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Abstract: An irreversible port-Hamiltonian system (IPHS) representation of non-isothermal
electromechanical systems with hysteresis is proposed. By representing the hysterisis through
hysterons interconnected with the mechanical and electrical components, it is shown that the
hysteresis behaves as an irreversible process. This is elegantly captured by the IPHS structure
and makes it possible to isolate the different irreversible phenomena of the overall system.
Furthermore, it is shown that in general an electromechanical system with hysteresis corresponds
to a reversible-IPHS, i.e., the combination of a conservative Hamiltonian system with an
irreversible one defined with respect to the same Hamiltonian. A micro-mechatronic example is
used to illustrate the approach.

Keywords: Port-Hamiltonian system, irreversible thermodynamics, hysteresis,
micro-mechatronics

1. INTRODUCTION

Recent technological progresses in material science make
possible the use of new active materials, such as piezo
material, electroactive polymers, magnetic memory shape
alloys, etc., for actuators design. The advantage of such
actuators is their good dynamic performances and their
efficiency in some specific working ranges. Their main
drawback is their hysteretic behaviour associated with the
modification of their christallographic organisation. This
hysteretic behaviour is very problematic from a control
point of view. Usually hysteresis is modelled as an in-
put/output map through nonlinear equations such as in
Bouc-Wen (Wen, 1976) or Duhem (Duhem, 1902) models.
This view is not consistent with energy formulation as
discussed in Goldfarb and Celanovic (1997). In Karnopp
(1983) a passive formulation of hysteretic systems is pro-
posed. It accounts for both memory and internal dissi-
pation, and that has been formulated as dissipative port
Hamiltonian system in Calchand (2014). Unfortunately
such kind of representation does not allow to take the ther-
mal domain into account, which is very important when a
precise description of the material is needed. In this paper
we propose a new model of hysteretic material using the ir-
reversible port-Hamiltonian framework. Irreversible port-
Hamiltonian system (IPHS) were proposed in Ramirez
et al. (2013a) as an extension of port-Hamiltonian systems
(PHS) (Maschke and van der Schaft, 1992; Maschke et al.,
1992) towards the structural representation of irreversible
thermodynamics. For processes described by lumped and
distributed models (Ramirez and Le Gorrec, 2016) it has
been shown that the formalism encompasses a large and
general class of irreversible thermodynamic systems, such

as heat-exchangers, chemical reactions, chemical reaction
networks and coupled mechanic-thermodynamic systems
(Ramirez et al., 2013b). Different to representations which
seek to encode the dynamics of irreversible thermody-
namic systems by a differential geometric structure, such
as GENERIC (Grmela and Öttinger, 1997; Öttinger and
Grmela, 1997) or contact systems (Mrugala et al., 1991;
Eberard et al., 2007), the aim of the IPH formulation is to
encode the dynamics with a pseudo-PH control structure.
Indeed, using the definition of the availability function
(Keenan, 1951; Alonso and Ydstie, 2001) the IPHS struc-
ture has recently been employed to exploit the thermody-
namic properties of irreversible processes to derive non-
linear passivity based controllers (Ramirez et al., 2016).
The paper is organized as follows. Section 2 presents the
basics on IPHS. Section 3 shows how simple electrical and
mechanical system with non-isothermal behaviours can be
formulated as IPHS. Section 4 presents how the irreversible
entropy production of the hysteresis in mechanical and
electrical systems can be precisely characterised and used
as domain coupling mechanism. In Section 5 a micro-
mechatronic actuators is used to illustrate the formalism.
Finally, Section 6 presents some conclusions and lines of
future work.

2. IRREVERSIBLE PORT-HAMILTONIAN SYSTEMS

Irreversible port-Hamiltonian systems (IPHS) have been
defined in Ramirez et al. (2013a) as an extension of port-
Hamiltonian systems (PHS) for the purpose of represent-
ing not only the energy balance but also the entropy
balance, essential in thermodynamic systems.



Definition 1. (Ramirez et al., 2013a) An input affine IPHS
is defined by the dynamic equation and output relation

ẋ = R
(
x, ∂U∂x

)
J
∂U

∂x
(x) + g

(
x, ∂U∂x

)
v,

y = g>
(
x, ∂U∂x

) ∂U
∂x

(x)

(1)

where x(t) ∈ Rn is the state vector, the smooth func-
tions U(x) : Rn → R and S(x) : Rn → R represent,
respectively, the internal energy (the Hamiltonian) and the
entropy functions, J ∈ Rn×n is a constant skew-symmetric
structure (interconnection) matrix of the Poisson bracket
(Maschke et al., 1992) acting on any two smooth functions
Z and G as:

{Z,G}J =
∂Z

∂x

>
(x)J

∂G

∂x
(x). (2)

The real function R = R
(
x, ∂U∂x

)
is composed by the

product of a positive definite function γ and the Poisson
bracket between the entropy and the energy functions:

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J ,

with γ
(
x, ∂U∂x

)
: Rn → R, γ ≥ 0, a non-linear positive

function. The input map is defined by g
(
x, ∂U∂x

)
∈ Rn×m

with the input v(t) ∈ Rm a time dependent function.

The drift dynamic in (1) is defined by a non-linear relation
between the time derivative ẋ of the state (extensive) vari-
ables and ∂U

∂x , characterized by the modulating function

R
(
x, ∂U∂x

)
, which explicitly depends on the co-energy (in-

tensive) variables ∂U
∂x . The balance equations of the total

energy and entropy functions of IPHS express the first
and second principles of irreversible Thermodynamics: the
conservation of energy and the irreversible creation of
entropy due to irreversible phenomena. By skew-symmetry
of J , the balance equation of the internal energy, which is
a convex function,

dU

dt
= y>v, (3)

expresses that the system (1) is a lossless dissipative
systems with (energy) supply rate y>v (Willems, 1972).
The balance equation of the entropy function is given by

dS

dt
= R

(
x, ∂U∂x ,

∂S
∂x

) ∂S
∂x

>
J(x)

∂U

∂x
+
∂S

∂x

>
g
(
x, ∂U∂x

)
v

= γ
(
x, ∂U∂x

)
{S,U}2J +

(
g>
(
x, ∂U∂x

) ∂S
∂U

∂U

∂x

)>
v.

= γ
(
x, ∂U∂x

)
{S,U}2J + y>s v.

(4)

where ys = ∂S
∂U y is an entropy conjugated output. By

Definition 1 the first term is positive: γ
(
x, ∂U∂x

)
{S,U}2J =

σ
(
x, ∂U∂x

)
≥ 0. For irreversible thermodynamic systems,

this term represents the internal entropy production and
its positivity expresses the second principle of Thermo-
dynamics. The second term in (4) corresponds to the
definition of an entropy supply rate. For further details on
IPHS and its thermodynamic interpretation we refer the
reader to Ramirez et al. (2013a). An extension of purely
IPHS has been given un Ramirez et al. (2013b), where
reversible-IPHS have been introduced in order to cope
with systems which simultaneously exhibit a reversible,
i.e., conservative, behaviour in some components and irre-
versible behaviour in others. One of the interesting aspects

of reversible-IPHS is that the entropy function is a Casimir
(van der Schaft, 2000) of the reversible structure matrix.

Definition 2. A Reversible-IPHS is defined by the dynam-
ical equation

ẋ = Jir
(
x, ∂U∂x ,

∂S
∂x

) ∂U
∂x

(x) + g
(
x, ∂U∂x

)
u, (5)

where the skew symmetric matrix Jir is defined as the
sum:

Jir
(
x, ∂U∂x ,

∂S
∂x

)
= J0 (x) +R

(
x, ∂U∂x ,

∂S
∂x

)
J (6)

where J0 (x) is the structure matrix of a Poisson bracket
and R

(
x, ∂U∂x ,

∂S
∂x

)
and J are defined according to Defi-

nition 1 of an IPHS. Furthermore the entropy function
S (x) is a Casimir function of the Poisson structure matrix
J0 (x).

The reversible-IPHS is the composition of a PHS and an
IPHS with structure matrices being the sum of a Poisson
structure matrix and a quasi-Poisson structure matrix in
the sense of Definition 1 and with common Hamiltonian
function. Computing the time derivative of the Hamil-
tonian U (x), by skew-symmetry of Jir

(
x, ∂U∂x ,

∂S
∂x

)
, the

Hamiltonian obeys the same balance equation as for IPHS,
depending only on the power product at the port of the
system. Computing the time derivative of the total entropy
for an isolated system one obtains

dS

dt
=
∂S

∂x

>
J0
∂U

∂x
+R

∂S

∂x

>
J
∂U

∂x

= {S,U}J0 + γ
(
x, ∂U∂x

)
{S,U}2J

= γ
(
x, ∂U∂x

)
{S,U}2J

using that S (x) is a Casimir function of the Poisson
structure matrix J0 (x), that is it satisfies {S,U}J0 = 0

for any Hamiltonian U (x). In consequence the entropy
balance equation of the reversible-IPHS is identical with
the entropy balance equation (4) of the IPHS. The benefit
of the energy based formulation of IPHS (Hamiltonian
given by the internal energy) is clearly emphasised in
this case, since it allows to naturally perform the inter-
connection with conventional PHS. This is not the case
for quasi-Hamiltonian formulations of thermodynamic sys-
tems where for instance the entropy (or some function of
the entropy) is used as Hamiltonian.

3. IPHS FORMULATION OF ELECTRICAL AND
MECHANICAL SYSTEMS

In this section we shall represent general electrical and
mechanical systems as IPHS. We shall make very general
assumptions, such as that all parameters may depend on
the temperature. Even thought this may be to general in
practice, we are interested in developing the mathematical
framework of the model.

3.1 The RLC circuit

Consider the PHS formulation of a simple RLC circuit[
Q̇

λ̇

]
=

[
0 1
−1 −r

] [
Q
C
λ
L

]
+

[
0
1

]
ue, ye = [0 1]

[
Q
C
λ
L

]
(7)

The electrical energy and its derivative in time are given
by



He(Q,λ) =
1

2

Q2

C
+

1

2

λ2

L
,

Ḣe = −r
(
λ

L

)2

+ y>e ue.

Consider the case when the thermal effects cannot be
neglected, i.e., the electrical dissipation induces some mi-
croscopic Brownian motion which alters the dynamic be-
haviour of the system. We can for instance assume that all
the electrical components are temperature dependent

C = C(T (S)), L = L(T (S)), r = r(T (S)),

where T (S) is the temperature of the system which is
a function of the entropy S. Consider now the internal
energy of the system, which is the sum of the electrical
energy and some smooth function of the entropy

Ue(Q,λ, S) =
1

2

Q2

C(S)
+

1

2

λ2

L(S)
+ Se(S) (8)

The variation in time of the internal energy is given by

U̇e =
∂Ue
∂Q

Q̇+
∂Ue
∂λ

λ̇+
∂Ue
∂S

Ṡ

U̇e = −r(s)
(

λ

L(s)

)2

+
∂Ue
∂S

dS

dt
+ y>e ue.

(9)

From Gibb’s relation (Callen, 1985; Kondepudi and Pri-
gogine, 1998) we have that ∂Ue

∂S = T (S). Hence, and
considering ue = 0 for simplicity, it is obtained from (9)
that

dS

dt
=
r(S)

T (S)

(
λ

L(S)

)2

= σr ≥ 0 (10)

where σr corresponds to the internal entropy production
and which is indeed related to the electrical dissipation.
Hence an IPHS formulation of the thermodynamic model
of the RLC circuit isQ̇λ̇

Ṡ

 =

([
0 1 0
−1 0 0
0 0 0

]
+
r

T

λ

L

[
0 0 0
0 0 −1
0 1 0

])QCλ
L
T

+

[
0
1
0

]
ue

(11)
where we have skipped the arguments for simplicity. Notice
that (11) actually corresponds to the combination of a
reversible PHS and an IPHS. Indeed, we identify two
matrices, related to the reversible and irreversible phenom-
ena, respectively,

Je =

[
0 1 0
−1 0 0
0 0 0

]
, Jr =

[
0 0 0
0 0 −1
0 1 0

]
The bracket defined by Jr evaluated with the entropy and
the internal energy defines the irreversible driving force of
the system

{S,Ue}Jr =
λ

L
(12)

equals the current which is the driving force of the irre-
versibility in the system. Hence we have that the modu-
lating function of the irreversibility is

Rr =
r

T

λ

L
.

Hence the RLC circuit can be written as the reversible-
irreversible PHS (Ramirez et al., 2013b)

ẋe = (Je −RrJr)
∂Ue
∂x

+ geue (13)

with xe = [Q,λ, S]> and ge = [0 1 0]>.

3.2 The mass-spring-damper (MSD) system

Consider a MSD system[
q̇
ṗ

]
=

[
0 1
−1 −b

] [
kq
p
m

]
+

[
0
1

]
um, ym = [0 1]

[
kq
p
m

]
. (14)

The mechanical energy and its derivative in time are given
by

Hm(q, p) =
1

2
kq2 +

1

2

p2

m
,

Ḣm = −b
( p
m

)2
+ y>mum.

If the thermal effects are taken into account, the mechan-
ical friction induces heating of the system. Assume that
the mechanical parameters are temperature dependent as
it is the case for micro-mechatronic systems,

k = k(T (S)), m = m(T (S)), b = b(T (S)),

Consider now the internal energy of the system Um is com-
posed of the mechanical energy and an entropy dependent
function.

Um(q, p, S) =
1

2
k(S)q2 +

1

2

p2

m(S)
+ Sm(S) (15)

In the same way as for the RLC circuit we deduce that the
internal entropy creation is given by

dS

dt
=

b(s)

T (s)

( p
m

)2
= σb ≥ 0 (16)

where σb corresponds to the internal entropy production.
An IPHS formulation of the thermodynamic model of the
MSD system is then given by q̇ṗ

Ṡ

 =

([
0 1 0
−1 0 0
0 0 0

]
+
b

T

p

m

[
0 0 0
0 0 −1
0 1 0

])[
kq
p
m
T

]
+

[
0
1
0

]
um

(17)
where we have skipped the arguments for simplicity. As
for the RLC circuit we can identify matrices related to the
reversible and irreversible phenomena, respectively,

Jm =

[
0 1 0
−1 0 0
0 0 0

]
, Jb =

[
0 0 0
0 0 −1
0 1 0

]
.

The irreversible driving force of the system is computed
using the bracket defined by Jb,

{S,U}Jb =
p

m
, (18)

i.e., the velocity which is indeed the driving force of the
irreversibility in the system. The modulating function is
in this case

Rb =
b

T

p

m
.

Hence the micro MSD can be written as the reversible-
irreversible PHS (Ramirez et al., 2013b)

ẋm = (Jm −RbJb)
∂Um
∂x

+ gmum (19)

with xm = [q, p, S]> and gm = [0 1 0]>.

4. HYSTERESIS AS A DOMAIN COUPLING
MECHANISM

In this section we shall focus in the case when hysteresis
is the predominant coupling mechanism, and shall for
simplicity not consider the reversible coupling, between
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Fig. 1. Non-linear damping relation between q̇z and Fd.

different physical domains. We shall model the hysteresis
of the system by means of an idealised component, namely
an hysteron (Karnopp, 1983). The hysteresis is assumed
to have non-isothermal behaviour, hence it will produce
entropy in an irreversible fashion. We shall extend the
concepts developed in Karnopp (1983); Calchand (2014) to
incorporate hysteresis and its non-isothermal contribution
in mechanical, electrical and electromechanical systems.

4.1 Hysteresis in the mechanical domain

An hysteron (Karnopp, 1983) is an element composed of a
(possible non-linear) spring and a non-linear, non-smooth
damper interconnected in parallel. The state variable as-
sociated to the spring accounts for the memory of the
hysteron and the damping coefficient accounts for the dis-
sipation. Hence, during one cycle of the hysteron, part of
its energy is stored while another part is transformed into
irreversible entropy production in a non-linear fashion.
Define the total force applied to the hysteron as

Fh = Fk + Fd (20)

where Fk = khqz corresponds to the force associated to
the conservative element, with kh the possible non-linear
spring coefficient and qz the displacement of the spring.
The force Fd is produced by the non-linear dissipative
element. The dynamic of the hysteron is derived from the
constitutive law of the dissipative element

q̇z = d(Fd) = d(Fh − Fk) = d(Fh − khqz), (21)

where d is a positive non-linear non-smooth operator.
Physically it corresponds to a mechanical conductance
type of element, since it maps forces to velocities. The
simpliest form of this dissipative element can be observed
in Figure 1. From the second law the energy dissipated
through the dissipative element produces entropy irre-
versibly. Hence,

q̇zFd = d(Fd)Fd = σd ≥ 0

where σd corresponds to the irreversible entropy produc-
tion of the hysteron of the mechanical component. This
irreversible entropy production corresponds to the surface
in between the hysteresis curve of a system (cf. Figure
2). In order to include hysteresis in the MSD system the
hysterion is interconnected in series with the spring with
elastic coefficient k in (17). The hysteron will hence act as
a non-linear state dependent velocity source (cf. Figure 3).
By defining the vector of states variables x = [qt, p, qz, S]>,
where qt is the total displacement of the mass m, i.e.,

qz

FdFdM

qz
max Fdm

Energy lost

Fig. 2. Hysteretic curve.

m
k

u
h

qz qt

k

b

d

Fig. 3. Equivalent representation of an hysteron intercon-
nected with a MSD system.

qt = q+qz, we obtain the following IPHS of the mechanical
system with hysteresisq̇tṗq̇z

Ṡ

 =


 0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

+
b

T

p

m

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 +

1

T
d(Fd)

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



 k(qt − qz)

p
m

khqz − k(qt − qz)
T

+

0
1
0
0

um
(22)

with Fd = k(qt − qz)− khqz and internal energy function

Um =
1

2
k(qt − qz)2 +

1

2

p2

m
+

1

2
khq

2
z + Sm(S). (23)

We observe that the modulating function of the irreversible
entropy production of the hysteron is Rd = γd{S,U}Jd =
1
T d (Fd) with γd = 1

T d(·) > 0 and {S,U}Jd = k(qt − qz)−
khqz = Fd, which is indeed the dissipative force produced
by the hysteron and which defines the thermodynamic
driving force of the irreversible dissipation, and where

Jd =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 .
Consider for simplicity um = 0, then the entropy balance
of (22) is given by

Ṡ =
b

T

( p
m

)2
+

1

T
d (Fd)Fd

= σb + σd ≥ 0,

the total entropy production is thus the sum of the
mechanical dissipation and the hysteresis. As explained
in Karnopp (1983); Calchand (2014), one hysteron is



usually not enough to precisely represent the hysteresis
of a system. Hence a collection of hysterons has to be
employed to gain in accuracy. It is straightforward to
include a number n of hysterions in the previous model.

Define as state vector x = [qt p qz1 · · · qzn S]
>

, then an
IPHS representation for a model including n hysterons is

ẋ =

(
Jm −RbJb −

n∑
i=1

RdiJdi

)
∂Um
∂x

+ gmum (24)

where

Jm =


0 1 0 · · · 0 0
−1 0 0 · · · 0 0
0 0 0 · · · 0 0
...

. . .
. . . · · ·

...
...

0 0 0 · · · 0 0
0 0 0 · · · 0 0

 , Jb =


0 0 0 · · · 0 0
0 0 0 · · · 0 −1
0 0 0 · · · 0 0
...

. . .
. . . · · ·

...
...

0 0 0 · · · 0 0
0 1 0 · · · 0 0



Jd1 =


0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 1
...

. . .
. . . · · ·

...
...

0 0 0 · · · 0 0
0 0 −1 · · · 0 0

 , Jdn =


0 0 0 · · · 0 0
0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

. . .
. . . · · ·

...
...

0 0 0 · · · 0 1
0 0 0 · · · −1 0


with

Rb =
b

T

( p
m

)2
,

Rd1 =
1

T
d1

(
k

(
qt −

n∑
i=1

qzi

)
− kh1

qz1

)
,

...
...

Rdn =
1

T
dn

(
k

(
qt −

n∑
i=1

qzi

)
− khn

qzn

)
,

and internal energy function

Um =
1

2
k

(
qt −

n∑
i=1

qzi

)2

+
1

2

p2

m
+

1

2

n∑
i=1

khi
q2zi + Sm(S).

It is straightforward to verify that for the i-th hysterion
γdi = 1

T di(·) > 0 and {S,U}Jdi = k(qt −
∑n
i=1 qzi) −

khqzi = Fdi , the dissipative force, which defines indeed the
thermodynamic driving force of the irreversible dissipation
of the i-th hysterion. Consider for simplicity um = 0, then
the entropy balance of (24) is given by

Ṡ =
b

T

( p
m

)2
+

1

T

n∑
i=1

di (Fdi)Fdi

= σb +

n∑
i=1

σdi ≥ 0,

As expected, the total entropy production is the sum of
the entropy production of the mechanical dissipation and
each individual hysteron.

4.2 Hysteresis in the electrical domain

Hysteresis can be introduced in a similar manner in the
electrical domain. Consider an hysteron composed of a
(possible non-linear) capacitor and a non-linear, non-
smooth resistance. Define the total voltage applied to the
hysteron as

Vh = VC + Vw (25)

where VC = Qz

Ch
corresponds to the voltage associated to

the conservative element and Vw the voltage across the
dissipative element. The dynamic of the hysteron is derived
from the constitutive law of the resistive element

Q̇z = w(Vw) = w(Vh − VC) = w

(
Vh −

Qz
Ch

)
,

where w(·) is a non-linear, non-smooth operator. Physi-
cally it corresponds to a conductance. From the second
law the energy dissipated through the dissipative element
produces entropy irreversibly. Hence,

Q̇zVw = w (Vw)Vw = σw ≥ 0

where σw corresponds to the irreversible entropy produc-
tion of the hysteron. Just as for the MSD system, we shall
represent the hysteresis in the RLC system by an hysterion
interconnected in series with the capacitor with capacitive
coefficient C in (11). The hysterion will hence act as a non-
linear state dependent current source. The deduction of
the model is equivalent as for the MSD system by defining

as state vector x = [Qt λ Qz1 · · · Qzn S]
>

,

ẋ =

(
Je −RrJr −

n∑
i=1

RwiJwi

)
∂Ue
∂x

+ geue (26)

with Je = Jm, Jr = Jb, Jw1
= Jd1 , Jwn

= Jdn ,

Rr =
r

T

(
λ

L

)2

,

Rw1
=

1

T
w

(
1

C

(
Qt −

n∑
i=1

Qzi

)
− 1

Ch1

Qz1

)
,

...
...

Rwn
=

1

T
w

(
1

C

(
Qt −

n∑
i=1

Qzi

)
− 1

Chn

Qzn

)
,

and internal energy function

Ue =
1

2C

(
Qt −

n∑
i=1

Qzi

)2

+
λ2

2L
+

n∑
i=1

Q2
zi

2Chi

+ Se(S).

Just as for the mechanical domain, it is straightforward
to see that for the i-th hysterion γwi

= 1
T wi

(·) > 0,

{S,U}Jw
i

= 1
C (Qt−

∑n
i=1Qzi)−

1
Chi

qzi = Vwi
, the voltage

across dissipative element, which defines indeed the ther-
modynamic driving force of the irreversible dissipation of
the i-th hysterion. Consider for simplicity ue = 0, then the
entropy balance of (26) is given by

Ṡ =
r

T

(
λ

L

)2

+
1

T

n∑
i=1

w
i
(Vwi

)Vwi

= σr +

n∑
i=1

σwi
≥ 0.

The total entropy production is the sum of the entropy
production of the electrical dissipation and each individual
hysteron.

4.3 Hysteresis as a multidomain coupling term

Lets us consider an electromechanical system coupled
through shared hysteresis. This is for instance the case of
piezo-electric actuators or magnetic shape memory alloys



(Calchand, 2014). Since the coupling relation is given
through the hysteresis, the hysterions of the previous
models can be used to formally induce the multidomain
interaction. Define the following IPHS

ẋ =(
J0 +RrJR +RbJB +

n∑
i=1

Rwi
JWi

+

n∑
i=1

RdiJDi

)
∂U

∂x

+ gu

where U = Ue + Um, g = [ge gm]> and

J0 =

[
Je 0
0 Jm

]
, JR =

[
Jr 0
0 0

]
, JB =

[
0 0
0 Jb

]
JWi =

[
Jwi

0
0 0

]
, JDi =

[
0

0 Jdi

]
The state variables of the hysterons are used to define
the multidomain coupling, hence they will appear in the
internal energy function as “cross terms” between the
different physical domains. Indeed, in order to explicitly
make appear the coupling the state variable of an hysteron
defined in for instance the mechanical domain will appear
in the electrical energy function, inducing a non-linear
voltage on the dynamic of the magnetic flux. This will
be illustrated in next section.

5. EXAMPLE: A MAGNETIC SHAPE MEMORY
ALLOY

In Calchand (2014) a control model for an isothermal
Magnetic Shape Memory Alloy (MSMA) has been pro-
posed. The simplest version of this model includes only
one hysteron and is given by

 λ̇q̇z
q̇t
ṗ

 =

−r 0 0 0
0 −d(·) 0 0
0 0 0 1
0 0 −1 −b



∂H
∂λ
∂H
∂qz
∂H
∂qt
∂H
∂p

+

1 0
0 0
0 0
0 1

u
with input u = [V, F ]>, an external input voltage and force
respectively, and energy function

H(λ, qz, qt, p) = He(λ, qz) +Hm(qt, p, qz)

= He(λ, qz) +
1

2

p2

m
+

1

2
k(qt − qz)2

(27)

Where He(λ, qz) correspond to the magnetic energy of
the electrical part of the system and which depends on
qz. In Calchand (2014) the magnetic energy has been
identified as a non-linear sector function which takes into
account the hysterisis of the mechanical domain. We shall
not give the explicit definition of He(λ, qz) since it is not
relevant for the present study and the reader is refereed
to Calchand (2014) for further details. In order to include
the non-isothermal phenomena we extend the state space
and include the entropy as state variable. This leads to the
following IPHS


λ̇
q̇z
q̇t
ṗ

Ṡ

 =




0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

+
r

T

∂H

∂λ


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0


b

T

p

m


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0

+
1

T
d (Fd)


0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0




∂H
∂λ
∂H
∂qz
∂H
∂qt
∂H
∂p
∂H
∂S


+

[
1 0 0 0 0
0 0 0 0 1

]>
u

The IPHS has one reversible and three irreversible struc-
ture matrices, hence there are three sources of internal
irreversible entropy production. Assume u = [0 0]> for
simplicity, then

Ṡ =
r

T

(
∂H

∂λ

)2

+
b

T

( p
m

)2
− 1

T
d (Fd)

∂H
∂qz

= σr + σb + σd

which corresponds indeed to the irreversible internal en-
tropy creation of the system since − ∂H

∂qz
= Fd. It is

straightforward to extend this model to a model with n
hysterons, as illustrated in the preceding section.

6. CONCLUSION

An irreversible port-Hamiltonian system (IPHS) represen-
tation of non-isothermal electromechanical systems with
hysteresis has been proposed. By representing the hysteri-
sis through hysterons interconnected with the mechanical
and electrical components, it has been shown that the hys-
teresis behaves as an irreversible process. This is elegantly
captured by the IPHS structure and makes it possible to
isolate the different irreversible phenomena of the overall
system. Furthermore, it has been shown that in general an
electromechanical system with hysteresis corresponds to
a reversible-IPHS, i.e., the combination of a conservative
Hamiltonian system with an irreversible one defined with
respect to the same Hamiltonian. This is very interesting
since it implies geometric properties between the different
structure matrices, which can then be exploited for control
design. Future work will deal with the control and the
experimental validation of the proposed models.
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