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Abstract: This paper deals with optimal actuator location for a medical endoscope controlled
by electro-active polymer (EAP). The inner tube of the endoscope is a flexible structure that
can be represented by a Timoshenko beam. Actuators are patches of EAP. There is freedom
in the choice of EAP actuators location. In this paper, we first propose a port Hamiltonian
model of the endoscope. In order to choose the optimal location for the EAP actuators, we
consider the linear quadratic (LQ) performance as the optimal performance objective. At last,
some numerical simulation results are given based on the real experimental setup parameters.
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1. INTRODUCTION

The theoretical modeling and control of medical endo-
scopes have been studied since the last century (Anderson
et al., 1967). In recent years, technological progresses made
possible the use of continuum robots for different appli-
cations such as: laser manipulators, catheters and micro-
endoscopes (Robert J. Webster and Jones, 2010). Actuated
micro-endoscopes have been developed for endonasal skull
base surgery in (Chikhaoui et al., 2014) with embedded
actuators able to provide additional degrees of freedom to
the system. In this paper, the bending of the endoscope is
preformed by electro-active polymer (EAP) actuators. One
of the most important EAP actuators are Ionic Polymer
Composites (IPMC) whose attractive properties such as:
low actuation voltage, ease of fabrication, relatively high
strain and so on ... have been experimentally pointed out
in (Shahinpoor and Kim, 2001).

The modeling of medical endoscopes has been considered
in Chikhaoui et al. (2014) by a kinematic approach. The
main body of the endoscope is a flexible structure and the
IPMC actuators consist in patches of poly-electrolyte gel
and metal electrodes plated by a chemical process. The
modeling of such kind of system naturally leads to a com-
plex multi physical system which is often governed by par-
tial differential equations (PDEs). The port Hamiltonian
framework is a very powerful approach for the modeling
and control of mechanical, electro-mechanical and multi
physical systems (Duindam et al., 2009). Port Hamilto-
nian modeling is based on energy exchanges between the
different components of the systems. It has been recently
extended to distributed parameters systems described by
partial differential equations (PDEs). The port Hamilto-
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nian framework is well suited for the modeling of intercon-
nected multiphysical systems and then particularly well
adapted for the modeling of medical endoscopes. More-
over, modeling and control of flexible structures by using
the port Hamiltonian framework have been widely studied
in the last decade (Macchelli and Melchiorri, 2004b,a) and
the port Hamiltonian modeling of IPMC soft actuators has
been introduced in Nishida et al. (2011). The actuators
being coated outside of the medical endoscope (shown
in Fig. 1), this control problem can be regarded as the
distributed control of a distributed parameter system and
one has to decide the best location of actuators. This
naturally leads to the optimal actuator location problem.
This problem has been firstly introduced in the context
of distributed parameters system in (Slemrod, 1989). The
author in (Morris, 2011) proposes to minimize the linear
quadratic cost function in order to choose the optimal
actuators location. We can also find the other criteria to
find the optimal actuators location in the review article
(van de Wal and de Jager, 2001).

The organization of this paper is the following. In Sec-
tion 2, we introduce the port Hamiltonian modeling of
the endoscope with its distributed control. The optimal
actuator location is considered by minimizing the linear
quadratic cost functional in Section 3. In Section 4is given
the discretized model of the endoscope and this model is
validated through several simulations. At last, we give the
conclusion of this work and some remarks for future works.

2. PORT HAMILTONIAN MODELING OF
ENDOSCOPE

A simplified model of a compliant endoscope used for
medical examination (Chikhaoui et al., 2014) is presented
in Fig 2. The inner tube is actuated by electro-active
polymers (EAP) caught on the body of the endoscope.
The modeling of EAP can be found in (Nishida et al.,
2011). In this paper we do not represent the physical
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Fig. 1. EAP actuated Endoscope

model of the EAP and consider only the distributed forces
and torques applied on the body of the inner tube. The
compliant inner tube of the endoscope can be regarded as
a flexible beam. One end of this beam is clamped while
the other one is free. The actuators and the beam are
interconnected through the power conjugated variables.
The interconnection relation and causality are indicated
also in Fig 2. The compliant inner tube is modeled as
an infinite dimensional Timoshenko beam model. In the
following subsections we discuss the modeling of this
compliant structure and its distributed control.
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Fig. 2. Simplified EAP actuated Endoscope

2.1 Timoshenko beam

The distributed parameters port Hamiltonian formulation
of Timoshenko beam has been represented in(Macchelli
and Melchiorri, 2004b; Jacob and Zwart, 2012). This repre-
sentation has been widely studied for the boundary control
problem (Villegas et al., 2009; Ramrez et al., 2014) as well
as for the distributed control problem (Macchelli, 2003) of
beams. Let consider the port Hamiltonian representation
of the Timoshenko beam as follows:

ẋ(t) = (P1
∂

∂z
+ P0)

︸ ︷︷ ︸

J

Lx(t) (1)
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and the matrices:
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The state (energy) variables are the shear displacement
x1 = ∂w

∂z (z, t) − φ(z, t), the transverse momentum dis-

tribution x2 = ρ(z)∂w∂t (z, t), the angular displacement

x3 = ∂φ
∂z (z, t) and the angular momentum distribution

x4 = Iρ
∂φ
∂t (z, t) for z ∈ (a, b), t ≥ 0, where w(z, t) is the

transverse displacement and φ(z, t) is the rotation angle of
the beam. The coefficients ρ, Iρ, E, I and K are the mass
per unit length, the angular moment of inertia of a cross
section, Young’s modulus of elasticity, the moment of iner-
tia of a cross section, and the shear modulus respectively,
and the state space X = L2(a; b;R

4). The energy of the
beam is expressed in terms of the energy variables,
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(4)

The medical endoscope is clamped at one end while the
other end is free. The endoscope is actuated in its domain
by the use of EAP patches but does not have any control
at the boundary. Thus, the boundary conditions of the
endoscope are Kx1(b, t) = EIx3(b, t) = 0 ∀t ≥ 0 and
1
ρx2(a, t) = 1

Iρ
x4(a, t) = 0 ∀t ≥ 0 , The domain of the

operator J is
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⊂ X

(5)
The operator J = P1

∂
∂z + P0 defined by the matrices

P1 = PT
1 and P0 = −PT

0 is a first order skew adjoint
differential operator acting on the state space X with the
boundary condition (5). We also consider the material
of the endoscope is uniform, i.e. ρ, Iρ, E, I and K are
constant. Hence the operator L is self-adjoint and coercive.

2.2 Distributed control of Timoshenko beam

As previously mentioned, the endoscope is controlled by
the EAP actuators caught on its body. In this section,
we discuss the distributed control of the inner tube body
(Timoshenko beam).

Assume the EAP actuators can provide uniform torques.
We place the EAP actuators on the different small inter-
vals Ii = [ai, bi] of the beam (on the spatial domain [a, b]).
The torque given by each EAP can be written as bi(z)ui(t)
with bi(z) = 1 if z ∈ Ibi and bi(z) = 0 elsewhere.

The torque given by each EAP is bi(z)ui(t) on the i−th
on the small interval Ii = [ai, bi] of the spatial space [a, b]
i.e. bi(z) = 1 if z ∈ Ibi and bi(z) = 0 elsewhere. Thus the
input operator and input are:

B(z)u(t) =
∑
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
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b(z)




u(t) (6)



where B : C
i 7→ X , b(z) = [b1(z), · · · , bi(z), · · · ] and

u(z) = [u1(z), · · · , ui(z), · · · ]
T .

Example 1. Consider that three EAP actuators are placed
on the three small intervals of the beam I1 = [0, 0.1c],
I2 = [0, 4c, 0.5c] and I1 = [0.9c, 1c] with c = b−a

10 . The
three inputs given by the three actuators are u1(t), u2(t)
and u3(t). Thus the distributed control is given by

Bu =






0 0 0
0 0 0
0 0 0

b1(z) b2(z) b3(z)






[
u1(t)
u2(t)
u3(t)

]

(7)

where

bi(z)

{
= 1 if z ∈ Ii
= 0 if z /∈ Ii

i ∈ {1, 2, 3}. (8)

The output is power conjugated to the input, i.e.

y = B∗Lx(t) (9)

The input-output model of the endoscope can be described
by the following port Hamiltonian formulation :

ẋ(t) = JLx(t) + Bu(t)
y(t) = B∗Lx(t)

(10)

The energy balance equation can be easily computed by
using the total energy of the system (4) and the system
(10):

∂H

∂t
= yTu. (11)

3. LINEAR QUADRATIC OPTIMAL LOCATION

In this section, we discuss the optimal actuators placement
that minimizes a quadratic performance criterion. Before
analyzing the optimal location problem, let recall the
linear-quadratic regulator problem (Curtain and Zwart,
1995). The linear-quadratic optimal control design con-
sists to find a control law u(t) that minimizes the cost
functional:

Jco(u, x0) =

ˆ ∞

0

(〈x (t) , Qx (t)〉+ 〈u (t) , Ru (t)〉) dt

(12)
x(t) ∈ X is the state variable defined in (1). The state and
control weighting operators Q : X 7→ X and R : U 7→ U
are bounded, symmetric and positive definite.

Definition 2. The system (10) with cost functional (12)
is optimizable if for every x0 ∈ X , there exists u ∈
L2 ([0,∞);U) such that the cost is finite.

Definition 3. The pair (Q1/2,JL) is detectable if there
exists F : Y 7→ X such that JL − FC generates an
exponentially stable semigroup.

Theorem 4. (Curtain and Zwart, 1995) If the system (10)
with cost functional (12) is optimizable and detectable,
then the cost function has a minimum for every x0 ∈
X . Furthermore, there exists a self-adjoint non-negative
operator P : X 7→ X such that

min
u∈L2([0,∞];U)

Jco(u, x0) = 〈x0, Px0〉 (13)

The operator P is the non-negative unique solution of the
Riccati equation:

(
(JL)∗P + PJL − PBTRBP +Q

)
x = 0 (14)

with x ∈ D(L). Defining K = R−1B∗P , the optimal
control is u = −Kx(t) and JL − BK generates an
exponentially stable semigroup.

Definition 5. The pair (JL,B) is stabilizable if there
exists K : U 7→ X such that JL − BK generates an
exponentially stable semigroup.

Let us now consider m actuators of which the location
can be varied over the compact set Ω. We parametrize
their location by r. The input operator is denoted as
B(r) and depends on the parameter r. This parameter
r is a vector of length m with components in Ω so r is
varied on the space denoted by Ωm. Hence for each r we
have an optimal control problem (12) which we denote by
Jr
co(u, x0) corresponding to the optimal cost 〈x0, P (r)x0〉.

Normally, the initial condition x0 is not fixed. In this
paper, we consider that the optimal location minimizes the
cost function associated to the worst choice of the initial
condition (Curtain and Zwart, 1995, Lemma A.3.70), i.e.
we choose r in order to minimize

max
x0 ∈ X

‖x0‖ = 1

min
u∈L2([0,∞];U)

Jr
co(u, x0) = max

x0 ∈ X

‖x0‖ = 1

〈x0, Px0〉

= ‖P (r)‖.

(15)

We denote the performance at location r, µ(r) = ‖P (r)‖
and the optimal performance

µ̂ = inf
r∈Ωm

‖P (r)‖. (16)

Theorem 6. (Morris, 2011) Let B(r) : U 7→ X , r ∈ Ωm, be
a family of input operators such that for any r0 ∈ Ωm

lim
r→r0

‖B(r)− B(r0)‖ = 0. (17)

Assume that (JL,B(r)) are all exponentially stabilizable
and that (Q1/2,JL) is detectable where Q1/2 : X 7→ Y
is compact. If U and Y are finite dimensional, then there
exists an optimal actuator location r̂ such that

‖r̂‖1 = inf
r∈Ωm

‖r‖1 = µ̂ (18)

Theorem 6 shows that we can find the optimal actuators
location if the input operators B(r) and the operator Q1/2

are compact. Riccati equations have unique non-negative
solutions, then the optimal location with performance
µ̂ = infr∈Ωm ‖P (r)‖ exists. This result is proven following
Theorem 3.1 of (Curtain and Sasane, 2001).

4. COMPUTATION OF THE OPTIMAL LOCATION
AND SIMULATION RESULTS

In this section, we discuss the optimal location of EAP
actuators for the control of the beam position.

We first focus on the one actuator case. We then discuss
two different situations. First, we consider the optimal
actuator location when the power conjugate output of the
port Hamiltonian system is measured. Second, we consider
the optimal actuator location when the output signal is
measured at the middle of the beam.

The system (10) can be represented as:

ẋ(t) = JLx(t) + B(r)(z)u(t) (19)

The input operator B(r) depends on the actuator location
r. We denote ∆ the length of the actuator. Thus the input
operator can be written as:



B(r) =






0
0
0

br(z)




 with br(z) =







1, |r − z| <
1

∆

0, |r − z| >
1

∆

. (20)

The power conjugated output is

y(t) = B∗(r)Lx(t), (21)

which also depends on the actuator location r. Consider
the state weighting operator Q = LB(r)B∗(r)L and the
input weighting operator R = I, the cost functional (12)
becomes:

Jco(u, x0) =

ˆ ∞

0

(〈y(t), y(t)〉 + 〈u(t), u(t)〉) dt. (22)

The optimal objective is to minimize the norm of the
response over time. The Riccati equation associated with
this optimal problem is

((JL)∗P + PJL− PB(r)B∗(r)P + LB(r)B∗(r)L) x = 0
(23)

with x ∈ D(L). Since the operator Riccati equation (23)
cannot be solved in practice, we need an approximation of
the system (19) to compute the control law. We discuss the
discretization of the system (10) in the next paragraph.

We use the mixed-finite element discretization method
proposed in (Golo et al., 2004). The idea of this method is
to approximate flows and efforts with different functions in
order to preserve the physical meaning of each variable and
the geometric structure of the system. In the case of the
Timoshenko beam, defined on a one-dimensional spatial
domain, the effort variables (torque) correspond to some
zero (differential) forms (functions) and the flow variables
(angular velocities) correspond to some one (differential)
forms respectively. This spatial discretization method has
been applied to different physical models, the reader can
read (Hamroun et al., 2009; Baaiu et al., 2009) for more
details and (Macchelli et al., 2009) for a specific application
to the Timoshenko beam. The explicit finite dimensional
port Hamiltonian approximation of the Timoshenko beam
is given by:

ẋd = Jd
∂Hd

∂xd
+Bd(r)u (24)

where Jd = −JT
d ∈ R4N with N the number of infinitesi-

mal subsections used for the discretization,Hd = 1
2x

T
d Ldxd

is the Hamiltonian function with Ld the approximation
matrix of operator L. The following matrices present the
discretized structure operator of the infinite dimensional
model :

Jd =






0 M 0 0
MT 0 0 0
0 0 0 M
0 0 MT 0






︸ ︷︷ ︸

P̄1

+






0 0 0 −Φ
0 0 0 0
0 0 0 0
ΦT 0 0 0






︸ ︷︷ ︸

P̄2

(25)

where the sub-matrices are:

M =








−1 1 0 · · · 0

0 −1 1
. . .

.

..
...

. . .
. . .

. . . 1
0 · · · 0 0 −1








with M ∈ R
N×N (26)

Φ = diag(β, · · · , β) with Φ ∈ R
N×N (27)

where β is the size of the infinitesimal section. The matrix
Bd(r) is the approximation of the input operator B(r):

Bd(r) =






0
0
0
br




 ∈ R

4N (28)

where the vector br ∈ RN depends on the actuator location
r. By using approximation (24) of system (19), we can
get an approximate solution Pd from the resolution of the
following finite dimensional Riccati equation:

(JdLd)
TPd + PdJdLd − PdBd(r)B

T
d (r)Pd

+LdBd(r)B
T
d (r)Ld = 0.

(29)

We consider now the numerical simulation of this optimal
actuator location. The parameters used for this simulation
are given in Tab. 1. These are the real parameters of the
experimental setup built in department AS2M of Institute
FEMTO-ST (shown in Fig. 3).

Parameters of beam and actuator Value (unit)

Length L 30 cm

Width b 2 cm

Thickness h 2 mm

Young’s modulus E 0.2 GPa

Mass density ρ 920 kg/m2

Actuator length ∆ 3 cm

Table 1. Parameters of the beam
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Fig. 3. Clamped flexible beam experimental setup

We illustrate the optimal actuator location for system
(19) with the LQ cost function (22). The actuator is ten
times shorter than the beam i.e. ∆ = b−a

10 . The optimal
actuator location is computed by using the approximation
(24) with different numbers of infinitesimal subsection
(N). We vary N from 10 to 200. The optimal actuator
location is illustrated in Fig 4. In this simulation result,
we see that in the power conjugated input-output case, i.
e. Y = B∗(r)Lx, the optimal actuator location is at the
clamped side of the beam.
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In Fig. 5, are shown the LQ-performance ‖P‖ for the
different actuator locations. This variation of the LQ norm
‖P (r)‖ has been computed for N = 60. The actuator
location is evaluated considering each finite element of
discretization from the clamped side to the free side of
the beam. The actuator location which minimizes the LQ-
norm ‖P (r)‖ is at the clamped side.
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Fig. 5. Variation of LQ performance ‖P‖ with respect to
actuator location

We consider now the second case of study where the
measurement is the displacement at the middle of the
beam. In this situation, the output of the system is

y2(t) = B∗Lx(t), (30)

with

B =






0
0
0

b(z)




 with b(z) =

{
1, z ∈ I
0, z /∈ I

(31)

where I is a small interval I = [0.4c, 0.5c], c = b−a
10 .

The cost functional of the LQ problem can be written as
follows:

Jco(u, x0) =

ˆ ∞

0

(〈y2(t), y2(t)〉+ 〈u(t), u(t)〉) dt. (32)

with state weighting operator Q = LBB∗L. Then the
objective becomes to minimize the norm of the response
within the fixed interval I = [0.4c, 0.5c] over time.

We illustrate the optimal actuator location of the above
LQ optimal problem by Fig. 6. We can see the optimal
actuator location is not the same as the one shown in
Fig. 4 because of the change of the LQ cost functional.
The optimal actuator location we find is colocated to the
measurement. In Fig. 7, we show the LQ-performances
‖P‖ for the different actuator locations. The variation of
the LQ norm ‖P (r)‖ has been computed for N = 60.
This simulation result shows that we have to place the
actuator in the interval I = [0.4c, 0.5c] in order to minimize
the norm of the response over time in the same interval.
This results in colocated input and output. After several
simulations (which are not shown in this paper), the
optimal actuator locations are always collocated to the
output measurements.

Now we consider two actuators. We suppose that the
measurements are the displacement at the intervals I =
[0.2c, 0.3c] and I = [0.5c, 0.6c]. Fig. 8 shows that the
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optimal actuator locations are also around these two
intervals. The variation of the LQ norm ‖P (r)‖ has been
computed for N = 100. In this figure, we can see that
the anti-diagonal elements situated from the bottom left
to the top right have no meaning as they correspond to
superimposed actuators. They do not have real physical
meaning in practical application. This simulation shows
similar result as in the one actuator case.
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5. CONCLUSION AND FUTURE WORK

In this paper, the port Hamiltonian framework has been
used for the modeling and the discretization of a class
of bio-medical endoscopes. Theses medical endoscopes
are controlled by the use of distributed torques provided



by EAP actuators. We have formulated the endoscope
and its distributed control as an abstract system by the
port Hamiltonian approach. Then we have considered a
LQ optimal actuator location problem for this system.
This optimal problem consists in the minimization of
the LQ cost functions which are related to the actuator
locations. This method has been illustrated by numerical
simulations. The parameters of a real experimental setup
have been used in this simulation.

The ongoing work is the implementation of this method
on the experimental benchmark in order to compare the
experimental results with the numerical ones. Since the
EAP can also be used as deformation sensors, we will
consider both optimal sensor/actuator locations in a future
work.
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