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A finite-difference spatial discretization scheme that preserves the port-Hamiltonian 
structure of infinite dimensional systems governed by the wave equation is proposed. The 
scheme is based on the use of staggered grids for the discretization of different variables 
of the system. The discretization is given in 2D for rectilinear and regular triangular 
meshes. The proposed method is completed with the midpoint rule for time integration 
and numerical results are provided, including considerations for interconnection and closed 
loop behaviors and isotropy comparison between the proposed meshes.
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1. Introduction

Discretization of distributed parameter systems is a key issue for simulation and control purposes. Among all existing 
and standard methods, the ones aiming at preserving structural invariants and structural properties of the original system 
are of particular interest when control design is considered. The aim of this paper is to revisit the standard finite-difference 
scheme in the light of port-Hamiltonian formulations to deal with the structural reduction of 1D and 2D systems driven 
by the wave equation. Port-Hamiltonian systems (PHS) stem from the representation of internal energy exchanges of multi-
physical systems in interaction with their environment. They are particularly well suited to describe complex open systems 
interconnected through power conjugated port variables. The power preserving interconnection of subsystems is thereby 
formalized by the notion of Dirac structures [1,2], which represent a generalization of Kirchhoff’s laws or Newton’s laws 
and the velocity continuity in mechanics. For open systems, port-Hamiltonian systems cope with input and output flows 
and efforts [3]. By using this formalism, controlled systems can be interpreted in terms of the interconnection of physical 
systems exchanging energy among them, which from an engineering perspective provides a better understanding of the 

✩ This work was supported by the Agence Nationale de la Recherche – Deutsche Forschungsgemeinschaft (ANR-DFG) project INFIDHEM, ID ANR-16-CE92-
0028.

* Corresponding author.
E-mail addresses: vincent.trenchant@femto-st.fr (V. Trenchant), hector.ramirez@femto-st.fr (H. Ramirez), legorrec@femto-st.fr (Y. Le Gorrec), 

kotyczka@tum.de (P. Kotyczka).
https://doi.org/10.1016/j.jcp.2018.06.051
0021-9991/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2018.06.051
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:vincent.trenchant@femto-st.fr
mailto:hector.ramirez@femto-st.fr
mailto:legorrec@femto-st.fr
mailto:kotyczka@tum.de
https://doi.org/10.1016/j.jcp.2018.06.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2018.06.051&domain=pdf


674 V. Trenchant et al. / Journal of Computational Physics 373 (2018) 673–697
Fig. 1. Schematic representation of the physical system.

closed-loop system. This in turn permits to derive control strategies that are physically inspired [4]. Infinite-dimensional 
PHS governed by partial differential equations interconnected through their boundaries were introduced for modelling in 
[5,6] and extensions for control in for instance [7,2,8–10]. In the infinite-dimensional case, the Dirac structure underlying 
the PHS is expressed through differential operators. Performing a discretization which preserves the geometric structure of 
a PHS allows to preserve conservation laws and thus to preserve properties such as energy conservation and passivity with 
respect to the natural inputs and outputs of the system, which are central for control purposes. It also respects the physical 
meaning of the boundary port variables that can be naturally used for the interconnection of open multi-physical systems.

Several recent works tackle this challenge [11–15]. In [12,13], the structure of the system is preserved through the use 
of different (mixed) finite elements for the approximation of different variables. This approach found applications in mod-
eling, reduction and control [16–19] and was extended through high order polynomial approximations to pseudo spectral 
approximations in [14]. In [20] a structure preserving finite-volume discretization for PHS was performed for the 1D case. 
The mixed Galerkin structure-preserving discretization for systems of conservation laws was presented recently in [21].

Finite differences is another important numerical method whose main advantage is its simplicity. It is based on the 
discretization of differential operators through Taylor series which lead to various schemes with different advantages such 
as convenience for particular geometries or convergence orders (see [22,23] for recent reviews). Among them, schemes 
presenting staggered grids [24–26] consider separately the state variables accordingly to their respective geometric nature. 
In [24], a generalized leapfrog structure is used in the time domain on the linear transport equation. It is shown that this 
method, if stable, preserves the conservation laws, which is an important property for the study of non-dissipative systems. 
Moreover, conditions for numerical stability are given therein. The proposed two steps methods apply only on closed systems 
and [20] can be considered as the extension to open systems from the finite volume point of view. For frequency domain 
modelling in 2D, the authors of [27–29] consider two staggered square grids, one of the grids being rotated. Changing 
the orientation of the grid allows to get high order approximations of the derivatives at the price of higher complexity, 
up to 25-point stencils. A simpler approach is proposed in [30] where finite differences are performed on simple staggered 
grids. The convenience of such a method for the wave propagation is illustrated on a seismologic example, where it allows to 
implement a velocity-stress formulation. Indeed, the use of staggered grids allows to impose the effort variables as boundary 
conditions, e.g. speed and pressure in acoustics, which is convenient for the study of open systems and interconnections, 
while a traditional finite-difference method would not. For the 2D and 3D cases, the meshing choice, for example the choice 
of rectilinear or triangular meshing, impacts the performance of the discretization. As mentioned in [31], if the use of 
rectangular grids leads straightforwardly to a good approximation of a considered PDE, a structured triangular mesh, also 
called hexagonal mesh [31,32], can at the cost of a higher complexity provide a better computational efficiency and is a 
better choice to emulate the isotropy of the spatial propagation of a wave. Indeed, a convenient choice of the discretization 
scheme through a compact structured mesh leads to a more homogeneous distribution of the propagation in space. In [33], 
schemes for a regular triangular mesh are proposed, including an explicit second-order method which leads to a simple 
and intuitive discretization of the first order differential operator, convenient for the discretization of the conservation laws 
underlying the wave equation. Another scheme, first proposed in [34] and used in [31], relies on a balanced propagation of 
the wave along the three axes of a regular triangular mesh for the second order differential operator of the wave equation.

Regarding time integration, since a staggered-grid method for PHS results in the approximation of first order time deriva-
tives, explicit Euler, which is generally used in finite-difference time domain (FDTD) methods, is unconditionally unstable. 
Implicit midpoint, a symplectic method [35], is shown to be suited for non-dissipative PHS in [36]. Moreover, recent work 
[37] shows that there is a coincidence between the midpoint rule and discrete gradient in the linear case, which respects 
the power balance of the system.

In this paper, we propose to combine the port-Hamiltonian framework with finite differences on staggered grids to 
derive control oriented reduced order systems for the 2D wave equation. The differential operators which define the infinite-
dimensional Stokes Dirac structure are approximated with a consistency of order 2 [38] by matrices which define a Dirac 
structure. In that sense, a finite-dimensional system derived from the proposed method is a PHS endowed in a Dirac struc-
ture which approximates the original Stokes Dirac structure. This work is motivated by the study of a generic acoustic 
control problem proposed in [39,40] and formulated as a port-Hamiltonian system in [41]. The considered system is an 
acoustic tube of rectangular section which is approximated using a 2D rectangular domain. Distributed actuation at the 
boundary (see Fig. 1) aims to dissipate part of the energy carried by the acoustic waves propagating inside the tube. In-
dustrial applications can be found for example in aeronautics [42], air conditioning systems, motorised vehicles, etc., see 
[43] for a more exhaustive list. Even if the development of this work is motivated by this particular physical system, the 
discretization methods proposed in this paper apply to any linear 2D hyperbolic system.

The paper is organized as follows. In Section 2 the use of staggered grids for the spatial discretization through finite 
differences is motivated on the 1D wave equation. In Section 3 the 2D case is treated for a rectilinear and for a regular 
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triangular mesh. It is shown that the method preserves the port-Hamiltonian structure. In Section 4 numerical results are 
presented for the 1D and the 2D case for the rectilinear and the regular triangular meshes. The study is performed under 
open and closed loop conditions and the isotropy of the two meshes is compared. Finally in Section 5 we present general 
conclusions and comments of lines of future research. The notation used in this paper is recapitulated in the Appendix. 
A short recall on the considered time integration methods is given in a second appendix.

2. Distributed PHS and the 1D discretization scheme

In this section we introduce some basics on PHS and the use of the staggered-grid finite-difference method for PHS. We 
shall illustrate these concepts on the model of a 1D wave equation.

2.1. Distributed PHS

Consider the 1D wave equation

∂2z

∂t2
(ξ, t) = c2

0
∂2z

∂ξ2
(ξ, t) (1)

with c0 > 0 ∈ R the celerity of the wave, ξ ∈ [0, L], L > 0 ∈ R the space variable and t ∈ R
+ . To perform a discretization 

over the spatial domain, we define the spatial step h > 0 ∈ R, and we consider a centered finite difference to approximate 
the first order spatial derivative at a point ξk := kh

∂z

∂ξ
(ξk, t) ≈ zk+0.5(t) − zk−0.5(t)

h
(2)

where zk±0.5(t) := z(ξk ± 0.5h, t). The traditional finite-difference method allows to approximate the second order spatial 
derivative by applying again the approximation (2) on half-grid points ξk±0.5 leading to a scheme defined for every grid 
point k

∂2z

∂t2
(ξk, t) ≈ c0

zk+1(t) − 2zk(t) + zk−1(t)

h2
. (3)

It is known [44] that finite-difference schemes approximating derivatives of even order such as (3) induce numerical dissi-
pation. To guarantee energy-preservation properties using spatial discretization, it is more convenient to consider the wave 
equation (1) as a set of first order balance equations. In the following we shall use as state variables

x2 := − 1

q1q2

∂z

∂t
, x1 := 1

q1

∂z

∂ξ
,

with state vector x = (
x1 x2

)�
, and where q2 > 0 ∈ R and q1 > 0 ∈ R are physical parameters that depend on the consid-

ered physical domain. The balance equations underlying the wave equation are hence

ẋ1 = −q2
∂x2

∂ξ
, ẋ2 = −q1

∂x1

∂ξ
,

such that q1q2 = c2
0.

On the physical example of a (linear) acoustic wave, z, x1 and x2 are respectively the velocity potential, the particular 
momentum and the opposite of the volume expansion. For this physical domain, 1

q1
= μ0 is the mass density and 1

q2
= χs

is the adiabatic compressibility factor. In the following we keep this notation of the acoustic physical domain. However, all 
the following developments in this paper hold regardless of the physical domain considered.

Let us define a set of variables called flow and effort variables, respectively f i and ei , i ∈ {1, 2}, as

f =
(

f1
f2

)
=

(
ẋ1
ẋ2

)
, e =

(
e1
e2

)
= L

(
x1
x2

)
(4)

with L =
(

μ−1
0 0

0 χ−1
s

)
. The vectors f and e are called the vector of flows and the vector of efforts, respectively. In the acoustic 

framework, e1 and e2 correspond to the particular speed and to the acoustic pressure, respectively. There is a linear relation 
between the flow and effort vectors given by

f = J e, with J =
(

0 − ∂
∂ξ

− ∂
∂ξ

0

)
. (5)

When this relation is completed with the definition of the total energy of the system, which is given by a functional H
defined by
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H(x) = 1

2

L∫
0

x�Lx dξ (6)

for any smooth real function x(ξ, t) where the integrand in the integral form of H is a smooth function of x, and a set 
of boundary conditions, then (5) defines a distributed port-Hamiltonian system [5,2]. The total energy of the system (6) is 
called the Hamiltonian and the state variables are called energy variables. The boundary conditions, which correspond to 
the evaluation at the spatial boundaries of the effort vector e, are given by

(
f∂
e∂

)
:= U

⎛
⎜⎜⎝

e1(0)

−e2(L)

e2(0)

e1(L)

⎞
⎟⎟⎠ (7)

U is a unitary transformation that does not modify the energy balance i.e. the product f T
∂ e∂ and allows to characterize all 

the possible boundary port variables that respect this balance. In [5,6], it is shown that J is formally skew-symmetric with 
respect to the set of boundary variables (7). All possible parameterizations of (7) can be found in [6,8]. Geometrically a PHS 
is endowed in a Dirac structure [1], which defines a formal linear relation between flows and efforts. Physically, a Dirac 
structure is the geometrical expression of power preserving interconnection laws, such as Kirchhoff’s and Newton’s laws. In 
the case of distributed PHS with non zero boundary conditions the definition of the Dirac structure is extended in order 
to cope with the power flowing through the boundaries. This class of structure is called a Stokes–Dirac structure [5]. We 
do not give the definition of a Stokes–Dirac structure in infinite dimension, which can be found in [5], since it requires to 
introduce notions of differential geometry which are not relevant to the developments of the paper. The discrete systems 
which stem from the structure preserving discretization method we propose define Dirac structures in finite dimension. 
However, since the objective is to obtain a finite-dimensional PHS, we define the Dirac structure in finite dimensions.

Definition 1. [1] In finite dimensions a Dirac structure Dd is a subspace of F × E where F is a linear space and E its dual 
space, such that Dd =D⊥

d with respect to the symmetrical bilinear form

〈( f 1
d , e1

d)|( f 2
d , e2

d)〉 = 〈e1
d, f 2

d 〉 + 〈e2
d, f 1

d 〉 (8)

for ( f i
d, e

i
d) ∈F × E , i ∈ {1, 2} and 〈·, ·〉d the canonical product on F × E such that 〈 fd, ed〉 = f �

d ed .

The Dirac structure is a linear algebraic relation between flows and efforts. In order to obtain an explicit representation, 
state variables and causality relations have to be assigned.

Definition 2. [1] A port-Hamiltonian system without internal dissipation is defined by a Dirac structure Dd and a Hamilto-
nian H : X → R where X contains the vectors of energy variables x. The dynamics is given by the requirement that(

f , e, f p, ep
) ∈ Dd

where f = ẋ, e = ∂ H(x)
∂x , and where f p and ep are the flows and efforts of the external ports i.e. the exchanges between the 

system and its environment.

This definition also applies for infinite-dimensional systems [5,6] when the effort e is chosen equal to the variational deriva-
tive δH(x)

δx and when f p and ep correspond to the boundary flow and effort vectors.

Remark 3. In the 1D case [45] the variational derivative of a functional H of the form

H(x) = 1

2

∫
�

x(ξ)�L(ξ)x(ξ)dξ

with L ∈ L∞ ([0, L];Rn×n
)

such that L∗ =L, mI ≤L(ξ) ≤ M I for ξ ∈ [0, L] and constants m, M > 0 is given by

δH
δx

(x) = Lx.

In the case of the wave equation, since J is formally skew-symmetric with respect to f∂ , e∂ , and since e = Lx = δH
δx , the 

system (5), (7) defines an infinite-dimensional port-Hamiltonian system. It is not difficult to verify that the energy balance 
is given in terms of the boundary variables [5]

Ḣ = f �
∂ e∂ = e1(0)e2(0) − e2(L)e1(L). (9)

In the following section we shall proceed to discretize this class of systems.
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Fig. 2. 1D staggered discretization of x1
d , x2

d .

2.2. 1D spatial discretization

In this subsection we perform the spatial discretization of the wave equation (1) from its port-Hamiltonian formulation 
(4)–(7) where (5) can be explicitly written(

ẋ1
ẋ2

)
=

(
0 − ∂

∂ξ

− ∂
∂ξ

0

)( 1
μ0

0

0 1
χs

)(
x1
x2

)

with x1(ξ, 0) = x1,0 and x2(ξ, 0) = x2,0 and e1(0, t) = u1(t) and e1(L, t) = u2(t). In the acoustic framework, this is equivalent 
to imposing the particular velocity at the boundary, which corresponds to Neumann conditions regarding the second order 
wave equation in z (1). The spatial discretization, also known as semi-discretization, is performed according to boundary 
conditions whose natures are chosen a priori and which are imposed at the boundary points. For the sake of simplicity we 
shall consider a constant spatial step h ∈ R > 0 such that one can find a n ∈ N with nh = L. The state of the system (5), (7)
is discretized over the grids described in Fig. 2, the boundary conditions are thus conditions over e1(0, t) and e1(L, t) which 
can be interpreted as inputs of the system. Their discrete counterparts are denoted by e1

0 and e1
n , respectively.

Remark 4. The causality, i.e. the nature of the boundary conditions, has to be chosen a priori since it is critical for the 
definition of the different staggered grids and for the numbering of the discrete variables. Even if the proposed method is 
presented in this section through one example of causality, it can be applied on any configuration of boundary conditions 
without further difficulties. For example, another set of boundary conditions is considered in [38] where the pressure e2
is imposed at one of the boundaries. Imposing e2 at the boundary corresponds to a Dirichlet condition regarding a second 
order wave equation in pressure ∂2e2(ξ,t)

∂t2 = c2
0

∂2e2(ξ,t)
∂ξ2 . The possibility to impose directly the particular speed e1 and the 

pressure e2 at different boundaries of the same system comes as an advantage of the use of staggered grids over traditional 
discretization methods such as finite elements. See also [15] for different boundary causalities from the perspective of 
discrete modeling of conservation laws.

To perform the semi-discretization, the state variables are approximated by the finite-dimensional vector xd =(
(x1

d)� (x2
d)�

)� ∈ R
2n−1 with x1

d = (
x1

1 ... x1
n−1

)�
the vector of elements evaluated on the integer points of discretiza-

tion, ξk = kh, k ∈ {0...n} and x2
d = (

x2
1 ... x2

n

)�
the vector of elements evaluated on the half-integer points, ξk = (k + 0.5)h, 

k ∈ {1...n}. A discrete Hamiltonian Hd is defined as

Hd := 1

2
x�

d Ldxd = 1

2

(
1

χs
(x2

n)2 +
n−1∑
i=1

(
x1

i x2
i

)(μ−1
0 0
0 χ−1

s

)(
x1

i
x2

i

))
(10)

where Ld ∈ R
(2n−1)×(2n−1) is a diagonal matrix which corresponds to L evaluated at the corresponding grid points. Note 

that hHd ≈ H(x) in the sense that hHd converges to H(x) when n tends to infinity. The vector of discrete efforts is derived 
from (10)

ed := ∂ Hd

∂xd
= Ldxd (11)

where ed = (
(e1

d)� (e2
d)�

)� ∈ R
2n−1 with e1

d = (
e1

1 ... e1
n−1

)�
and e2

d = (
e2

1 ... e2
n

)�
. The central finite difference 

scheme (2) can then be applied to obtain

∂e1

∂ξ
(ξk, t) ≈ e1(ξk+0.5, t) − e1(ξk−0.5, t)

h
= e1

k − e1
k−1

h
,

∂e2

∂ξ
(ξk+0.5, t) ≈ e2(ξk+1, t) − e2(ξk, t)

h
= e2

k+1 − e2
k

h
.

(12)

One expresses fd , a discrete approximation of the flow f =J e, as fd = (
f 1 f 2

)� = (
f 1 ... f 1 f 2 ... f 2

n

)�
with
d d 1 n−1 1
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f 1
d = −1

h

⎛
⎝−1 1

. . .
. . .

−1 1

⎞
⎠

︸ ︷︷ ︸
D∈R(n−1)×n

e2
d, f 2

d = −1

h

⎛
⎜⎜⎜⎝

1

−1
. . .

. . . 1
−1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
−D�∈Rn×(n−1)

e1
d + 1

h

⎛
⎜⎝

1 0
0 0
.
.
.

.

.

.

0 −1

⎞
⎟⎠(

e1
0

e1
n

)
. (13)

The complete discrete flow vector is then

fd =
(

0 D
−D� 0

)
︸ ︷︷ ︸

Jd

ed + 1

h

⎛
⎜⎜⎜⎝

0n,2
1 0
0 0
.
.
.

.

.

.

0 −1

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
gd

(
e1

0
e1

n

)
(14)

where Jd is skew-symmetric.1

Proposition 5. The staggered-grid finite-difference spatial discretization of (5) according to the scheme (12) defines a finite-
dimensional Dirac structure Dd which approximates the original Stokes–Dirac structure. The approximated system{

ẋd = Jd Ldxd + gdud

yd = g�
d ed

(15)

with ud = e∂
d =

(
e1

0
e1

n

)
and yd = f ∂

d =
( 1

h e2
1

− 1
h e2

n

)
, is thus a PHS.

Proof. Define e′
d =

( ed

e∂
d

)
∈R

2n+1 =: E , f ′
d =

(
fd

− f ∂
d

)
∈ R

2n+1 =: F and J ′ =
(

Jd gd

−g�
d 0

)
= − J ′ � such that f ′

d = J ′e′
d . Dd ⊂ F × E

is a Dirac structure if and only if Dd =D⊥
d with D⊥

d = {( fa, ea) ∈ F × E|〈( fa, ea)|( fb, eb)〉 = 0 ∀( fb, eb) ∈Dd}. For all ( f ′
a, e′

a)

and ( f ′
b, e

′
b) in Dd ,

〈( f ′
a, e′

a)|( f ′
b, e′

b)〉 = 〈e′
a, f ′

b〉 + 〈e′
b, f ′

a〉
= 〈e′

a, J ′e′
b〉 + 〈e′

b, J ′e′
a〉

= 〈e′
a, J ′e′

b〉 − 〈e′
a, J ′e′

b〉
= 0 ⇔ ( f ′

a, e′
a) ∈ D⊥

d ⇔ Dd ⊂ D�
d .

Consider now ( f ′
a, e′

a) ∈D⊥
d and ( f ′

b, e
′
b) ∈Dd .

〈( f ′
a, e′

a)|( f ′
b, e′

b)〉 = 0

= 〈e′
a, f ′

b〉 + 〈e′
b, f ′

a〉
= 〈e′

a, J ′e′
b〉 + 〈e′

b, f ′
a〉

= −〈e′
b, J ′e′

a〉 + 〈e′
b, f ′

a〉.
Since this equality is true for all ( f ′

b, e
′
b) ∈Dd , then f ′

a = J ′e′
a and then D�

d ⊂Dd . Dd is then a Dirac structure. �
Remark 6. The energy balance of the PHS (15) is

Ḣd(t) = 1

h
(e1

0e2
1 − e1

ne2
n)

≈ 1

h

(
e1(0, t)e2(0.5h, t) − e1(L − 0.5h, t)e2(L, t)

)
(16)

and hḢd(t) tends to Ḣ(t) = f �
∂ (t)e∂ (t) when h → 0.

1 0n,m is the n × m null matrix and 0 represents the null matrices of appropriate dimensions when there is no ambiguity.
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Remark 7. It can be shown [38], at least numerically, that the spectrum of the approximated model tends to the infinite 
dimensional one when h tends to zero. In Section 4 of [19], this property is shown theoretically in the framework of mixed 
finite elements by considering the spectrum of a discretization matrix which coincides with Jd . However, the extension of 
this result to our discretization method needs particular care and is kept for future work.

3. Discretization of the 2D wave equation

The extension of finite difference on staggered grids to 2D systems allows to approximate the wave equation while pre-
serving its inner structural properties related to conservation laws such as the conservation of energy, and guarantees the 
physical meaning of the boundary variables. Since the main interest in using the finite-difference method is its simplicity, 
only cases with structured meshes (rectilinear and regular triangular grids) are considered in this work. In the next sub-
sections we first present the PHS formulation of 2D the wave equation and then propose structure preserving discretization 
schemes on rectilinear and triangular grids.

3.1. The PHS formulation of the system

Consider a rectangular domain � with orthonormal coordinates ξ1 ∈ [0, L1], ξ2 ∈ [0, L2]. Consider as state vector2 x =( x1
x2
x3

)
∈ L2(�, R3) =X and the balance equations

(
ẋ1
ẋ2

)
= −

(
∂

∂ξ1
∂

∂ξ2

)
(χ−1

s x3), ẋ3 = −
(

∂
∂ξ1

∂
∂ξ2

)(
μ−1

0 x1

μ−1
0 x2

)
, (17)

where the operators 
(

∂
∂ξ1
∂

∂ξ2

)
and 

(
∂

∂ξ1
∂

∂ξ2

)
are the gradient and divergence, respectively.

In the general case where μ0 and χs are dependent on space, these balance equations lead to the non-uniform wave 
equation

χs z̈ = div
(

1
μ0

grad(z)
)

(18)

where z is defined such that grad(z) = x1.
Assume that the balance equations (17) represent a physical system with kinetic energy Ek and potential energy E p

defined as

Ek = 1

2

L1∫
0

L2∫
0

(
x1 x2

) 1

μ0

(
x1
x2

)
dξ2dξ1

E p = 1

2

L1∫
0

L2∫
0

x3
1

χs
x3 dξ2dξ1.

(19)

In the case of an acoustic system, 
(

x1
x2

)
and x3 may be interpreted as density of momentum and as the opposite of the 

volume expansion coefficient, respectively [41]. In this framework, the two balance equations (17) stem from mass conser-
vation and Newton’s third law, respectively. The Hamiltonian H : X → R of the system corresponds to its total energy, i.e.
the sum of Ek and E p , such that

H(x) = 1

2

L1∫
0

L2∫
0

x�Lx dξ2dξ1 (20)

with L =
⎛
⎝μ−1

0 0 0

0 μ−1
0 0

0 0 χ−1
s

⎞
⎠. The flow variables f i and the effort variables ei , i ∈ {1, 2, 3}, are defined along with the vector of 

flows f and the vector of efforts e,

f =
⎛
⎝ f1

f2
f3

⎞
⎠ =

⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ , e =

⎛
⎝e1

e2
e3

⎞
⎠ = δH

δx
= L

⎛
⎝x1

x2
x3

⎞
⎠ .

2 L2(�, Rn) denotes the space of square-integrable functions on the domain � with vector values in Rn .
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Fig. 3. 2D discretization grid.

In the acoustic framework, the effort variables 
(

e1
e2

)
and e3 represent the particular speed and the pressure, respectively. 

The linear relation between flow and effort vectors is then expressed from the balance equations (17) as a combination of 
the gradient and divergence operators such that

f = J e, with J =
⎛
⎝ 0 0 − ∂

∂ξ1

0 0 − ∂
∂ξ2

− ∂
∂ξ1

− ∂
∂ξ2

0

⎞
⎠ , (21)

and can be written explicitly⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ 0 0 − ∂

∂ξ1

0 0 − ∂
∂ξ2

− ∂
∂ξ1

− ∂
∂ξ2

0

⎞
⎠
⎛
⎝μ−1

0 0 0
0 μ−1

0 0
0 0 χ−1

s

⎞
⎠

⎛
⎝x1

x2
x3

⎞
⎠ . (22)

This relation defines a port-Hamiltonian system [41] for the Hamiltonian (20) and for the set of boundary conditions

(
f∂
e∂

)
=

⎛
⎜⎜⎝

f∂1
f∂2
e∂1
e∂2

⎞
⎟⎟⎠ = U

⎛
⎜⎜⎜⎜⎜⎝

−e3(L1,ξ2)

e3(0,ξ2)

−e3(ξ1,L2)

e3(ξ1,0)

e1(L1,ξ2)

e1(0,ξ2)

e2(ξ1,L2)

e2(ξ1,0)

⎞
⎟⎟⎟⎟⎟⎠ (23)

with U a unitary transformation and where f∂ i and e∂ i , i ∈ {1, 2} are in R2. The energy balance satisfies [41]

dH

dt
=

L1∫
0

f �
∂2e∂2dξ1 +

L2∫
0

f �
∂1e∂1dξ2 (24)

where the right-hand side corresponds to the expression in coordinates of 
∫
B f �

∂ e∂ds, i.e. the integral on the boundary of 
the domain B. This means that the variation of the total energy of the system corresponds to the power exchange with 
its environment through the boundaries. We consider the discretization of this system with initial conditions x1(ξ1, ξ2, 0) =
x1,0, x2(ξ1, ξ2, 0) = x2,0 and x3(ξ1, ξ2, 0) = x3,0 and with boundary conditions imposing e1(L1, ξ2) = u1(t), e1(0, ξ2) = u2(t), 
e2(ξ1, L2) = u3(t) and e2(ξ1, 0) = u4(t) as inputs of the system. These boundary conditions correspond to impose U equals 
to identity in (23).

3.2. Rectilinear grids

Defining h1, respectively h2, the spatial step along ξ1 respectively ξ2), the states of the system (22), (23) are dis-
cretized over the grids described in Fig. 3. The boundary conditions are given by the efforts imposed on boundary 
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points numbered (0, k2) and (m, k2) for conditions on e1 and (k1, 0) and (k1, n) for conditions on e2, with k2 ∈ {1...n}
and k1 ∈ {1...m}. This corresponds in the acoustic framework to impose at each boundary the normal component of the 
particular speed. In the discretized setting, the continuous state variables are replaced by the finite-dimensional vector 
xd = (

(x1
d)� (x2

d)� (x3
d)�

)� ∈R
3mn−(m+n) , with

x1
d = (

x1
1,1 x1

1,2 . . . x1
m−1,n

)� ∈R
(m−1)n,

x2
d = (

x2
1,1 x2

1,2 . . . x2
m,n−1

)� ∈R
m(n−1),

x3
d = (

x3
1,1 x3

1,2 . . . x3
m,n

)� ∈R
mn,

(25)

and the boundary effort variables by the finite-dimensional vector e∂
d = (

(e1
d∂

)� (e2
d∂

)� (e3
d∂

)�
)�

, with

e1
d∂ = (

e1
0,1 e1

0,2 . . . e1
0,n e1

m,1 e1
m,2 .. e1

m,n

)�
,

e2
d∂ = (

e2
1,0 e2

1,n e2
2,0 e2

2,n . . . e2
m,0 e2

m,n

)�
.

(26)

e3
d∂

is equal to the empty set in this particular case due to the choice of boundary conditions which are on e1 or e2 along 
the boundary. The discrete Hamiltonian Hd is defined in terms of the discretized states xd as

Hd := 1
2 x�

d Ldxd (27)

where Ld ∈ R
(3mn−(m+n))×(3mn−(m+n)) is a diagonal matrix which corresponds to L evaluated at the corresponding grid 

points. Note that h1h2 Hd ≈ H in the sense that h1h2 Hd converges to H when m and n tend to infinity. Defining the vector 
of discrete efforts as the gradient of the discrete energy,

ed :=
(

∂ Hd

∂xd

)�
= Ldxd, (28)

with ed =: ((e1
d)� (e2

d)� (e3
d)�

)�
where the e{1..3}

d are vectors of the same dimensions as their state counterparts x{1..3}
d . 

One obtains, for the efforts on the (i, j)-indexed grid point,⎛
⎜⎝e1

i, j
e2

i, j

e3
i, j

⎞
⎟⎠ =

⎛
⎝μ−1

0 0 0
0 μ−1

0 0
0 0 χ−1

s

⎞
⎠
⎛
⎜⎝x1

i, j
x2

i, j

x3
i, j

⎞
⎟⎠ . (29)

Taking into account that⎛
⎜⎝x1

i, j
x2

i, j

x3
i, j

⎞
⎟⎠ ≈

⎛
⎜⎝ x1(ξ1

i+0.5, ξ
2
j )

x2(ξ1
i , ξ2

j+0.5)

x3(ξ1
i , ξ2

j )

⎞
⎟⎠ and

⎛
⎜⎝e1

i, j
e2

i, j

e3
i, j

⎞
⎟⎠ ≈

⎛
⎜⎝ e1(ξ1

i+0.5, ξ
2
j )

e2(ξ1
i , ξ2

j+0.5)

e3(ξ1
i , ξ2

j )

⎞
⎟⎠

where ξ1
i = ihi , ξ1

i+0.5 = (i + 0.5)h1, ξ2
j = jh2 and ξ2

j+0.5 = ( j + 0.5)h2, we obtain by central approximation of the spatial 
derivative the following numerical scheme

f 1
i, j = − 1

h1
(e3

i+1, j − e3
i, j),

f 2
i, j = − 1

h2
(e3

i, j+1 − e3
i, j),

f 3
i, j = − 1

h1
(e1

i, j − e1
i−1, j) − 1

h2
(e2

i, j − e2
i, j−1).

(30)

Define the vector of discrete flows as

fd = (
( f 1

d )� ( f 2
d )� ( f 3

d )�
)� =(

f 1
1,1 ... f 1

m−1,n f 2
1,1 ... f 2

m,n−1 f 3
1,1 ... f 3

m,n

)�
.

The vector fd is the approximation of ∂xd
∂t evaluated at the same spatial points as the state variables. The elements of fd are 

hence given by
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f 1
d = − 1

h1

⎛
⎜⎜⎜⎜⎝

−1 1
. . .

. . .

. . .
. . .

−1 1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
D1

e3
d (31)

where D1 ∈ R
n(m−1)×mn ,

f 2
d = − 1

h2

⎛
⎜⎝

K1
. . .

K1

⎞
⎟⎠

︸ ︷︷ ︸
D2

e3
d (32)

where D2 ∈ R
m(n−1)×mn and

K1 =
⎛
⎜⎝

−1 1
. . .

. . .

−1 1

⎞
⎟⎠ , (33)

K1 ∈ R
(n−1)×n , f 3

d = f 3
d1 + f 3

d2

f 3
d1 = − (D1)

�e1
d + 1

h1

⎛
⎜⎜⎜⎜⎝

In 0

0
...

... 0
0 −In

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
g1

e1
d∂ (34)

where g1 ∈ R
mn×2n , In the identity matrix of dimension n and

f 3
d2 = − (D2)

�e2
d + 1

h2

⎛
⎜⎝

K2
. . .

K2

⎞
⎟⎠

︸ ︷︷ ︸
g2

e2
d∂ (35)

where g2 ∈ R
mn×2m ,

K2 =

⎛
⎜⎜⎜⎜⎝

1 0

0
...

... 0
0 −1

⎞
⎟⎟⎟⎟⎠

with K2 ∈R
n×2. The discrete flow vector fd becomes

fd =
⎛
⎝ 0 0 D1

0 0 D2

−D�
1 −D�

2 0

⎞
⎠

︸ ︷︷ ︸
Jd

ed +
(

0 0
g1 g2

)
︸ ︷︷ ︸

gd

⎛
⎝e1

d∂

e2
d∂

e3
d∂

⎞
⎠ .

(36)

Proposition 8. The staggered-grid finite-difference spatial discretization of (21) according to the scheme (30) defines a finite-
dimensional Dirac structure Dd which approximates the original Stokes Dirac structure. The approximated system{

ẋd = Jd Ldxd + gdud

yd = g�
d ed

(37)

with ud = e∂ and
d
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Fig. 4. Triangular staggered discretization for xα..ε .

yd = f ∂
d =(

1
h1

e3
1,1

1
h1

e3
1,2 ... 1

h1
e3

1,n − 1
h1

e3
m,1 − 1

h1
e3

m,2 ... − 1
h1

e3
m,n

1
h2

e3
1,1 − 1

h2
e3

1,n
1

h2
e3

2,1 − 1
h2

e3
2,n ... 1

h2
e3

m,1 − 1
h2

e3
m,n

)�

is thus a PHS.

Proof. The proof of this proposition is analogous to the proof of Proposition 5 in the 1D case considering e′
d =

( ed

e∂
d

)
∈

R
3mn+(m+n) and f ′

d =
(

fd

f ∂
d

)
∈R

3mn+(m+n) according to (26) and (28). �
The energy balance of the discrete system, expressed in terms of boundary efforts and flows, is

Ḣd(t) = (e∂
d)� f ∂

d =
m∑

i=1

1

h1

(
e2

i,0e3
i,1 − e2

i,ne3
i,n

)
+

n∑
j=1

1

h2

(
e1

0, je
3
1, j − e1

m, je
3
m, j

)
(38)

and h1h2 Ḣd(t) converges to Ḣ when m and n tend to infinity.

3.3. Regular triangular grids

A regular triangular staggered mesh leads to simple compact 7-point stencils for a better approximation of the solution. 
The use of three spatial axes for the characterisation of the wave propagation is more accurate considering the isotropy 
of the wave propagation. Note that the preservation of the isotropy is interesting only in a uniform domain, i.e., when 
μ0 and χs are independent from the space variables. Indeed, in (18), the operator 1

χs
div 

(
1
μ0

grad(·)
)

is isotropic only in 

the uniform case, where it becomes equivalent to 1
μ0χs

	· with 	 the Laplacian operator. Using a rectilinear or regular 
triangular mesh can represent a drawback when applied to complex geometries since the mesh doesn’t necessarily match 
the physical geometry of the system. Here, using a regular triangular tiling on an system with a rectangular domain induces 
the definition of discrete points on each side of the physical boundary. For the sake of simplicity, a staircase approximation 
is considered in this work, i.e., that the nearest discrete point corresponds to the boundary. Recent works however [32,46]
tackle this challenge by defining unstructured finite volume elements on the boundary to fit the physical geometry while 
using finite differences inside the domain.

Contrarily to the rectilinear case, and since we consider equilateral triangles in the proposed meshing, it is non trivial to 
impose different spatial steps for the different axes of the domain, as it is the case in the traditional Finite-Difference Time 
Domain (FDTD) method.

Remark 9. Even though in this work we don’t consider complex geometries, a regular triangular mesh is generally more 
adapted to these cases since it allows to match more precisely the curvature of the boundaries of the considered spatial 
domain [46].

To perform a finite-difference discretization which preserves the port-Hamiltonian structure of (21), it is necessary to 
approximate the first order differential operators gradient and divergence. Three axes α, β , γ , are used to define the discrete 
points as shown in Fig. 4 where h > 0 ∈R is the spatial step, identical for each axis. We denote by −→u α, −→u β, −→u γ the unitary 
vectors of these axes.
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This results in the definition of a new set of state variables for the infinite-dimensional system, (xα xβ xγ xε)
� where 

x{α,β,γ } are linked to the state (x1 x2 x3)
� by projection over the cartesian axes such that

xα := x1, xβ := −1

2
x1 +

√
3

2
x2, xγ := −1

2
x1 −

√
3

2
x2

and xε := x3. The effort variables (eα eβ eγ eε)
� are defined accordingly by performing the same projections of (e1 e2)

� . 
Note that the inverse transformation is

x1 = xα, x2 = 1√
3
(xβ − xγ ), x3 = xε .

The Hamiltonian is derived from (20) and is given by

H =
L1∫

0

L2∫
0

[
1

3μ0

(
x2
α + x2

β + x2
γ

)
+ 1

2χs
x2
ε

]
dξ1dξ2 (39)

where the first term in the integral may be interpreted as the kinetic energy density, which is 1
2μ0

(x2
1 + x2

2) in cartesian 
coordinates, and the second term the potential energy.

We propose to perform a centered finite-difference approximation on the gradient operator which leads to

∂x3(ξk+0.5, ξl)

∂α
=: ∂xε(αm+0.5, βn, γo)

∂α
≈ xε

m+1,n,o − xε
m,n,o

h
,

∂x3(ξk−0.25, ξl+
√

(3)
4

)

∂β
=: ∂xε(αm, βn+0.5, γo)

∂β
≈ xε

m,n+1,o − xε
m,n,o

h
, (40)

∂x3(ξk+0.25, ξl+
√

(3)
4

)

∂γ
=: ∂xε(αm, βn, γo+0.5)

∂γ
≈ xε

m,n,o+1 − xε
m,n,o

h
,

completed with the approximation of the divergence operator

∂xα(αm, βn, γo)

∂α
+ ∂xβ(αm, βn, γo)

∂β
+ ∂xγ (αm, βn, γo)

∂γ

≈ 2

3h
(xα

m+1 − xα
m + xβ

n+1 − xβ
n + xγ

o+1 − xγ
0 ). (41)

Remark 10. The left hand term in (41) is indeed equivalent to the traditional expression of divergence in Cartesian coordi-
nates:

∂xα

∂α
+ ∂xβ

∂β
+ ∂xγ

∂γ

= ∂xα

∂ξ1

∂ξ1

∂α
+ ∂xα

∂ξ2

∂ξ2

∂α
+ ∂xβ

∂ξ1

∂ξ1

∂β
+ ∂xβ

∂ξ2

∂ξ2

∂β
+ ∂xγ

∂ξ1

∂ξ1

∂γ
+ ∂xγ

∂ξ2

∂ξ2

∂γ

= ∂x1

∂ξ1

∂ξ1

∂α
− 1

2

∂x1

∂ξ1

∂ξ1

∂β
+

√
3

2

∂x2

∂ξ2

∂ξ2

∂β
− 1

2

∂x1

∂ξ1

∂ξ1

∂γ
−

√
3

2

∂x2

∂ξ2

∂ξ2

∂γ

= ∂x1

∂ξ1
× 1 − 1

2

∂x1

∂ξ1
× 0 +

√
3

2

∂x2

∂ξ2

1√
3

− 1

2

∂x1

∂ξ1
× 0 −

√
3

2

∂x2

∂ξ2

−1√
3

= ∂x1

∂ξ1
+ ∂x2

∂ξ2
.

Notice that the combination of the schemes (40) and (41) leads to the approximation of the Laplacian operator

∂2xε(αm, βn, γo)

∂α2
+ ∂2xε(αm, βn, γo)

∂β2
+ ∂2xε(αm, βn, γo)

∂γ 2

≈ 2

3h2

(
xε

m+1,n,o + xε
m,n+1,o + xε

m,n,o+1 + xε
m−1,n,o + xε

m,n−1,o + xε
m,n,o−1 − 6xε

m,n,o

)
, (42)

which is symmetrical for each axis. Note that the scheme (42) is consistent with the finite-difference method applied on 
the order 2 wave equation [34,31].
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The grid can then be described as the interconnection of elementary port-Hamiltonian systems defined by quadratic 
Hamiltonian functions representing the energy stored along the different axes

α

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hα
m = 1

2

2

3hμ0
(xα

m)2

ẋα
m = 0

2

3hμ0
xα

m + uα
m

yα
m = 2

3hμ0
xα

m

, β =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hβ
n = 1

2

2

3hμ0
(xβ

n )2

ẋβ
n = 0

2

3hμ0
xβ

n + uβ
n

yβ
n = 2

3hμ0
xβ

n

,

γ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Hγ
o = 1

2

2

3hμ0
(xγ

o )2

ẋγ
o = 0

2

3hμ0
xγ

o + uγ
o

yγ
o = 2

3hμ0
xγ

o

, ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hε
m,no = 1

2

1

hχs
(xε

m,n,o)
2

ẋε
m,n,o = 0

1

hχs
xε

m,n,o + uε
m,n,o

yε
m,n,o = 1

hχs
xε

m,n,o

,

(43)

interconnected in a power preserving way⎛
⎜⎜⎝

uα
m

uβ
n

uγ
o

uε
m,n,o

⎞
⎟⎟⎠ =

(
03,3

−1
−1
−1

1 1 1 0

)⎛
⎜⎜⎝

yα
m

yβ
n

yγ
o

yε
m,n,o

⎞
⎟⎟⎠+

⎛
⎜⎜⎜⎝

1
hχs

xε
m−1,n,o

1
hχs

xε
m,n−1,o

1
hχs

xε
m,n,o−1

− 2
3hμ0

(xα
m+1 + xβ

n+1 + xγ
o+1)

⎞
⎟⎟⎟⎠ . (44)

On the triangular grid of Fig. 4, this leads to the system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋα
m

ẋα
m+1

ẋβ
n

ẋβ
n+1
ẋγ

o

ẋγ
o+1

ẋε
m,n,o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝ 06,6

−1
1

−1
1

−1
1

1 −1 1 −1 1 −1 0

⎞
⎟⎟⎟⎟⎠
(

2
3hμ0

I6,6 0

0 1
hχs

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα
m

xα
m+1

xβ
n

xβ
n+1
xγ

o

xγ
o+1

xε
m,n,o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
(

I6,6
01,6

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2
h xε

m−1,n,o

− l2
h xε

m+1,n,o
l2
h xε

m,n−1,o

− l2
h xε

m,n+1,o
l2
h xε

m,n,o−1

− l2
h xε

m,n,o+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

xα
m

xα
m+1

xβ
n

xβ
n+1
xγ

o

xγ
o+1

⎞
⎟⎟⎟⎟⎟⎟⎠ = (

I6,6 06,1
)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xα
m

xα
m+1

xβ
n

xβ
n+1
xγ

o

xγ
o+1

xε
m,n,o

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)

Consider now the discretization of system (21). The same rectangular domain and boundary conditions as for the recti-
linear meshing are considered. This leads to impose either eα, eβ or eγ at the boundary of the spatial domain. The choice 
of the spatial step h can induce several configurations of the triangular mesh and thus leads to a number of triangles along 
the ξ2 axis which can be odd or even. An example of regular triangular mesh for this system is shown in Fig. 5 for an even 
number of triangles per column. However, the following development holds for any h, and thus also for an odd number of 
triangles per column.

Define by ntl ∈ N the number of triangles of the same orientation per line and ntc ∈ N the total number of triangles per 
column. Notice that the numbering xε

m,n,o is redundant since it implies that several indexes can correspond to the same 
point, for instance xε

m,n−1,o = xε
m+1,n,o+1. Hence one cannot express the interconnection of the scheme as defined on Fig. 4

to derive a complete grid. It is thus necessary to define a new numbering of the discrete points. The simplest way is to 
consider the numbering described in Fig. 6. The positions of the points of each different nature are described by an index 
which is incremented from left to right, and from top to bottom.

From ntl, ntc , define nα , nβ , nγ and nε the number of points where xα , xβ , xγ and xε are approximated, respectively,

nα = ntl(ntc + 1)

nβ =
{

(ntl + 0.5)ntc if ntc even

0.5((ntl + 1)(ntc + 1) + (ntl(ntc − 1)) if ntc odd

nγ =
{

(ntl + 0.5)ntc if ntc even

0.5(ntl(ntc + 1) + ((ntl + 1)(ntc − 1)) if ntc odd
nε = (ntl + 1)(ntc + 1).
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Fig. 5. Example of regular triangular staggered meshing for state/effort discretization.

Fig. 6. Numbered regular triangular staggered meshing for state/effort discretization.

Define the total number of points nd = n{α,β,γ ,ε} . The finite-dimensional state vector is

xd = ((xα
d )� (xβ

d )� (xγ
d )� (xε

d)�)� ∈R
nd

with

xα
d = (xα

1 ... xα
nα

)�, xβ

d = (xβ
1 ... xβ

nβ
)�,

xγ
d = (xγ

1 ... xγ
nγ

)�, xε
d = (xε

1 ... xε
nε

)�.

Similarly, derive from ntl and ntc the numbers n∂{α..ε} of boundary points for each imposed effort e∂{α..ε}

n∂
α = 2(ntc + 1)

n∂
β = 2(ntl + 1) +

{
ntc if ntc even

ntc − 1 if ntc odd

n∂
γ = 2(ntl + 1) +

{
ntc if ntc even

ntc + 1 if ntc odd

n∂
ε = 0,

(46)

and the total number of boundary points n∂
d = n∂{α..ε} . The boundary effort variables are

e∂
d = ((eα

d∂ )
� (eβ

d∂
)� (eγ

d∂
)� (eε

d∂ )
�)� ∈R

n∂
d (47)

with

eα
d∂ = (e∂α

1 ... e∂α
n∂
α
)�, eβ

d∂
= (e∂β

1 ... e∂β

n∂
β

)�,

eγ
d∂

= (e∂γ
1 ... e∂γ

n∂ )�, eε
d∂ = (e∂ε

1 ... e∂ε
n∂ )�.
γ ε
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The discrete Hamiltonian Hd is defined as

Hd := 1

2
xd Ldxd (48)

where Ld ∈ R
nd×nd is a diagonal matrix which corresponds to the evaluation on the grid points of 

(
2
3 0
0 1

)
L. Note that 

h2 Hd ≈ H in the sense that h2 Hd converges to H when the number of points tends to infinity. This permits to define the 
discrete effort as

ed := ∂ Hd

∂xd
= Ldxd. (49)

In order to define the flow variables we introduce some additional notation. Define the matrices

K1 =
⎛
⎜⎝

−1 1
. . .

. . .

−1 1

⎞
⎟⎠ , K2 = Intl+1, K3 =

⎛
⎜⎝ Intl

0
...

0

⎞
⎟⎠ , K4 =

⎛
⎜⎝

0
...

0

Intl

⎞
⎟⎠ ,

where {K1, K2, K4} ∈R
ntl×(ntl+1) . The differential operator ∂

∂α is approximated by the matrix

D1 = 1

h

⎛
⎜⎝

K1
. . .

K1

⎞
⎟⎠

D1 ∈R
nα×nε . The operator ∂

∂β
is approximated by the matrix D2 = D+

2 − D−
2 with

D+
2 = 1

h

⎛
⎜⎜⎜⎝

K2
K3

K2
. . .

0nb,ntl+1

⎞
⎟⎟⎟⎠ , D−

2 = 1

h

⎛
⎜⎜⎜⎝0nb,ntl+1

K2
K4

K2
. . .

⎞
⎟⎟⎟⎠

{D2, D+
2 , D−

2 } ∈R
nβ×nε . The differential operator ∂

∂γ is approximated by the matrix D3 = D+
3 − D−

3 with

D+
3 = 1

h

⎛
⎜⎜⎜⎝0nc ,ntl+1

K3
K2

K3
. . .

⎞
⎟⎟⎟⎠ , D−

3 = 1

h

⎛
⎜⎜⎜⎝

K4
K2

K4
. . .

0nc ,ntl+1

⎞
⎟⎟⎟⎠ (50)

{D3, D+
3 , D−

3 } ∈R
nγ ×nε . Furthermore, we define the matrices

K ∂
1 =

⎛
⎝ 1 0

0(ntl−1),2
0 − 1

⎞
⎠ , K ∂

2 =

⎛
⎜⎜⎝

0ntl,2
0 1

−1 0
0ntl,2

⎞
⎟⎟⎠ , K ∂

3 =
⎛
⎝ −1 0

02ntl,2
0 1

⎞
⎠ ,

K ∂
4 =

⎛
⎜⎝

K ∂
2

. . .

K ∂
2

⎞
⎟⎠ , K ∂

5 =
⎛
⎜⎝

K ∂
3

. . .

K ∂
3

⎞
⎟⎠ ,

where3 K ∂
4 ∈ R

2(ntl+1)�ntc/2�×2�nt c/2� and K ∂
5 ∈ R

2(ntl+1)�ntc/2�×2�nt c/2� . Define the matrix

gd = 2

3

1

h

(
0nα+nβ+nγ ,n∂

d

gα gβ gγ

)

gd ∈ R
nd×n∂

d , where

3 �·� and �·� are the floor function and the ceiling function, respectively.
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gα =
⎛
⎜⎝

K1
. . .

K1

⎞
⎟⎠

gβ =

⎛
⎜⎜⎜⎝

0ntl+1

K ∂
4

0

. . .
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

−Intl+1
0

. . .
0

Intl+1

⎞
⎟⎟⎟⎠

gγ =

⎛
⎜⎜⎜⎝

0ntl+1

K ∂
5

0

. . .
0

⎞
⎟⎟⎟⎠+

⎛
⎜⎝

−Intl+1
. . .

Intl+1

⎞
⎟⎠

gα ∈ R
nε,n∂

α , gβ ∈ R
nε,n∂

β and gγ ∈ R
nε,n∂

γ . We also define

Jd =

⎛
⎜⎜⎝ . . .

−D1
−D2
−D3

D�
1 D�

2 D�
3

. . .

⎞
⎟⎟⎠ .

The discrete vector fd = dxd
dt is then given by

fd = Jded + gde∂
d .

Proposition 11. The staggered-grid finite-difference spatial discretization of (21) according to the scheme (40), (41) defines a finite-
dimensional Dirac structure Dd which approximates the original Stokes Dirac structure. The approximated system{

ẋd = Jd Ldxd + gdud

yd = g�
d ed

(51)

with ud = e∂
d is thus a PHS. yd = f ∂

d with

f ∂
d = g�

d1e∂
d = 1

h
(( f α

d∂ )
� ( f β

d∂
)� ( f γ

d∂
)� ( f ε

d∂ )
�)�

where

f �
d∂α =2

3
(eε

1 − eε
ntl+1 eε

(ntl+1)+1 − eε
2(ntl+1) eε

2(ntl+1)+1

... eε
ntc(ntl+1)+1 − eε

(ntc+1)(ntl+1))
�

f �
d∂β =2

3
(−eε

1 ... − eε
ntl+1 − eε

2(ntl+1)+1 eε
2(ntl+1) − eε

4(ntl+1)+1

eε
4(ntl+1) ... eε

(ntc)(ntl+1)+1 ... eε
(ntc+1)(ntl+1))

�

f �
d∂γ =2

3
(eε

1 ... eε
ntl+1 − eε

1 eε
2(ntl+1) − eε

2(ntl+1)+1

− eε
4(ntl+1) ... − eε

(ntc)(ntl+1)+1 ... − eε
(ntc+1)(ntl+1))

�

fd∂α ∈ R
n∂
α , fd∂β ∈ R

n∂
β and fd∂γ ∈ R

n∂
γ . fd∂ε is equal to the empty set in the particular case due to the choice of the boundary 

conditions.

Proof. The proof of this proposition is analogous to the proof of the Proposition 5 in the 1D case considering e′
d =

( ed

e∂
d

)
∈

R
nd+n∂

d and f ′
d =

(
fd

f ∂
d

)
∈R

nd+n∂
d according to (47) and (49). �
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Fig. 7. 1D propagation of a Gaussian initial condition, comparison with traditional finite-difference time domain method, time step τ = 44.4 μs, h = 2.0 cm.

4. Numerical experiment

In this section, the proposed discretization methods are implemented using MATLAB®. Advantages and limitations of the 
different numerical schemes are highlighted in a open-loop case and in a closed-loop case considering a fully absorbing 
boundary control. Since acoustic wave propagation in the air is considered we use the following physical parameters

1

μ0
= 0.8163 m3.kg−1,

1

χs
= 1.4161.105 Pa, c0 = 340 m.s−1 (52)

We recall that μ0 is the mass density and χs is the adiabatic compressibility factor. The proposed discretization method 
is completed with midpoint rule for the time integration, which coincide with the discrete gradient in the linear case, and 
thus respect the power balance of the system [36,47]. A short recall of the considered time integration methods is given in 
appendix.

4.1. 1D case – open-loop system

The propagation of a Gaussian initial condition in the center of the 1D spatial domain with fully reflective boundary 
conditions (e1

d∂
= 0) is studied in Fig. 7.

We consider spatial step h = 2 cm and a spatial domain of length L = 1 m. We simulate the system over a time T =
20 ms with a time step τ = 44.4 μs. The spatial step is chosen such that we can see significative differences between 
the different methods. The two first subfigures represent the state variables approximated with the staggered-grid method 
and implemented using the explicit PHS (15) with implicit midpoint time integration. In the second line of subfigures a 
Störmer–Verlet time integration [35] scheme is used. This is a two-step symplectic second order scheme for systems with 
separable Hamiltonian.

In the bottom left corner subfigure a full discretization using a finite-difference time domain method is performed 
on the order 2 wave equation (1). Bottom right corner subfigure shows the total energy of the system for midpoint and 
Störmer–Verlet integration. Fig. 7 shows some of the advantages of the proposed staggered-grid semi-discretization scheme 
over the FDTD method. In particular, the whole state of the system is made explicit and it is possible to compute the total 
energy directly from the states variables. Some numerical dispersion can be observed, especially for the midpoint integration 
method since the time step is not sufficiently small. The dispersion can be observed through the degradation of the patterns 
along time. Fig. 8, a zoom of Fig. 7, permits to see this degradation between the first and last observable patterns described 
by the simulated wave for the approximation of x2 in the cases of a Störmer–Verlet and of a midpoint time integration. The 
results suggest that if the numerical dispersion is too important using the midpoint scheme the Störmer–Verlet integration 
scheme can be used instead. However, as it can be observed in the last subfigure, the price of less dispersion is that the 
total energy of the system, which should remain constant in this conservative system, oscillates with a relative error of 
about 0.3 per cent. The midpoint method is then used in the following.

In the following subsection the discretization is illustrated when a boundary controller is considered.
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Fig. 8. Zoom of Fig. 7, degradation of the pattern due to dispersion for Midpoint and Störmer Verlet schemes.

4.2. 1D case – boundary control

The propagation of the same Gaussian initial condition is now considered in closed loop, with a boundary controller 
implemented at the ξ = L = 1 boundary. The simulation is performed for a time of T = 10 ms and a time step τ = 5 μs
for a spatial step h = 2 cm. An impedance matching controller corresponding to fully absorbing boundary control [48] is 
considered. The control law is implemented by imposing the boundary condition

e∂
d(2) = − h

μ0c0
f ∂
d (2),

that can also be interpreted as the interconnection of the discretized wave equation (15) with the static controller

yc = 1

μ0c0
huc,

⎛
⎝e∂

d(1)

e∂
d(2)

uc

⎞
⎠ =

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠

⎛
⎝ f ∂

d (1)

f ∂
d (2)

yc

⎞
⎠ (53)

where e∂
d(i) and f ∂

d (i) are the ith components of the vectors e∂
d and f ∂

d , respectively. Fig. 9 illustrates the closed-loop system 
behavior and shows the evolution of the approximated total energy.

It can be seen that approximately half of the energy is dissipated each time the propagating initial condition hits the 
ξ = 1 boundary, which corresponds to the behavior of a fully absorbing boundary. Since traditional methods such as FDTD 
do not allow to impose directly the effort variables at the boundary, they cannot be used in a straightforward manner to 
study the performance of this type of control. This is one the main advantages in preserving the PHS structure, the fact 
that the input-output ports of the system correspond to physical variables that can be interconnected with for instance a 
boundary controller.

4.3. 2D case

In the following, numerical results for the 2D PH model using the rectilinear discretization developed in Subsection 3.2
and the regular triangular discretization developed in Subsection 3.3 are presented. In the considered physical context, 
the effort variables e3 and eε represent the components of the acoustic pressure p. The system is simulated for a time 
T = 0.2 s with a time step τ = 0.6 ms. The same number of discrete points is used in the rectilinear and triangular cases 
ntl + 1 = m = 50, ntc + 1 = n = 5 with unitary spatial steps h = h1 = h2 = 1 m. The considered input is a sinusoidal plane 
wave injected into the domain through the ξ1 = 0 boundary and chosen equal to sin(2π c

λ
) with wavelength λ = L1

5 , which 
implies that the length of the domain L1 is a multiple of λ. This choice, combined with the replacement of the anechoic 
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Fig. 9. 1D propagation of a Gaussian initial condition with boundary control and evolution of the discrete Hamiltonian, τ = 5 μs, h = 2 cm.

Fig. 10. Propagation of a plane wave in open loop. (a) and (b): Snapshots at time t = 0.2s of e3 and eε , respectively. (c): Evolution of the discrete Hamilto-
nian.

termination considered in Fig. 1 by a fully reflective condition, is the worst case scenario for the triangular case. Indeed, 
the reflection of the wave on the ξ1 = L1 boundary induces a perfectly constructive interference which cannot be simulated 
using the regular triangular mesh because of the staircase approximation on this boundary.

Figs. 10 and 11 present the simulations in open and closed loop, respectively. In these figures the 3D plots show the 
profiles of p at t = 0.2s. Fig. 10 shows that the approximation of the total energy in open loop for both discretization 
schemes are similar. The differences between the two curves is due to the staircase approximation at the ξ1 = L1 boundary 
for the triangular case. Indeed, this approximation does not preserve the shape of the reflected wave in this worst case 
scenario. It is unsurprising since the triangular mesh is more adapted to complex geometries. For the 2D case, the control 
law is similar to the fully absorbing condition presented in the 1D case. It is applied on a portion of the ξ2 = 0 boundary 
along the ξ1 axis. More precisely on the segment ξ1 ∈

[
L1
3 , 2L1

3

]
as shown Fig. 12. The control law is implemented by using 

the boundary condition e2(ξ1, 0, t) = μ0c0e3(ξ1, 0, t).
Fig. 11 shows that in closed loop, the simulation using triangular mesh leads to a better dissipation of the energy of the 

system. Indeed, along the ξ1 = 0 boundary where there is no staircase approximation needed and since the triangular mesh 
provides a better numerical propagation due to its compactness, we can expect the energy variation due to the absorbing 
control along ξ1 = 0 to be more accurate. This is particularly important when considering passivity-based controllers [4,1,49]
which are commonly based on energy dissipation.

In order to evaluate numerically the frequency response of the approximation in terms of the number of discretization 
points the Bode magnitude plots for the different approximations are drawn. Fig. 13 and Fig. 14 consider the approximation 
on rectilinear and triangular meshes, respectively.
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Fig. 11. Propagation of a plane wave in closed loop. (a) and (b): Snapshots at time t = 0.2s of e3 and eε , respectively. (c): Evolution of the discrete 
Hamiltonian.

Fig. 12. Schematic representation of the spatial domain with boundary actuation.

Fig. 13. Magnitude Bode of
e3(L1,

L2
2 )

e1(0,
L2
2 )

diagram for rectilinear discretization.

The considered inputs are the discrete approximation of e1(0, L2
2 ) in the rectilinear case, respectively eα(0, L2

2 ) in the 
triangular case. The considered outputs are the discrete approximation of e3(L1, L2

2 ) in the rectilinear case, respectively 
eε(0, L2

2 ) in the triangular case. These choices correspond to the centers of opposite boundaries.
The cut-off frequency becomes higher when the number of points in the mesh is increased. The resulting roll-off also 

increases with the number of points. The shapes of the Bode plots are similar for the rectilinear and triangular cases, with 
some anti-resonances after the cut-off for the triangular case. These diagrams permit to evaluate numerically if the number 
of points used for the discretization is enough to study the system behavior up to a certain frequency.
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Fig. 14. Magnitude Bode diagram of
eε (0,

L2
2 )

eα(0,
L2
2 )

for regular triangular discretization.

Fig. 15. Isolines (solid lines) of a propagation of an initial condition on a discrete point with rectilinear grids, τ = 1 ms, t = 10τ , h1 = h2 = 0.4 m.

4.4. Isotropy consideration

Figs. 15 and 16 show the contour plot, i.e., the isolines, of the propagation of a punctual initial condition at the center 
of a 2D domain with L1 = L2 = 20 m. These figures show the profiles of p at t = 10τ with τ = 1 ms. The spatial steps are 
chosen such that the discretization leads to matrices Jd of almost the same size for both rectilinear and triangular cases, 
which permits to compare the two meshes at equivalent computation time. This is achieved by choosing h1 = h2 = 0.4 m for 
the rectilinear case and h = 0.5 m for the triangular case which lead to Jd ∈R

7400×7400 and Jd ∈ R
7371×7371, respectively.

The figures show that the triangular mesh provides a better approximation of the isotropic propagation of the wave 
equation. Since the initial condition is applied on a point of the domain, the differences in the 3D plots are explained by 
the bad performance of finite differences for high frequencies. This suggests that regardless of the geometry of the studied 
system, if the interest is to study the behavior with respect to initial conditions the use of a regular triangular mesh is more 
convenient. Recall that to obtain these performances for a computing time equivalent to the rectilinear mesh, the price to 
pay for the use of the triangular mesh is a greater complexity of implementation.

5. Conclusion

A full discretization has been proposed for open systems governed by the wave equation in the 1D and 2D cases. The pro-
posed spatial discretization scheme is based on staggered-grid finite differences such that it preserves the port-Hamiltonian 
structure of the system. Among the advantages of preserving the PHS structure, is that it allows to impose effort variables 
as boundary conditions on the finite-dimensional approximations and perform interconnections with subsystems such as 
boundary controllers. The main interest of the proposed method over other structure preserving discretization methods, 
such as mixed finite elements or structure preserving finite volumes, is its simplicity. In 2D, rectilinear and regular trian-
gular meshes are treated. The time integration is based on the midpoint rule and has been specialized for a large class 
of linear PHS. It thus applies to the boundary interconnection of the proposed semi-discretized wave equation with linear 
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Fig. 16. Isolines (solid lines) of a propagation of an initial condition on a discrete point with triangular grids, τ = 1 ms, t = 10τ , h = 0.5 m.

PHS such as controllers. The numerical results show the convenience of the proposed methods for the 1D and 2D cases 
considering simulations in open and close loop, and illustrate the advantage of a regular triangular mesh over a rectilinear 
one regarding the isotropy of the wave propagation. A drawback of staggered-grid finite-difference discretization is that it 
is results in high complexity when considering unstructured meshes. In that sense, it loses its main advantage over other 
structure preserving discretization methods in this particular case. Future works will consider the extension of this method 
to 3D, e.g. for Maxwell’s equations or room acoustic study, and the study of the interconnection of the proposed structured 
meshes with unstructured meshes, e.g. finite volumes such that the PHS structure of the system would be preserved. This 
will allow to consider more complex geometries.

Appendix A. Notation Table

Symbol Description Symbol Description
0i, j Zero matrix in Ri× j 0 Zero matrix of appropriate dimensions where there 

in no ambiguity
Ii,i Identity matrix in Ri×i t > 0 ∈R time coordinate
ξ, ξi ∈R 1D and 2D spatial Cartesian coordinates, i ∈ {1, 2} α, β, γ ∈R 2D spatial coordinates in the triangular case
∂·
∂ξ

partial derivative with respect to ξ δ·
δx variational derivative with respect to function x

∂·
∂t partial derivative with respect to t L, Li > 0 ∈R 1D and 2D domain dimensions, i ∈ {1, 2}
q1, q2 > 0 ∈R constant physical parameters c0 > 0 ∈R constant celerity of the wave
L2(�, Rn) space of square-integrable functions on the domain 

� with values in Rn
h > 0 ∈R spatial step in the 1D and triangular cases

h{1,2} > 0 ∈R spatial step in the 2D rectilinear case Ek, E p kinetic energy, potential energy

To simplify the notation in the following of this appendix, define (i ∈ {1, 2}, j ∈ N) in the 1D case, (i ∈ {1, 2, 3}, j ∈ N
2) in 

the 2D rectilinear case and (i ∈ {α, β, γ , ε}, j ∈ N) in the 2D triangular case. The spatial domain � is equal to [0, L] in the 
1D case and to [0, L1] × [0, L2] in the 2D case. 

Symbol Description Symbol Description
B boundary of � X space of energy variables, infinite dimensional case
F space of flows E space of effort
J : E → F skew-symmetric operator L =(

μ−1
0 0

0 χ−1
s

) energy matrix

D ⊂ F × E Stokes Dirac structure H : X →R
+ Hamiltonian, infinite dimensional case

xi , ei , f i state, effort and flow variables in infinite dimension x, e, f vectors of state, effort and flow in infinite dimension
e∂ , f∂ infinite dimensional boundary variables xi

j , ei
j , f i

j ∈R approximation at the point j of the state, effort and 
flow variables

xi
d, ei

d, f i
d ∈R

k approximation of the state, effort and flow variables, 
k ∈N

xd, ed, fd ∈R
k approximation of the vectors of states, efforts and 

flows, k ∈ N

ei
d∂

, f i
d∂

∈R
k approximation of the boundary effort and flow 

variables, , k ∈N

ed∂ , fd∂ ∈R
k approximation of the infinite dimensional vectors of 

boundary effort and flow, k ∈N

Jd ∈R
k×k skew-symmetric matrix, k ∈ N Ld ∈ R

k×k positive definite diagonal matrix, k ∈N

Hd : Rk → R ≥
0

Finite dimensional Hamiltonian, k ∈N Dd ⊂ F × E Dirac structure in finite dimension

gd ∈R
k1×k2 input matrix, {k1, k2} ∈N uc , yc ∈R

k boundary controller input and output, k ∈N
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K{1...4} , K ∂{1...5} , D , D{1...3} , D+
{1...3} , D−

{1...3} , g{1,2} and g{α...γ } are real matrices introduced for the discretization of the differ-
ential operators and boundary inputs. Integers are defined to number the discrete points:

Symbol Description Symbol Description
n ∈N number of points where x2 is defined, 1D case m, n ∈N number of lines and columns where x2 is defined, 

rectilinear case
ntl, ntc ∈N number of triangles per line and per column, 

triangular case
ni ∈ N number of points where xi is defined, triangular case

n∂
i ∈N number of boundary points where xi is defined, 

triangular case
nd ∈N total number of discrete points, triangular case

n∂
d ∈N total number of boundary discrete points, triangular 

case
m, n, o ∈N numbering of the coordinates over the three axes, 

triangular case

Appendix B. Time Integration

This appendix details the time integration methods of the discretized wave equation exploited Section 4. There are no 
original contributions in this appendix. It aims at completing the spatial discretization with time integration for the paper 
to be self-contained.

B.1. Implicit midpoint

The implicit midpoint method is the simplest symplectic method of order 2 [34]. Consider an ordinary differential equa-
tion such as ẋ = g(x) where the state x ∈ R

n , n ∈ N. Applying the implicit midpoint scheme for a chosen step time δt ∈ R
+

with xk ≈ x(kδt) leads to the following scheme:

xk+1 = xk + δt g
(

xk+xk+1
2

)
.

When applied to the conservative discretized port-Hamiltonian system (15), this scheme becomes

xk+1 = (
I − δt

2 Jd Ld
)−1 (

xk + δt
2

(
Jd Ldxk + gd(uk + uk+1)

))
when 

(
I − δt

2 Jd Ld
)

is invertible, which may depend of the chosen δt .
The midpoint method can be applied to dissipative port-Hamiltonian systems [2] by replacing Jd by ( Jd − Rd) in the 

previous equation, with Rd the dissipation matrix of the discrete system, symmetric positive definite.
In the linear case, this method coincides with the discrete gradient method, which respects the power balance of the 

system [36,47]. In the conservative case, this property guaranties that the discrete Hamiltonian remains constant along the 
time integration.

B.2. Störmer–Verlet

The Störmer–Verlet method, also called leap-frog method, is an integration method for separable Hamiltonian systems. It 
is the most widely used method for computations in molecular dynamics [35]. Like the midpoint method, it is a symplectic 
method of order 2, and is thus particularly suited to consider conservative systems.

Consider the discretized 1D wave equation (15) with this two steps integration method implies to express separately the 
discrete approximations of the conservation laws which underlie the wave equation:

ẋ1
d = Dχ−1

s x2
d + gaud

ẋ2
d = −D�μ−1

0 x1
d + gbud

where ga and gb are composed of the appropriate number of first and last rows of gd , respectively. For a chosen step time 
δt ∈ R

+ with xi
k ≈ xi

d(kδt), i ∈ {1, 2}, the integration scheme is

x1
k+0.5 = x1

k + δt
2

(
−Dχ−1

s x2
k + gauk

)
x2

k+1 = x2
k + δt

(
D�μ−1

0 x1
k+0.5 + gbuk+1

)
x1

k+1 = x1
k+0.5 + δt

2

(
−Dχ−1

s x2
k+1 + gauk+1

)
.
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Or, equivalently

x2
k+0.5 = x2

k + δt
2

(
D�μ−1

0 x1
k + gbuk

)
x1

k+1 = x1
k + δt

(
−Dχ−1

s x2
k+0.5 + gauk+1

)
x2

k+1 = x2
k+0.5 + δt

2

(
D�μ−1

0 x1
k+1 + gbuk+1

)
.

One notices that this scheme does not permit to take into account internal dissipation trivially.
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