). In fact, the
controller demonstrates a high accuracy even under unstable
lighting source.
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Fig. 10: [Experiment - Illumination Variations] Left: error
progression, and right: norm of the error vs. number of
iterations.

F. Robustness to Partial Occlusions

These experiments deal with the study of the behavior of the
control law under partial occlusions of the viewed scene during
the visual servoing process. This means that, the desired image
is acquired in normal conditions (Fig. 11(a)) and during the
positioning task achievement, a part (almost 1

5 ) of the current
images is removed (replaced by a white region-of-interest
(ROI)) (Fig. 11(b)). As can be seen in Fig. 11(c) and (d),
despite these external perturbations our control law converges
to the desired pose without difficulty (the control law behavior
is almost similar to that of the nominal conditions test).

(b) (d)(c)(a)

Fig. 11: [Experiment - Partial Occlusions] - visual servoing
task achievement under partial occlusions. (a) I∗, (b) I, (c)
initial image difference, and (d) final one.

TABLE IV: [Experiment - Partial Occlusions] - Numerical
values in case of partial occlusion (4Ti (mm) and 4Ri (◦))

pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -3.001 3.001 76.000 2.000 2.000 23.000
desired 0.000 0.000 74.000 -1.000 -1.000 -1.000
reached 0.110 0.235 74.116 -1.230 -0.982 -1.536
final error 0.110 0.235 0.116 0.230 0.098 0.536

Once again, the proposed approach remains robust despite
the presence of partial occlusions in the image. TABLE IV
gives the numerical values of the error in the Cartesian space
where we can see that the average errors are 150.36µm and
0.288◦ in linear and angular stages, respectively.

Also, another conclusion can be made on the wavelet
method. The fact that the proposed approach assumes a
linearization around the desired position (one of the direct
visual servoing methods characteristics) which does not make
it possible to ensure a global convergence.

The evolution of the Cartesian errors as well as the norm of
the error are depicted in Fig. 12(a). The wavelet control law
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Fig. 12: [Experiment - Partial Occlusions] Left: error evo-
lution Cartesian space, right: norm of the error vs. number of
iterations.

shows the same convergence rate with respect to the nominal
conditions test despite the partial occlusions (proof of robust-
ness). This is possible because the current and the desired
images share sufficiently of information (wavelet coefficients)
even with the additional white ROI on the current images.

G. Robustness to Depth Approximation

16cm

5cm

Fig. 13: Front view of the experimental set-up using a 3D
scene.

The different positioning tasks presented above are per-
formed using a fronto-parallel scene. Therefore, the effects
of the depth of the scene is limited. Here, the planar scene is
replaced by a 3D one (Fig. 14) where the depth Z is estimated
as for 2D scene and the interaction matrix is computed again
at the desired pose as for the others experiments. Note that
the height (depth variations) of the 3D object is 5cm and the
camera position is situated at 16cm of the scene (using another
objective-lens). Also, the camera is inclined with regards to
the 3D scene. As can be seen in Fig. 14, the wavelet-based
control law converges smoothly to the desired pose. Indeed,
the Z variations only causes a bias in the wavelet coefficients
computation which are negligible as shown by the numerical
values of the final error (average error of 248µm and 0,103deg
in linear and angular stages, respectively) (TABLE V) which
are in the same order (despite a slight deterioration) as for the
nominal conditions results.

TABLE V: [Experiment - 3D Scene] - Numerical values in
case of a 3D scene

(
4Ti (mm) and 4Ri (◦)

)
pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -4.001 4.001 74.001 0.001 -2.001 -2.001
desired 5.001 -5.001 79.001 2.001 -6.001 2.001
reached 4.771 -5.027 79.373 1.388 -6.381 2.101
final error 0.279 0.026 0.372 0.388 0.380 0.100

Concerning the behaviour of the control law, as shown in
Fig. 15(a), the regulation of the error in the Cartesian space



(a) (d)(b) (c)

Fig. 14: [Experiment - 3D Scene] - Achievement of the
positioning task using a 3D object. (a): I∗, (b): I, (c): the
initial error and (d): the final one.

presents the same aspect as for the 2D scene. Furthermore, the
efficiency of the wavelet-based control law remains reliable
even in case of a 3D scene (with a coarse estimation of Z).
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Fig. 15: [Experiment - 3D Scene] Left: error evolution
in Cartesian space, right: norm of the error vs. number of
iterations.

VI. COMPARAISON AND DISCUSSION
The photometry-based visual servoing as well as the 4-

points-based one (both source codes are provided by their
authors within the ViSP framework2) are experimented and
compared to our control law. These comparison tests were
performed in both favourable and unfavourable conditions of
use.

A. Wavelet vs. Photometry

1) Nominal Conditions: First, let us start with a comparison
in nominal conditions. TABLE VI gives the final errors in
the Cartesian space. It can be seen that, the wavelet method
present slightly the same accuracy (especially in translation) as
the photometry method [5] in the Cartesian space. In fact, the
wavelet-based method presents an average translation error of
17.66µm (respectively, 17.33µm for the photometry one) and
an average rotation error of 0.019◦ (respectively, 0.051◦ for
the photometry).

TABLE VI: [Experiment - Nominal Conditions] Numerical
values of the positioning error (wavelet vs. photometry)

(
4Ti

(mm) and 4Ri (◦)
)

pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial error 4.000 4.000 2.000 3.000 3.000 3.000
wavelet 0.013 0.012 0.028 0.019 0.019 0.018
photometry 0.008 0.015 0.029 0.054 0.044 0.055

The norms of the error in both methods are shown
in Fig. 16(left) while the robot trajectory is plotted in
Fig. 16(right). It can be underlined that despite the same exper-
imental conditions (lighting source, camera and camera/robot

2www.visp.inria.fr

calibration parameters, and initial and desired positions), the
wavelet-based method presents a better robot’s behavior in the
3D space.
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Fig. 16: (left) norm of the error (wavelet vs. photometry), and
(right) robot trajectory (wavelet vs. photometry).

2) Salt and Pepper Noise: The last experimental test
concerns a comparison of both methods under a salt and
pepper noise of density of 70%. In Fig. 17 is depicts some
snapshots grabbed during the positioning task performing. As
can be highlighted, the proposed controller reaches the desired
position despite the image noise. This can be also seen in
Fig. 18 which represents the error regulation towards zero
for both approaches. In fact, the wavelet-based control law
converges without specific difficulties when the photometry
method failed.

(b) (d)(c)(a)

Fig. 17: [Experiment - Noisy Images] visual servoing task
performing under salt and pepper noise. (a) I∗ without noise,
(b) I with noise, (c) initial error and (d) final error at conver-
gence.
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Fig. 18: [Experiment - Noisy Images] Error evolution in
the Cartesian space for each DoF, (left): wavelet, and (right):
photometry.

TABLE VII: [Experiment - Noisy Images] Numerical values
of the positioning error (wavelet vs. photometry) (4Ti (mm)
and 4Ri (◦))

pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial -29.35 -29.35 9.80 -8 -5 10
wavelet 0.131 1.573 0.12 0.987 2.188 0.028
photometry 3.78 28.46 16.99 19.93 -7.53 6.96

TABLE VII summarizes the obtained numerical values, thus
the average translation error for the wavelet approach is 60µm
and 1.06◦ for translation and rotation stages, respectively,
when the photometry method failed. This proves that our



controller is more robust to noise disturbances comparing to
the photometry technique.

B. Wavelet vs IBVS

1) Nominal Conditions: In this section, we compare the
popular 4-point-based visual servoing approach to our method.
The experimental scenario remains the same (i.e., performing
of a positioning task in SE(3)). In order to ensure the same
experimental conditions for both methods, we add four white
markers into the photography of Lena to be tracked easily in
case of IBVS method. In parallel, the wavelet method use the
rest of the image to perform the same positioning task. The
estimated accuracy is reported in TABLE VIII.

TABLE VIII: [Nominal Conditions] Numerical values of the
positioning error (wavelet vs. IBVS)

(
4Ti (mm) and 4Ri (◦)

)
pose 4Tx 4Ty 4Tz 4Rx 4Ry 4Rz
initial 4.000 4.000 2.000 3.000 3.000 3.000
wavelet 0.013 0.012 0.028 0.019 0.019 0.018
IBVS 0.022 0.015 0.014 0.036 0.025 -0.001

Furthermore, Fig. 19(a) gives the error decay in each visual
servoing task. It can be highlighted that our method presents
a rapid decay of the norm error comparing to the IBVS
one. Similarly, Fig. 19(b) shows the robot trajectory in each
case. Also, the wavelet-based control law presents a similar
trajectory (but takes opposite path) compared to the IBVS
method.
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Fig. 19: Wavelet vs. IBVS: (a) norm of the error (b) robot
trajectory.

C. Towards OCT-based Visual Servoing

Fig. 20: Overview of the robotic setup equiped with an OCT
device. (a): experimental setup, (b): operating of a OCT device.

The final objectives of the proposed work targets medical
applications. More precisely, it will concern the automation
of optical biopsies acquisition using an Optical Coherence
Tomography (OCT) system. The latter is widely used in
clinical purposes, e.g., for in-situ tissue characterization, es-
pecially in ophthalmology, dermatology, gastrointestinal, etc.
Indeed, OCT provides very good lateral and axial resolution:
4µm and 3µm, respectively, and higher penetration depths 1-5
mm (Fig. 20). In addition, OCT imaging system offers real-
time acquisition (several dozen images per frame) entirely
compatible to robot-vision applications.

Therefore, in order to demonstrate the ability of the pro-
posed wavelet control law to work even using untextured
medical images (e.g., OCT images), we implemented a po-
sitioning task in SE(2) = ℜ(2)× SO(1). The control signal
inputs are the wavelet coefficients computed from the B-Scan
OCT images (i.e., xz or yz slices of the viewed biological
sample). The task achievement works as follows: 1) the
operator defines (grabs) an optical image of the sample at time
t, and 2) the robotic platform which holds the sample must
retrieve automatically the initially acquired OCT image in case
of temporal monitoring of the tissue. Thereby, the wavelet
control law moves the positioning platform towards the desired
position using the wavelet coefficients computed from the B-
Scan images. As can be seen in (Fig. 21), the control law
allows converging to the desired optical biopsy without much
difficulties (as can be seen in the image difference) despite the
low signal-to-noise rate which characterizes OCT images.

Fig. 21: OCT image snapshots acquired during the positioning
task performing: (a) desired OCT image, (b) initial OCT
image, (c) initial OCT image difference, and (d) final OCT
image difference.

VII. CONCLUSION

In this paper, it was presented a novel 6 DoF visual servoing
controller based on the use of the multiple resolution wavelet
coefficients as the visual signal in the control loop instead of
geometric visual features. The developed interaction matrix
is multiple scale which means that it is possible to switch
intuitively from a resolution to another without additional
calculation. The method was successufly validated following
sevral simulation and experimental scenarios (optimal condi-
tions, lighting variations, partial occlusions, 3D scene). The
obtained results have demonstrated the efficiency of the devel-
oped controller in terms of accuracy (some tens of micrometers
and few tenths of millidegree in the translation and rotation
Cartesian space, respectively), convergence, and robustness
(the controller has kept on working under different external
disturbances). Also, the developed wavelet-based visual servo-
ing at half resolution was compared to the photometry-based



approach as well as the popular IBVS method. The ground
truth tests have proven that the wavelet method is at least as
efficient with regards to both methods in nominal conditions
and better in case of unfavorable ones (e.g., and under noise).

More broadly, this is the first work on 6 DoF wavelet-based
visual servoing, and there remains much work to do. Moreover,
enhancement of the computation time by using GPU hardware,
or the combination of compressed sensing with the proposed
approach must be foreseen. Also, it is interesting to investigate
a method to compute the interaction matrix relatively to the
time not to the desired pose which will increase sensitively
the convegence domain of the wavelet-based visual servoing.
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