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Abstract: The purpose of this paper is to show how can be derived a simple finite dimension
port Hamiltonian model for a flexible beam. The Port Hamiltonian approach to this problem
gives the possibility of developing a control starting from energy considerations. On this purpose,
a control law will be designed on the found model by using IDA-PBC method. This work has
been done looking at the possible application on a endoscope actuated with multiple electroactive
polymers attached directly in different places of the beam. The lumped parameters model offers
the possibility of having input/output ports in every joint between two successive element in
which the beam has been discretized. In such a way, the action of actuators is easily modeled
as an input force in the joints where they are actually presented.
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1. INTRODUCTION

The modeling of medical endoscope based on the contin-
uum robots have drawn many researchers attention since
the last century (Anderson et al., 1967; Robert J. Webster
and Jones, 2010). The modeling of medical endoscope has
been considered in (Chikhaoui et al., 2014) by a kinematic
approach. The dynamic modeling of continuum robots has
been proposed in (Falkenhahn et al., 2015). The principle
of the medical endoscope (Fig. 1) is to bending the main
body with the Ionic polymer metal composites (IPMC) ac-
tuators. The IPMC is one class of most important electro-
active polymer (EAP) actuators. The main body of the
endoscope is a flexible structure and the IPMC consists
of a poly-electrolyte gel and metal electrodes plated by
a chemical process. Hence we need a powerful modeling
approach to model this complex multi physical system.

In this paper, we propose to use the framework of port
Hamiltonian system for the modeling and control a class
of medical endoscope. This framework is very power for
modeling and control of large class of mechanical, electro-
mechanical and multi physical systems (Duindam et al.,
2009). The modeling by port Hamiltonian approach is
based on the energy exchanges between the components
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Fig. 1. Medical endoscope and its simplified model

of the systems. This framework proposes a very simple
way to interconnect the different parts of system through
the energy exchange ports. It is very adapted to model the
medical endoscope interconnect with the IPMC actuators.

On the other hand, the port Hamiltonian approach also
provides some useful control laws with the clear physi-
cal interpretation via energy shaping of the closed-loop
system, damping injections, for example the Control by
Interconnection (Ortega et al., 2001) and Interconnection
and damping assignment passivity-based control (IDA-
PBC) (Ortega et al., 2002). In this paper, we propose to
an IDA-PBC design method for the endoscope model in
order to control its position.

This paper is organized as follows. The Section 2, a
port Hamiltonian model for medical endoscope system
is presented. This model is based on the force actuated
lumped parameter flexible beam. A position control design
is proposed in Section 3 by using the IDA-PBC method.



Some simulation results are shown in the Section 4 to
illustrate the effectiveness of proposed methods. At last,
the Section 5 gives some final remarks and perspectives in
the future work.

2. MODELING OF A N -DEGREE OF FREEDOM
BEAM

The beam can be thought as composed of n different
elements connected by n joints, where in every joint
are present both a angular spring and a damper. The
framework is planar and so all the links are allowed to
move only in the x-y plane.

Fig. 2. Lumped parameters Beam

The parameters of the n-degree of freedom mechanism,
with i = 1, 2, ..., n, are:

• qi the i-th joint angular displacement;
• mi the i-th link’s mass;
• Ii the moment of inertia about the axe passing

through the Center of Mass (CoM) of the i-th link;
• ai length of the i-th link;
• aCi distance between the i-th Joint and the CoM of

the i-th link;
• τi applied torque on the i-th joint;
• Ki(qi) non-linear stiffness of the i-th joint;
• ci viscous damping at the i-th joint;
• PiEi Potential and Kinetic energy of the i-th link.
• F0 is the inertial frame.
• Fi is the reference frame attached to the CoM and

with axes parallel to principal axes of inertia of the
i-th link .

To find the total energy of the system, it’s first necessary
to find the kinetic and the potential energy associated to
every single link and then sum everything together.

2.1 Total kinetic energy computation

The Kinetic energy of the i-th link has the form:

Ei =
1

2
miv

T
CivCi +

1

2
wTi RiĨiR

T
i wi, (1)

where vCi is the speed of the CoM of the i-th link, wi is
the angular speed of the i-th link with respect to F0, Ĩi is
the Inertia matrix of the i-th link with respect to Fi, Ri is
the Rotational matrix between Fi and F0.

Now, the goal is to express the Kinetic energy of every
link in respect only to the derivatives of the angular
displacements. Thanks to the rigidity of the links, it is

possible to relate both the speed of Centers of mass
and the angular speeds to the derivative of the angular
displacement of every joint. The relation that links angular
displacements derivative to angular speeds is trivial:

wi = q̇1 + q̇2 + ...+ q̇i. (2)

Then, this relation can be expressed through the use of
the so called angular Jacobian,

wi = J iw q̇, (3)

where q is the vector containing all the angular displace-
ment and q̇ is the one containing all the derived angular
displacement. In this case it can be seen that the angular
velocity Jacobian isn’t dependent on the angular displace-
ments. This is not the case for the Jacobian related to
velocities of the center of mass. The velocity jacobian of
the i-th link can be founded differentiating with respect
to time the equation that express the position of the i-th
center of mass in the F0 frame.

qCi =

[
xCi
yCi

]
=

[
fxi(q)
fyi(q)

]
= fi(q), (4)

where,

fxi(q) =

i−1∑
k=1

ak cos(

k∑
j=1

qj) + aCi cos(

i∑
k=1

qk), (5)

fyi(q) =

i−1∑
k=1

ak sin(

k∑
j=1

qj) + aCi sin(

i∑
k=1

qk). (6)

Differentiating qCi with respect to time, we obtain:

q̇Ci = vCi =
dfi(q)

dq
q̇. (7)

And thus we obtain the velocity Jacobian,

J iv =
dfi(q)

dq
. (8)

Now it is possible to express the Kinetic energy of every
link with respect to the derivative of the displacement
vector

Ei =
1

2
q̇T (miJ

iT
v (q)J iv(q) + J iTw (q)RiĨiR

T
i J

i
w(q))q̇. (9)

And then the total Kinetic energy of the beam can be
expressed as:

E =
1

2
q̇T

n∑
i=1

[miJ
iT
v (q)J iv(q) + J iTw (q)RiĨiR

T
i J

i
w(q)]q̇.

(10)
Since the Kinetic energy of every mechanical system can
be expressed as:

E =
1

2
q̇TM(q)q̇, (11)

where M(q) is the Mass Matrix of the system. By simply
comparing the two previous equations it is possible to
write,

M(q) =

n∑
i=1

[miJ
iT
v (q)J iv(q) + J iTw (q)RiIiR

T
i J

i
w(q)]. (12)

The Mass Matrix allows to relate the generalized speed
with momentum of the mechanical system

p = M(q)q̇, (13)

where p = [p1 p2 · · · pn]
T

. In the end we obtain the
Kinetic energy depending only on momentum:

E(q, p) = pTM−1(q)p. (14)



This relation is crucial because the Hamiltonian of the
system (i.e. the total energy of the system) must depend
only to energy variables and not to derivatives of energy
variables.

2.2 Total potential energy computation

In our framework we are supposing that the work plane is
parallel to the ground, therefore we ignore the effect of the
gravity to the dynamic of our system. Then, the potential
energy is only due to the springs’ deformation. To find the
potential energy we first have to define the stiffness matrix
of the system

K(q) = diag [K1, K2, · · · , Kn] . (15)

Then, the constitutive relation between elastic torques and
springs’ deformation is given by

τe = K(q)q. (16)

Hence, the total potential energy can be trivially founded
as

P (q) =
1

2
qTK(q)q. (17)

Also in this case we have that the potential energy depends
only on energy variables (i.e. vector of displacements q).

2.3 Port Hamiltonian model of the lumped parameter
flexible beam

The Hamiltonian (i.e. the total energy of the system) is
given by

H(q, p) = E(q, p)+P (q) = pTM−1(q)p+
1

2
qTK(q)q. (18)

To define the port Hamiltonian model of the system it is
necessary to define the state vector:

x =

[
q
p

]
. (19)

The port Hamiltonian model of the system is of the form
ẋ = [J(x)−R(x)]

∂H(x)

∂x
+ g(x)u

y = g(x)T
∂H(x)

∂x

, (20)

where J(x) = −JT (x) is the structural matrix, R(x) =
RT (x) ≥ 0 is the damping matrix, g(x) is the input matrix.

To completely determine the port Hamiltonian model it
is necessary to define the above matrices. The structural
matrix represent how the energy is exchanged within the
system, and for all the physical system this matrix is skew
symmetric. The system can be also expressed as,

[
q̇

ṗ

]
= (J(x)−R(x))


∂H(x)

∂q
∂H(x)

∂p

+ g(x)u

y = g(x)T


∂H(x)

∂q
∂H(x)

∂p


. (21)

The structural matrix J(x) and the damping matrix R(x)
can be rewritten as

J(x) =

[
J11(x) J12(x)
J21(x) J22(x)

]
, R(x) =

[
R11(x) R12(x)
R21(x) R22(x)

]
. (22)

Also the input matrix g(x) can be seen as

g(x) =

[
g1(x)
g2(x)

]
. (23)

The first part of the dynamic equation of (20) can be
rewritten as

q̇ = J11
∂H(x)

∂q
+ J12

∂H(x)

∂p

−R11
∂H(x)

∂q
−R12

∂H(x)

∂p
+ g1(x)u.

(24)
At the same time, from (11)

q̇ = M−1(q)p. (25)

From (17)it can be computed the Hamiltonian’s derivative
with respect to momentum

∂H(x)

∂p
= M−1(q)p. (26)

Then, comparing (23) and (25) with (24) it can be deduced
that

J11(x) = 0n×n J12(x) = In×n
R11 = 0n×n R11 = 0n×n

. (27)

This means that physically, the energy derived by the
momentum is a velocity. From skew symmetry of matrix
J(x) it is possible to determine that

J21 = −J12 = −In×n. (28)

Starting from the consideration that the matrix J(x) de-
scribes only the exchange of energy between the storing
element of the system, it doesn’t take into account dissi-
pative terms

J22 = 0n×n. (29)

The dissipative matrix R(x) will be also found with some
physical considerations. Matrix R(x) is the one responsible
of dissipation in the model. The friction that we suppose
to have in our model is of viscous type; it is well known
that the viscous friction enter in the dynamic with terms
that depends on velocities. From this consideration and

that ∂H(x)
∂p represent the vector of velocities of every joint,

it is possible to conclude

R21(x) = 0n×n R22(x) = diag [c1, c2, · · · , cn.] (30)

In this case of study, the beam is force actuated. Then,
it’s necessary to find the input matrix g(x). Let consider
u the input forces applied on the beam:

u : R→ Rm, u→ u(t), (31)

where m is the number of actuated joints. This input
function collect the magnitude of every input force applied
to the beam.

The conversion from forces to joint toques will lead to the
matrix g(x). First of all it is worth remembering that we
can map the velocity of every point of the lumped beam
to the joint’s velocity using the Jacobian matrix as follow:

ṗi = Jpiv q̇, (32)

where Jpiv is the Jacobian matrix related to any point
position pi belonging to the lumped beam. By conservation
of power, we obtain:

FT ṗi = τT q̇, (33)

where F is the vector containing the x and y components
of every applied force, in particular

F = [F1x F1y · · · Fmx Fmy]
T
. (34)



And the velocity Jacobian matrix is constructed as the
composition of all the Jacobian of every force application
point:

Jv = [Jp1v Jp2v · · · Jpmv ]
T
. (35)

Then, it is easy to show that

τ = JTv F (q), (36)

where τ is the vector of torque applied to the n different
joints. Since the direction of every application force is
assumed to be always perpendicular to the joint itself, the
Fix and Fiy components of every force can be written with
respect to the force magnitude and the joint configuration.
For this reason we define

fxi(q) = − sin(

lapp(i)∑
k=1

qi), (37)

fyi(q) = + cos(

lapp(i)∑
k=1

qi) (38)

such that
Fxi(q) = −|Fi(t)|fxi(q)
Fyi(q) = +|Fi(t)|fyi(q), (39)

where lapp(i) gives the link in which is applied the
i-th force. Since the vector of input is composed by
the magnitude of every applied force u = |F | =

[|F1(t)| · · · |Fm(t)|]T , can be written that:

F (q) = LF (q)u (40)

where,

LF (q) = diag

[[
Fx1(q)
Fy1(q)

]
,

[
Fx2(q)
Fy2(q)

]
, · · · ,

[
Fxm(q)
Fym(q)

]]
.

(41)
Finally, the input matrix of the port Hamiltonian system
is:

g(x) =

[
0n×m

JTv (q)LF (q)

]
. (42)

The upper part of the g(x) matrix is null because the
torques can’t affect the first n equation, i.e. the displace-
ment dynamics.

3. IDA-PBC CONTROL DESIGN

In this section, we will show how to design a control by
IDA-PBC method. To this end, we will consider the beam
contains 3 links. The input of the beam are magnitude
of two forces, applied to the first and third links at a
distance of af from respectively the first and third joint.
The direction of the forces is supposed to be always
perpendicular to the respective link as can be seen in the
figure (3). It is important to notice that the springs and the
dampers present in the picture are intended as torsional.
The components of the port Hamiltonian model are:

• The interconnection matrix

J =

[
03×3 I3×3
−I3×3 03×3

]
; (43)

• The damping matrix

R =

[
03×3 03×3
03×3 C

]
(44)

with C = diag[c1, c2, c3];

• The input matrix

g(x) =


0 0
0 0
0 0
af af + acos(q3) + acos(q2 + q3)
0 af + acos(q3)
0 af

 ; (45)

• The input vector of force magnitudes

u =

[
u1
u2

]
. (46)

Fig. 3. Description of the three elements force actuated
beam

The aim of the IDA-PBC is to find a state feedback control
law such that the closed loop system became equal to the
desired one:

ẋ = (Jd −Rd)
∂Hd

∂x
. (47)

In this example the only thing that will be modified is the
Hamiltonian. The IDA-PBC matching condition is such
that

g⊥(x)(Jd−Rd)
∂H

∂x
= g⊥(x)((J+Ja)−(R+Ra))

∂Hc

∂x
(48)

where g⊥ is the annihilator (g⊥(x)g(x) = 0) and Hc is the
Hamiltonian of the controller. The desired Hamiltonian Hd

is defined as

Hd = H +Hc (49)

It must be such that
∂Hd

∂x
(x∗)|x∗ = 0

∂2Hd

∂x2
|x∗ = 0

. (50)

Since the interconnection and the damping matrix won’t
be modified, i.e. Ja = 0 and Ra = 0. Then the matching
condition became

g⊥(J −R)
∂Hc

∂x
= 0 (51)

The annihilator, that represents the kernel of the matrix
g(x), is given by

g⊥(x) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −d c

 (52)

Exploiting the matching condition it is possible to get four
conditions on the controller’s Hamiltonian




∂Hc

∂p1
=
∂Hc

∂p2
=
∂Hc

∂p3
= 0

af
∂Hc

∂q2
− (af + a cos(q3))

∂Hc

∂q3
= 0

(53)

The first line of matching equation (53) means that Hc

can’t depend on the momentum variables, while the last
is a partial differential equation that impose a relation
between the controller’s Hamiltonian derivatives. One can
prove that the solution of this partial differential equation
must be such that

Hc = Hc(−q2 −
2af tanh−1(

(a−af ) tan(
q3
2 )√

a2−a2
f

)√
a2 − a2f

, q1) (54)

In the most simple case the solution would be
∂Hc

∂q2
= kq∗2

∂Hc

∂q3
=

af
af + a cos(q3)

kq∗2

(55)

The part of the Hamiltonian dependents on q1 can be
chosen as wanted. Then, the controller’s Hamiltonian can
be found as the sum of the integral of these two partial
derivatives plus the part depending on q1. Now that
the controller’s Hamiltonian is completely defined, it is
necessary that the condition on the first and the second
derivative of the total Hamiltonian in the equilibrium
position are satisfied. From the dynamic equation of the
system it is possible to find the forced equilibrium position
and the input vector at the equilibrium, imposing the
state’s derivatives equal to zero. In particular

0 = (J −R)
∂H

∂x
|x∗ + g(x∗)u∗ (56)

where p∗1, p
∗
2, p
∗
3 are mandatory imposed equal to zero,

while q∗1 and q∗2 are arbitrary. The unknowns are q∗3 and
the vector of inputs u∗. With the chosen Hc and k = K2,
we obtain

∂Hd

∂x
=



K1(q1 − q1∗)
K2(q2 − q∗2)

K3q3 +
af

af + acos(q3)
K2q

∗
2

0
0
0

 (57)

where, in the equilibrium positions, can be proved that

∂Hd

∂x
|x∗ = 0 ∀q∗1 , q∗2 ∈ [0, 2π]. (58)

The condition on the second derivatives in the equilibrium
can be proven that is verified only for some q∗2 . In partic-
ular

∂2Hd

∂x2
|x∗ =


K1 0 0
0 K2 0

0 0
∂2Hd

∂q23
|x∗

 (59)

where,

∂2Hd

∂q23
|x∗ = K3 −K2

afq
∗
2asin(q3)

(af + acos(q3))2
(60)

From simulations results, it has been seen that:

∂2Hd

∂q23
|x∗ > 0 ∀q∗1 ∈ R, q∗2 ∈ [−2.27,+2.27]. (61)

This means that the new equilibrium points of the q2
variable can be chosen only in a certain interval. According
to the IDA-PBC theory, the applied control input is

u = (gT (x)g(x))−1gT (x)[(Jd −Rd)
∂Hd

∂x
+ (J −R)

∂H

∂x
],

(62)
thus, according to the done choices, became

u = (gT (x)g(x))−1gT (x)[(J −R)
∂Hc

∂x
]. (63)

4. SIMULATION RESULTS

In this section, the simulation results are shown using
a Beam modeled with 3 elements. In particular, the
parameters used in the simulation are:

• m1 = m2 = m3 = 0, 0017 [kg]
• I1 = I2 = I3 = 1, 3801x10− 6 [kg ∗m2]
• a1 = a2 = a3 = 0, 1 [m]
• aC1 = aC2 = aC3 = 0, 05 [m]
• Ki(q) = kiq

2
i + qi + ki i = 1, 2, 3

• k1 = k2 = 1000 k3 = 100 [Nm ]
• c1 = c2 = c3 = 0, 03 [Pa ∗ s]

4.1 Open loop response

It is first illustrated the free oscillations of the beam
starting from initial condition q0 = [+π

8 − π
8 + π

6 ]
and p0 = [0 0 0]

0 0.02 0.04 0.06 0.08

-0.5

0

0.5
q

1

q
2

q
3

Fig. 4. Free Beam oscillations

4.2 Closed loop responses

Now we will show the closed loop system behavior by using
IDA-PBC design method. The controller Hamiltonian is
defined as following

Hc = +
1

2
K1q

∗2
1 − q∗1q1K1 +

1

2
K2q

∗2
2 − q∗2q2K2

−
2afq

∗
2K2 tanh−1(

(a−af ) tan(
q3
2 )√

a2−a2
f

)√
a2 − a2f

(64)

where one has the possibility of choosing q∗1 and q∗2 . In
the case that the equilibrium that you want to choose is
q∗3 it’s necessary to find the forced q∗2 equilibrium position
imposing the state’s derivatives equal to zero in the dy-
namic equation, and solve this set of algebraic equation in
the q∗2 unknown. Once the q∗2 equilibrium state is found, it
is possible to use the same controller Hamiltonian above



defined. The resulting vector of derivatives of the controller
Hamiltonian will be:

∂Hc

∂x
=



K1q
∗
1

K2q
∗
2

af
af + acos(q3)

K2q
∗
2

0
0
0

 (65)

Below are shown different time response of the three
element beam with different damping injection.

The initial condition of the system and the desired equi-
librium position are given as following:

x =


−0.4
−0.8
0.7
0
0
0

 ; q∗ =

[
q∗1
q∗2
q∗3

]
=

[
0.5
0.52
0.15

]
(66)

The initial configuration and the final position are shown
in the Fig. 5 and Fig. 6.

-0.05 0 0.05 0.1 0.15 0.2

-0.25
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Fig. 5. Initial position
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-0.05

0
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0.15
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Fig. 6. Final position

The time responses of the angular of every link are
shown in the Fig. 7-Fig. 9 with the different damping
injections. The angular of every link converges to the
desired equilibrium positions.

5. CONCLUSION

The port Hamiltonian framework has been used to model,
control the medical endoscope system. The endoscope is
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Fig. 7. Time response of beam, c = 0.025 Pa · s
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Fig. 8. Time response of beam, c = 0.04 Pa · s
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Fig. 9. Time response of beam, c = 0.08 Pa · s

modeled as a lumped parameter flexible beam. A position
control law has been proposed for this model by using the
IDA-PBC method. The proposed model and control law
have been illustrated by some simulation results.

The ongoing work is to deal with the experimental im-
plantation of the proposed control design method on the
experimental setup and with the non-linearity of the stiff-
ness of the beam.
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