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INTRODUCTION

Probe-based confocal laser endomicroscopy (pCLE)
is a promising image modality for early cancer
screening in various clinical applications. A typ-
ical limitation of probe-based systems, however,
is the limited field-of-view (FOV) achievable with
miniature optics. This is especially true with the
high magnifications required for clinical assessment,
namely for optical biopsy-based investigations. A
widely accepted solution is to opt for high-resolution
optics, and enlarge the FOV algorithmically by
sweeping the probe along the tissue and reconstruct-
ing a mosaic.
While mosaicing effectively enhances the FOV, its
accuracy is limited by the fact that the microscale
movements required to sweep the probe are difficult
to generate manually, especially in minimally inva-
sive settings. For this reason, various approaches us-
ing a robotic micromanipulator and visual feedback
control have been developed [1, 2, 3].
The above-mentioned methods have in common the
fact that they rely on an accurate image-based mo-
tion estimation, which should be computed in real-
time. Typically, pCLE-based visual servoing meth-
ods use a normalized cross correlation (NCC) com-
putation between successive overlapping frames [4].
While this may be sufficient in ex vivo conditions,
the constraints imposed by the in vivo environment
make it more difficult. The image quality might be
affected by a partial loss of contact with –or exces-
sive force applied on– the tissue (e.g., due to non
planar tissue geometry), or simply due to surgical
debris present on the surface. Moreover, accelera-
tions in the probe/tissue movement (due to various
effects such as stick/slip effects or robot manufac-
turing inaccuracies) are detrimental for image qual-
ity and real-time matching. In summary, there may
be parts of the trajectory where the image quality
is insufficient for visual servo control, leading to the
production of poor mosaics.
This abstract presents a Kalman filter-based ap-
proach, where both the image estimation and the
(possibly inaccurate) robot trajectory are fused. We
validate the proposed approach in controlled bench-
top experiments, where the loss of contact with tissue
is simulated. We show that it allows computing on-

line mosaics with a coherent topology, despite an im-
portant loss of probe-tissue contact at several points
along the trajectory. The method could be used for
robustly estimating the probe-tissue movement on-
line in a visual servo control loop.

MATERIALS AND METHODS

Let’s consider the typical mosaicing situation in
which a probe is moving with respect to a tissue.
The robot moves with a speed Vr(k), with k being
a discrete time instance. Vr(k) can be integrated in
time to estimate a position Xr(k). Due to various
phenomena (encoder noise, mechanical inaccuracies,
etc.), this position is estimated with a certain inac-
curacy. We denote the noisy robot inputs X̂r(k).
In parallel, thanks to online image-based methods
such as the NCC method [4], an image trajectory
Xm(k) (i.e., the trajectory followed by successive im-
ages in the mosaic) can be estimated by integrating
estimated displacements dXm(k).
We propose to estimate a filtered trajectoryXf (k) by

fusing together X̂r(k) and Xm(k) using a Kalman fil-
ter. The robot velocity at a given instant k is chosen
as the process model, which governs the prediction
we make about the next position. It is subsequently
corrected using the measurement dXm(k+ 1), yield-
ing a filtered position estimate Xf (k + 1).
At places where the image quality is good, the im-
age estimates are likely to be more precise than the
robot ones. Conversely, when there are image losses,
the robot input is likely to be more accurate. We en-
code this information in the process and estimation
covariances. To do so, we estimate an image match-
ing confidence cimg. We hypothesize that at places
where the image matches are of good quality, they
are locally consistent with one another in direction.
Therefore, we estimate cimg by subtracting the angle
of the dXm(k) vector with its median-filtered value
over the last five time instances. This value is sub-
sequently normalized to be between 0 and 1. It is
then integrated in the Kalman Filter by dividing the
measurement covariance values by cimg.
The method was validated using a Mauna Kea
Cellvizio system for pCLE imaging, and a Ficus
Benjamina leaf as a tissue sample. The latter
was placed on a high-accuracy 6-degrees-of-freedom



robot, which was moved with respect to the probe
to produce a relative probe-tissue movement. In or-
der to simulate varying contact conditions (which,
for instance, would be created by breath in in vivo
conditions), the z-axis of the robot was controlled
with an oscillating movement of amplitude 150µm
around the ideal contact point during the scanning
movement. Since the robotic setup is of high accu-
racy, the programmed spiral trajectory was perfectly
executed. Therefore, noise was artificially added to
the robot trajectory to produce the noisy robot tra-
jectory X̂r. This trajectory is similar to the ones
obtained in in vivo conditions with minimally inva-
sive settings, such as reported in [2].
In order to obtain a ground truth validation, the Fi-
cus Benjamina leaf was imaged under a conventional
microscope with back-light. pCLE images were then
registered to this ground truth using Mutual Infor-
mation (imregister function of Matlab).

RESULTS

Figure 1 presents the mosaic obtained for a spiral tra-
jectory when using only the image measurements. As
expected, local image losses create estimation errors,
which drive the overall mosaic topology very far from
the input spiral trajectory. One can see on Fig. 1b
that the estimated image confidence gets very low at
places where the image trajectory is locally incoher-
ent.

(a) Image-estimated mosaic (b) cimg values

Fig. 1: Reconstructed mosaic using only image measure-
ments. Left: mosaic; Right: image-estimated trajectory
Xm, with cimg shown as a colormap.

When using the noisy robot trajectory X̂r (Fig. 2(a),
the mosaic shape is partially recovered. However,
branches of the spiral are superimposed, leading to a
visually blurry mosaic very difficult to analyze. Fi-
nally, using the filtered output Xf for the mosaic
yields the best result (Fig. 2(b)). Note that the mo-
saic could be further improved by offline bundle ad-
justment, but it is nonetheless important for the clin-
ician to be able to assess the mosaic quality in real
time [4].
Those results are confirmed by comparing the po-
sitions in the mosaic with the conventional mi-
croscopy ground truth. Using only the image esti-
mates Xm, the average position error is very high
(mean 686.7µm, std. dev. 1080.8µm). As ex-

pected, it decreases when using X̂r (mean 291.0µm,
std 134.9µm). The error is, however, high with re-
spect to the pCLE images FOV (500µm). Finally,
the filtered positions Xf exhibit the lowest errors
(mean 100.8µm, std 63.9µm). Similar results were
obtained using different trajectories (circle, line).

(a) Using X̂r (b) Using Xf

Fig. 2: Reconstructed mosaics using robot measure-

ments. Left: using the noisy robot inputs X̂r; Right:
Using the filtered outputs Xf .

DISCUSSIONS

This abstract presents a method for robustly esti-
mating the topology of online pCLE-based mosaics.
Estimating the confidence of online image matches
allows fusing them with noisy robot trajectory in-
puts, leading to improved mosaics, despite important
local losses in image quality.
The method was validated on a bench-top setting
using a high-accuracy robotic setup. Results show
that mosaics obtained using the filtered outputs are
of better quality, both in terms of visual appearance
and with respect to the ground truth image positions.
This is likely to help the surgeon perform real-time
visual assessment, as well as to shorten computing
time of subsequent bundle adjustment.
Further work will include validation on ex vivo and
in vivo settings.
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