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Abstract: We consider robust output regulation of passive infinite-dimensional linear port-
Hamiltonian systems. As the main result, we present a Lyapunov-based proof to show that
a passive internal model based low-gain controller solves the control problem for stable port-
Hamiltonian systems. The theoretic results are used to construct a controller controller for
robust output tracking of a piezoelectric tube model.
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1. INTRODUCTION

In this paper we study robust output tracking and distur-
bance rejection for an exponentially stable passive port-
Hamiltonian system (Villegas, 2007; Jacob and Zwart,
2012)

z(t) = (J — R)Qx(t) + Bu(t) + Bawgsst (t), (1.1a)
y(t) = B*Qu(t) (L1b)
on a Hilbert space X. In the control problem we aim to
construct a passive dynamic error feedback controller in

such a way that the output y(¢) of the system converges
to a given reference signal y,f(t), i.e.,

[Yrer (t) — y()I| = 0,
at an exponential rate despite the external disturbance sig-
nal wg;s: () (cf. Figure 1). In addition, we require that the
controller is robust in the sense that the output tracking
and disturbance rejection are achieved even if the param-
eters of the system (1.1) experience small perturbations.
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Fig. 1. Tracking control problem.

The robust output regulation problem for infinite-dimen-
sional linear systems has been studied extensively in the
literature. Especially the “simple” internal model based
controller has been shown to be effective in achieving
robust output regulation for stable infinite-dimensional

systems (Logemann and Townley, 1997; Hamaéldinen and
Pohjolainen, 2000; Rebarber and Weiss, 2003). The pre-
vious references employ frequency domain methods in
the stability analysis of the closed-loop system consisting
of (1.1) and the controller. Our main interest in this
paper is to consider a similar simple robust controller, but
instead use Lyapunov techniques in analysing the closed-
loop stability. The motivation for the study is that the
Lyapunov techniques provide an ideal starting point for
extending results from linear control theory to nonlinear
systems and controllers.

In this paper we assume the reference and disturbance
signals are finite linear combinations of trigonometric
functions with known frequencies {w;}{_, C R with
wp = 0 and unknown amplitudes. The robust controller we
construct is a port-Hamiltonian error feedback controller

S.Uc(t) = JCCL'C(t) + Bc(yref'<t) - y(t))» (12&)

u(t) = Biz.(t). (1.2b)
As required by the internal model principle (Paunonen and
Pohjolainen, 2010), J. is chosen to contain an internal
model of the frequencies of yref(-) and wgis:(-), and the
controller is finite-dimensional whenever the system (1.1)
has a finite number of outputs. The internal model prin-
ciple implies that the controller (1.2) will solve the robust
output regulation problem provided that the closed-loop
system consisting of (1.1) and (1.2) is exponentially sta-
ble. The specific structure of J. and B, is presented in
Section 3. In particular, the pair (J., B.) is controllable.

As the main result of this paper we will introduce a
Lyapunov-based argument to prove that the closed-loop
system is stable and the controller (1.2) achieves robust
output tracking and disturbance whenever that [|B.|| is
sufficiently small. Because of the condition on || B.||, (1.2)
is a low-gain controller. The passivity of the system (1.1)
brings the advantage that the controller can be con-
structed without any knowledge of the values P(4iwy) of



the transfer function of (1.1) at the frequencies of yyer(t)
and wg;s:(t), as is the case of general linear systems (Lo-
gemann and Townley, 1997; Hamaldinen and Pohjolainen,
2000). Earlier research using frequency domain methods
has demonstrated that for passive systems (1.1) and (1.2)
the condition on the smallness of || B.|| is not necessary for
closed-loop stability and robust regulation (Rebarber and
Weiss, 2003). Instead, in our main result this condition is
only required because of the Lyapunov function argument
in used in the proof.

Robust output regulation of infinite-dimensional linear
systems has been studied previously in (Pohjolainen, 1982;
Logemann and Zwart, 1992; Logemann and Townley, 1997;
Héamaldinen and Pohjolainen, 2000; Rebarber and Weiss,
2003; Boulite et al., 2009; Hamaldinen and Pohjolainen,
2010; Paunonen and Pohjolainen, 2010; Paunonen, 2016,
2017). In particular, the construction of a robust low-gain
controllers for stable systems has been studied in (Loge-
mann and Townley, 1997; Hamaldinen and Pohjolainen,
2000; Rebarber and Weiss, 2003), and also specifically
for port-Hamiltonian systems (Humaloja and Paunonen,
2018) and for passive systems (Rebarber and Weiss, 2003;
Paunonen, 2017).

Notation: If X and Y are Banach spaces and A: X — Y
is a linear operator, we denote by D(A), N'(A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Y is denoted by
L(X,Y). If A: X = X, then o(A) and p(A) denote the
spectrum and the resolvent set of A, respectively. For
A € p(A) the resolvent operator is R(\, A) = (A — A)~L.
The inner product on a Hilbert space is denoted by (-, ).
For T € L(X) on a Hilbert space X we define ReT =
T +T7).

2. A MOTIVATING EXAMPLE

As a motivating example we consider the output track-
ing trajectory problem for a piezoelectric tube used in
positioning systems for Atomic Force Microscopy (see Fig-
ure 2). This actuator provides the high positioning resolu-
tion and the large bandwidth necessary for the trajectory
control during scanning processes.
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Fig. 2. The piezoelectric tube.

For the sake of simplicity we consider the motion of the
piezotube in one direction. In this case the structure of
the system behaves as a clamped-free beam, represented
by the Timoshenko beam model and actuated through

homogeneous distributed control stemming from the piezo-
electric action over the last section of the beam (the first
section being passive). By choosing as state variables the
energy variables, namely the shear displacement z; =

%—f(z,t) — ¢(z,t), the transverse momentum distribution

Ty = p(z)%—'f(z,t), the angular displacement x3 = %(z,t)
and the angular momentum distribution x4 = T p%(z,t)
for z € (a,b), t > 0, where w(z,t) is the transverse dis-
placement and ¢(z,t) the rotation angle of the beam, the
port Hamiltonian model of the uncontrolled Timoshenko
beam is given by (?):

i(t) = (J — R)Qx(t) (2.1)
with Q = diag (K,%,EI, %)7 J=PZ+P, R =Gy
and

0100 000 —1 0000
1000 000 0 |0b,00
Pr=1o001|"P= o000 "= |o00o0

0010 100 0 00 0by

and p, I,, E, I and K the mass per unit length, the angular
moment of inertia of a cross section, Young’s modulus of
elasticity, the moment of inertia of a cross section, and the
shear modulus respectively, b,,, by the frictious coefficients.
The energy of the beam is expressed in terms of the energy
variables,

1

b
1 1
E(t) = 7/ (Ka? + fmg—kEIx%—F —a%)dz
2 Ja p I,

10 1
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The beam being clamped at point a, i.e., %xg(a,t) =
im(a,t) =0Vt > 0 and free at point b, i.e., Kx1(b,t) =
Elx3(b,t) =0Vt >0 the domain of the operator J is

x2(a,t) =0
D) = we mO LR 2D =0 vz 0
x3(bat) =

Control through piezoelectric actuation is modeled as a ho-
mogeneous distributed torque over the segment [b — 1, b],
and thus the controlled version of (2.1) becomes

z(t) = (T — R)Qx(t) + Bu(t)
y(t) = B*Qu(t)
where

0 u(t),
1[b7n,b] (Z)

b
B*Qux(t) = /b aa—f(z,t)dz.
-7

3. A PASSIVE ROBUST CONTROLLER

In this section we will present a dynamic error feedback
controller of the form (1.2) to achieve robust output
tracking and disturbance rejection of the signals (3.1).
We assume B € L(U,X) and By € L(U,X) in the
system (1.1). The input and output spaces U = Y and
Uy are Hilbert spaces. The reference signal yr.f(t) and



disturbance signal wg;s () are assumed to be of the form

q
Yref (t) = ao + Z [aj, cos(wyt) + ai sin(wit)],  (3.1a)
k=1
q
waist(£) = by + Z (b, cos(wyt) + by sin(wyt)]
k=1
where the frequencies {w;}{_, C R are known, and wy = 0
and wy > 0 for k € {1,...,¢}. The main control problem
is defined in the following.

The Robust Output Regulation Problem. Choose a
controller (1.2) in such a way that the following hold.

(a) The closed-loop consisting of the plant (1.1) and (1.2)
is exponentially stable.

(b) For all yref(t) and waisi(t) of the form (3.1) and for
all initial states of the plant and the controller

ly(t) = yres(D)]| = 0, as
at an exponential rate.
(¢) If (J,R, B, By) are perturbed to (J, R, B, By) in such
a way that the perturbed closed-loop system is expo-
nentially stable, then (b) continues to hold.

For A € p((J — R)Q) we denote the transfer function of
the system (1.1) is given by P(\) = B*QR(\, (J— R)Q)B.
If we denote ReT = (T + T*), then the passivity of the
system implies that Re P(iw) > 0 for all iw € p((J—R)Q)N
iR. To verify this, for any A € p((J—R)Q)NC . we can let
u € U be arbitrary and denote x = (AQ™! — J + R) ™! Bu.
Then

Re(P(\u,u) = Re(B*QR(), (J — R)Q)Bu, u)
Re((AQ™' — J + R) "' Bu, Bu)
Re(z, \Q™! — J + R)x)

= (ReN){z,Q 'z) + (2, Rz) > 0

since Q7' > 0, R > 0, and ReX > 0. In order to solve
the robust output regulation problem, it is necessary to
assume that {+iwi}i_, C p((J — R)Q) and that the
transfer function P()) is such that P(4iwy) are surjective
for all ¥k € {0,...,q}. This necessity can be observed,
for example, from the result (Paunonen and Pohjolainen,
2010, Lem. 6.4). In the case of our passive system, we make
the following natural assumption.

Assumption 3.1. Assume that +iwg € p((J — R)Q) and
Re P(+iwy) > 0 for all k € {0,...,q}.

We choose the parameters J. and B. of the controller
in such a way that the controller (1.2) will incorporate
an internal model of the signals y,;(t) and wgis(t) in
the sense of (Paunonen and Pohjolainen, 2010; Paunonen,

2016). To this end, we will choose X, =Y x --- xY =
Y2q+l7

(3.1b)

t — o0

J. = blockdiag(J?, J}, ..., J9),
0_q. k_ 0 wily
Jc =0 IYv Jc - |:_wk:IY 0 :| )
B .
Be=6.| @ |, BY=Iy, Bfoz{g].
B

Since Y is allowed to be infinite-dimensional, we will use
the definition of the internal model expressed in terms
of the G-conditions (Hamaldinen and Pohjolainen, 2010;
Paunonen, 2016).

Lemma 3.2. The controller incorporates an internal model
of the signals y,.;(t) and wy;s:(t) in (3.1) in the sense that

the G-conditions
R(tiwg — J.) NR(B.) = {0},
N(B.) = {0}

Vk e€{0,...,q} (3.2a)

(3.2b)
are satisfied.

Proof. Since BY, are injective, the same is true for B,
and thus (3.2b) holds. First let ¥ = 0 with wg = 0 and
w € R(iwg — J.) NR(B¢). Then w = (iwg — Je)x. = Bey
for some w,x. € X, and y € Y, and the structure of J,
and B. imply that in particular (iwy — JO)z! = 6.By.
Since iwg — J? = 0 and BY is injective, we have y = 0,
which further implies w = B,y = 0. Thus (3.2a) holds for
k=0.

On the other hand, if ¥ € {1,...,¢} and w = (Fiwy —
Je)xe = Bey for w,z. € X, and y € Y, then the structures
of J. and B, again imply that

Tiwply —wily | [21] ko _ Y
|: wrly :tiwkfy:| |:22:| B 5Cch =dc |:0

for some z1,29 € Y. Since wi > 0, the second line of the
above equation implies z; = Fizo. Substituting to the first
line we get

0cy = Hiwkz1 — wiza = Fiwg(Fize) — w22 = 0,

which shows w = B,y = 0. Since w € R(tiw,—J.)"R(B.)
was arbitrary, we have that (3.2b) is satisfied. O

The internal model principle (Paunonen, 2016, Thm. 7)
now states that the controller solves the robust output
regulation problem provided that the closed-loop system
consisting of the plant and the controller is exponentially
stable. If we write

Ze(t) = Joxe(t) + Beue(t) (3.3a)

Ye(t) = Blz.(t) (3.3b)
then the stability of the closed-loop consisting of (1.1)
and (1.2) is equivalent to showing that for wg;s: () = 0 the
closed-loop consisting of (1.1) and (3.3) under the power-
preserving interconnection Ramirez et al. (2014)

u(t) = ye(t)
ue(t) = —y(t)
is exponentially stable.

The following is the main result of this paper.

Theorem 3.3. There exists §7 > 0 such that for all §, €
(0,07), the closed-loop system consisting of the plant and
the controller is exponentially stable. In this case the
controller solves the robust output regulation problem for
all reference and disturbance signals (3.1).

The proof of Theorem 3.3 uses the following lemma.

Lemma 3.4. Let Q@ = I and let H € L(X,, X) be such that
R(H) ¢ D(J — R) and HJ, = (J — R)H — BB}. Then
there exist 4§ > 0, M, > 0 such that for any 6. € (0,d;)
we can choose P > 0 such that || Pyl < M, and

Pu(Jo + BeB*H) + (J. + B.B*H)*Pyy = —62.  (3.4)



Proof. Applying a block-diagonal similarity transform
T = blockdiag(Ty, T, ...,T,) where Ty = I and T} =
(52, T, ' = 1[E54] we can define Gy = T~ J.T =
blockdiag (iwo Iy , w1 Iy, —iwi Iy, . . ., iwgly, —iwgly) and
Gs = T~ B, and write

Jo+ B.B*H =T(Gy + GoB*HT)T™*.
Since J. € L(X,) with o(J.) C iR and o(J—R) C C_, the
Sylvester equation HJ,. = (J — R)H — BB} has a unique
solution H € L(X., X) satisfying R(H) C D(J — R) Vu
(1991). The Sylvester equation and the definitions of G4
and G4 further imply

HTG,=AHT — BBT,

where BXT = 6.[I,...,I]. Since G; is block-diagonal, it is
straightforward to verify that

HT = —6.| R(iwo, A)B, R(iwy, A)B, R(—iw,, A)B, ...,
Rliwy, A)B, R(—iw,, A)B} ,

and thus B*HT is equal to
—0¢ [P(iwg), P(iw1), P(—iw1), ..., P(iwg), P(—iwg)] .

Since we have by Assumption 3.1 that Re P(+iwy) > 0 for
all k € {0,...,q}, we also have o(P(+iwy)) C Cy for all
k€ {0,...,q}. Indeed, if S € L(U) is such that ReS > 0
and Re A <0, then
Re(S —X) = |[ReA|+ReS >0,

which further implies that S — X is boundedly invert-
ible (see, e.g.,(Paunonen, 2017, Lem. A.1(a))). Write
B*HT = —§.K. Since Go = T7'B, = (§./2)Ga where
Goo = [I,...,I]*, the operator (Gy + GoB*HT)* =
Gt — (62/2)K*G%, is of the form of the operator A.(e)
in (Hamaéaldinen and Pohjolainen, 2011, App. B) with
e = 62/2. If we denote by Tp,(t) the semigroup generated
by J. + B.B*H = T(Gy + GoB*HT)T !, then the proof
of Theorem 1 in (Hamé&ldinen and Pohjolainen, 2011, App.
B) shows that there exist My, wp, dg > 0 for all é. € (0, 5g)

we have that ||Ts, (t)]| < Moe=“%¢ for all ¢t > 0.
Let 6. € (0,45). Since Ts,(t) is exponentially stable, we
can choose P,g > 0 such that
(Jo + B.B*H)P.g + (J. + B.B*H)*P} = —1I.
The operator Py is given by Pog = [ Ty, (t)*Ts, (t)dt.

Thus

) oo o0 M
Py < T, (t 2dt<M2/ “woditgp = 0
1Pl < [ 1T (0P < 03 [ e 002

Now the operator P,y = 6215c0 satisfies the conditions of
the lemma. O

Proof of Theorem 3.3. As explained in Section 3 it suf-
ficient to show that the closed-loop system is exponen-
tially stable without the presence of the reference and
disturbance signals. By possibly changing variables ()
to Q'/2x(t) and defining new operators J = Q'/2JQ'/2,
R =QY2RQ'? and B = Q2B we can assume through-
out the proof that Q@ = I.

Let H € L(X.,X) satisfying R(H) C D(J — R) be the
solution of the Sylvester equation HJ, = (J—R)H — BB}.
Since J, € L(X.) with o(J.) C iR and o(J—R) C C_, the
solution H exists and is unique Va (1991). Moreover, since

B. = 6.B.g, also H = 6.H for a fixed Hy € L(X., X). We
choose the Lyapunov function for the closed-loop system
as

V. = (x, Px) + (x¢, (P. + H*PH)z.) + 2Re{x, PHz,)

where z = z(t) and z. = z.(t) are the states of the plant
and the controller, respectively. We have

I o|l[P P, I-H] [PoO
—H*I||P; P.+H*PH||0 I |~ |0 P.|

P Py

which implies that Pe = | p- p_ p=p H} > 0 whenever

P > 0 and P. > 0. Thus under these conditions V, is a
valid Lyapunov function candidate.

If we denote A = J — R — HB.B*, then a direct com-
putation using u(t) = y.(t) = Bfx.(t), uc.(t) = —y(t) =
—B*z(t), and HJ, = (J — R)H — BB} can be used to
verify that
V., = 2Re((J — R)x + Bu, Px)

+ 2Re(J.x: + Beue, (P. + H*PH)x,.)

+2Re{(J — R)x + Bu, PHx,)

+ 2Re{x, PH(J.2: + Beu.))

= (x4 Hx.,(PA+ A*P)(z + Hz.))

+ (e, (Pe(Je + BeB™H) + (Jo + BeB*H) " Pe)ac)

+2Re{x + Hz.,(PHB.B*H + BB} P.)z.).
Since the plant is exponentially stable, there exists € > 0,
P > 0 and 7 > 0 such that for all §, € (0,d7) we have

PA+ A*P < —el.

Indeed, for any € > 0 we can choose a fixed P > 0 such
that P(J — R) 4+ (J — R)*P = —2¢I, and

PA+ A*P
=P(J—R)+ (J - R)*P+20° Re(PHyBeo) < —¢I

when . > 0 is small enough. If we let P,y > 0 be as in
Lemma 3.4 and ¢, > 0, then for P. = ¢.P.y > 0 we have

P.(J.+ B.B*H) + (J. + B.B*H)*P. = —¢.021
and ||P.|| < Mg, for some constant M, and for all . > 0.

If 0 < 0. < min{dg,d7}, we can use the inequality
2Re(z,y) < o?||z||> + X |ly||? for & > 0 to estimate

V., = (z+ Hz,, (PA+ A*P)(x + Hz.))
+ (z¢, (P.(J. + B.B*H) + (J. + B.B*H)*P,)x.)
+2Re(z + Hao, (PHB,B*H + BB P,)z.)
< —ellz + Hael® = ectillzc | + [ H* Pz + Hae)|)?
1
+ 1BeB Hae||* + 0| B (@ + Hze) |* + —5 || BZ Pee||®
= [~e+ &I HGPII* + o*|| BI] ||z + Ha||?
1
+ 02 | ~ge+ 02| Beo B Ho||* + —5 MZeZ || Beol* | [le]*

Here € > 0 is fixed, and we can choose a? = ¢/(2| B|?).
Then we can choose a sufficiently small fixed €. > 0 and
05 > 0 such that if 0 < d. < §F := min{dg, 67,95}, then

Ve < _56HT55||2 < _56”T—1||2||Qe_1/2”<3767Qexe> =: —¢e.Ve,
where e, depends on the choice of d. > 0. O



4. ROBUST CONTROLLER FOR THE
PIEZOELECTRIC TUBE

We can now construct a controller to achieve robust output
tracking for the piezotube model presented in Section 2.
We consider the reference signal

Yref (t) = acos(wt) + bsin(wt), a,b e R\ {0}.
with a single pair of frequencies +w where w > 0. Since
the piezotube is a single-input single-output system, we
can use a controller

io(t) = [_Ow ‘5} ze(t) + de H (Yres (8) — y(2)),

u(t) = 8. [1 0] z.(t)

on X, = R2. Theorem 3.3 implies that whenever w > 0
is such that Re P(iw) # 0, the above controller achieves
asymptotic output tracking of the reference signal y,.s(t)
for all sufficiently small 6. > 0. Moreover, due to robust-
ness the output tracking is achieved even if the physical
parameters of the piezotube model in @, J, R, or B
contain uncertainty or experience changes, as long as the
closed-loop system stability is preserved.

5. CONCLUSIONS

In this paper we have considered the robust output
regulation of passive stable infinite-dimensional port-
Hamiltonian systems. As our main result we have pre-
sented a new Lyapunov proof to show that a passive in-
ternal model based controller achieves exponential closed-
loop stability and robust output regulation. The use of
Lyapunov techniques in the proof opens new possibili-
ties in design of robust controllers for nonlinear port-
Hamiltonian systems.
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