Enhancement of the performances of a quasi-periodic electromechanical vibration energy harvester by energy localization

Kaouthar AOULAIL, Najib KACEM, Eyès MRABET, Noureddine BOUHADDI and Mohamed HADDAR

INTRODUCTION

Developing techniques for vibration energy harvesting (VEH) based on various energy conversion mechanisms is being a focus of interest. In this context, a multimodal approach in a quasi-periodic system for vibration energy harvesting is investigated. The basic idea to enhance the system performances consists in introducing imperfections. Thus, mistuning is achieved by varying the mass of few cells. These imperfections will lead to the vibration energy localization in regions close to the imperfections which will be exploited to maximize the harvested energy.

DESIGN AND MODEL OF THE VIBRATION ENERGY HARVESTER

The design and the equivalent model of the proposed harvester, made of two weakly coupled magnets guided by elastic beams, are shown in the figures 1 and 2, where the imperfection is tuned by the parameter α defined as the mass mistuning. The system is subjected to harmonic base excitation Y(t). The parameters k1, k2, k12 are respectively the equivalent mechanical and magnetic stiffness of the 2 degrees of freedom (dof) model.

Therefore, the mean harvested power is given by:

\[
\overline{P} = R_{load} \, \delta d \, \left(\frac{R_{load} + R_{in}}{\alpha} \right)^2 \left[\frac{\alpha^2 \, (\alpha, \beta) \, A_{2, max}^2 (\alpha, \beta, R_{load})}{\alpha^2 + \beta^2 (\alpha, \beta)} \right]
\]

Modal localization is quantified by the following ratio:

\[
\tau_k = \frac{A_{k, max} - A_{k, 1, max}}{\max (A_{k, max}^1, A_{k, max}^2)}
\]

The maximum localization ratio is about 41% as shown in figure 5.

MULTIOBJECTIVE OPTIMIZATION

In order to improve the system performances, a multiobjective optimization procedure is proposed. The two objective functions are the mean harvested power P and the localization ratio \(\tau_k \). For this purpose, the Pareto Front is plotted as shown in figure 6.

The compromise solution is to maximize simultaneously the two objective functions. The results of the multiobjective optimization are listed below for 3 design parameters:

\[
\begin{align*}
\alpha & \in [1.03, 1.035] \\
\beta & \in [1.5\%, 2.2\%] \\
R_{load} & \in [3k\Omega, 3.5k\Omega]
\end{align*}
\]

For these optimal values, the variation of the two maximum amplitudes is displayed in figure 7.

CONCLUSIONS

A vibration energy harvester based on modal localization is proposed. The concept consists in introducing a mistuning of mass in two weakly coupled magnets guided by elastic beams. A multiobjective optimization procedure was conducted in order to improve the performances of the proposed VEH with up to 1.24 mW of harvested power while maintaining a significant localization ratio of 34%.

REFERENCES