
Towards a Generic Simulator for Continuum Robot Control*

Andrey V. Kudryavtsev1, Kanty Rabenorosoa1, and Brahim Tamadazte1

I. INTRODUCTION

Nowadays, it became extremely difficult to deny the
importance of continuum robotics, especially in medical
applications [1]. In contrast to classical industrial robots, that
are typically characterized by a series of discrete rigid links,
continuum robots (CR) have a particular structure going from
robotic arm inspired by elephant trunk to concentric tube
robots (CTR). However, there is a common property which
defines them as an actuated mechanism whose backbone
forms curves with continuous tangent vectors. For developing
advanced control and achieving complex tasks with CR,
a generic simulator would be helpful. Indeed, building a
realistic experimental platform containing continuum robots
may be a challenging task both in terms of time and cost. One
of the most popular CR for medical applications is CTR that
is obtained by assembling elementary precurved tubes with
different diameters in telescopic manner. Generally, these
tubes are made of Nickel Titanium alloy but more recently
3D printed ones were introduced [2]. The tube assembly
constitutes the effective part of the CTR and in order to
get a functional robot, it is necessary to have an actuation
unit including angular and linear stages. Various challenges
remain to be tackled to obtain lightweight, compact, and
high degrees of freedom actuation unit. Therefore, the core
of this paper is the development of a generic simulation
platform for CR, especially a CTR. Comparing to widely-
used simulation platforms such as V-Rep or Gazebo, our
simulator has an important advantage: it is possible, and easy,
to add new deformable robots. Actually, the simulator can be
used, for instance, to optimize the CTR mechanism design,
to develop and validate advanced controls by using various
feedbacks, and to achieve complex tasks by integrating
anatomical models, etc. In the reminder of this paper, at first
the software architecture is presented. Secondly, we discuss
the capabilities of the simulator from the user point of view,
i.e., what a person with no background in programming can
achieve with it.

II. SOFTWARE ARCHITECTURE

The simulator presented here is written mostly in
JavaScript (JS). JS is a web-oriented programming language
supporting object-oriented paradigm. Inspite of the fact that
JS is generally used on web-pages, since 2009 it became

*This work has been supported by the Labex ACTION project (contract
”ANR-11-LABX-0001-01”) and ANR NEMRO (contract ”ANR-14-CE17-
0013”).

1Authors are with FEMTO-ST Institute, Univ.
Bourgogne Franche-Comté, CNRS, Besançon, France.
brahim.tamadazte@femto-st.fr (corresponding author)

Fig. 1. Main window screenshot of the simulator displaying: a 3D scene
with CTR, target object, and an image coming from the virtual camera
installed on the end-effector.

possible to develop stand-alone desktop applications thanks
to two following elements:

• runtime environment called Node.js which allows exe-
cuting JS code without a browser;

• framework Electron that made possible building desk-
top applications using web-development technology
(HTML, CSS, and JS).

The fact of using an object-oriented structure adds very
interesting features to our simulator. In particular, in order
to add a new robot, one has only to create a new class
containing the robot forward kinematics model.

III. USER-SIMULATOR INTERACTION

After the application starts, a user will see the main win-
dow displayed in Fig. 1. It contains the following elements:

• 3D scene containing CTR and a target object (white box
with four black dots) in front of it.

• a menu allowing to change some parameters of the
scene. In the given example, one can modify joint vari-
ables (mouse-based control) associated with the CTR;

• controls of server parameters defining the IP address and
port number allowing the communication of simulator



TABLE I
EXAMPLES OF COMMANDS THAT CAN BE SENT TO THE SIMULATOR.

Command Target
SETJOINTVEL,0,0,0,0,0,0.001

robotSETJOINTPOSREL,0,0,0,0,0,0.001
GETJOINTPOS
STOP
GETIMAGE camera
GETCALIBMAT

with the external world (external controller, software,
etc.) via UDP communication;

• buttons for scenes management (loading a new scene or
reloading the current one).

Also, the simulator gives the possibility to place a virtual
camera either on the robot end-effector or freely in 3D space.
This gives the possibility to generate a virtual image with
known and chosen camera model (e.g., intrinsic parameters).
This last point is of particular interest for simulating vision-
based control schemes such as visual servoing [3] or auto-
matic intracorporeal navigation [4].

A. Constructing the Scene

The 3D scene of the simulator must be defined in advance
by a user and can contain three types of objects. Firstly,
it may contain different static objects that are loaded from
standard 3D-model files such as *.stl, *.obj or *.dae files.
Secondly, it is a robot with its joint values that are directly
accessible from the menu in the right-up corner. A scene may
contain several robots. Finally, the third type of components
concerns imaging systems such a standard white-light camera
which allows generating images that can be then acquired
using UDP protocol. The whole scene is defined using a
text file in json format1.

B. Robot Simulation

During simulation, a user has access to two tools allowing
the interaction with the scene. The first one is the menu
that allows some basic manipulations such as changing joint
values, displaying or hiding frames associated with robot
joints, etc.

The second tool is a UDP protocol. Actually, the simulator
is a UDP server that can send and receive messages from ex-
ternal world. Among current possibilities, a user can change
robot configuration (relative or absolute joint position), apply
joint velocities, get the transformation matrix corresponding
to the tool pose, acquire the image from a virtual camera,
etc. Some examples of commands are represented in Table I.

There is a variety of ways for sending these UDP messages
to the simulator. The easiest one is to use a small software
telnet which allows sending UDP messages directly from
terminal. Another way would be to use a telnet equivalent
software with a graphic user interface. Finally, it is always
possible to establish UDP communication using different

1for details, see https://github.com/avkudr/visa/wiki/Scene-modeling

Fig. 2. Simulating a scene containing a 3D face with a nasal cavity, and
a CTR. Images on the right generated by the camera located on the robot
tip.

programming languages: python, MATLAB, etc. It is worth
noticing, that an adapter for C++ communication is provided
along with the simulator. This adapter, while acting like a
UDP client, allows in addition to transform the image coming
from simulator directly to OpenCV or ViSP libraries format.

C. Example of use

In this subsection, we present an example of a complete
simulated scene (Fig. 2). The scene contains a part of human
face as well as the 3D model of nasal cavity. Both objects
were loaded from *.stl files. CTR is placed in a way allowing
entering the cavity and performing an internal navigation.
In the given example, a CTR model is based on piecewise
constant curvature model. In addition, a camera is located
on the robot tip which enables online generation of images.
This setup can be used for development and testing of various
visual servoing and/or SLAM algorithms.

IV. CONCLUSION
The goal of this work was to create a simulation environ-

ment for continuum robots. Nowadays, it contains already a
concentric tube robot build using constant-curvature model.
Moreover, thanks to simulator flexibility of adding new
robots, one can use the existing pattern to build other robots
and add them to 3D scene. As user can also acquire the
image given by the virtual camera in real time, it opens new
possibilities for testing such algorithms as visual servoing,
SLAM or any other technique based on a visual feedback.

REFERENCES

[1] Burgner-Kahrs, J., Rucker, D. C., & Choset, H. (2015). Continuum
robots for medical applications: A survey. IEEE Transactions on
Robotics, 31(6), 1261-1280.

[2] Morimoto, T. K., & Okamura, A. M. (2016). Design of 3-D Printed
Concentric Tube Robots. IEEE Trans. Robotics, 32(6), 1419-1430.

[3] Baran Y., Rabenorosoa K., Laurent G.J, Rougeot P., Andreff N.,
Tamadazte B., Preliminary results on OCT-based position control of
a concentric tube robot, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), Vancouver, Canada, 2017.

[4] Kudryavtsev, A.V., Chikhaoui, M.T., Liadov, A., Rougeot, P., Spindler,
F., Rabenorosoa, K., Burgner-Kahrs, J., Tamadazte, B., Andreff, N.
(2018). Eye-in-Hand Visual Servoing of Concentric Tube Robots. IEEE
Robotics and Automation Letters, 3(3), 2315-2321.

https://github.com/avkudr/visa/wiki/Scene-modeling

	INTRODUCTION
	SOFTWARE ARCHITECTURE
	USER-SIMULATOR INTERACTION
	Constructing the Scene
	Robot Simulation
	Example of use

	CONCLUSION
	References

